热交换器原理和设计第5章 蓄热式热交换器-PPT课件
- 格式:ppt
- 大小:1.09 MB
- 文档页数:25
热交换器工作原理
热交换器是一种用于在流体之间传递热量的设备,它广泛应用于工业生产和日
常生活中。
热交换器的工作原理主要包括传热过程和流体流动过程。
首先,让我们来看一下热交换器的传热过程。
热交换器通过传导、对流和辐射
等方式来传递热量。
当两种不同温度的流体经过热交换器时,它们之间会发生热量的交换。
在热交换器内部,通常会设置有许多传热面积较大的传热管或传热片,以增加传热效果。
而流体流经这些传热管或传热片时,热量会通过壁面传递给另一侧的流体,从而实现热量的传递。
其次,让我们来了解一下热交换器的流体流动过程。
热交换器内部的流体流动
通常分为并流和逆流两种方式。
在并流方式下,两种流体分别从两端进入热交换器,在整个传热过程中,它们的流动方向是相同的。
而在逆流方式下,两种流体分别从两端进入热交换器,但它们的流动方向是相反的。
这两种流动方式都有各自的优缺点,可以根据具体的使用情况来选择合适的方式。
此外,热交换器还需要考虑流体的流动阻力和传热效率。
流体在热交换器内部
流动时,会产生一定的流动阻力,这会影响流体的流速和流动状态。
为了减小流动阻力,热交换器通常会采取一些措施,比如优化流道结构、增加传热面积等。
而传热效率则取决于热交换器的设计和制造工艺,包括传热面积、传热介质的选择、流体流动方式等因素。
总的来说,热交换器的工作原理涉及到传热过程和流体流动过程,通过合理设
计和优化结构,可以实现高效的热量传递。
在实际应用中,我们需要根据具体的使用需求来选择合适的热交换器类型和工作参数,以达到最佳的传热效果。
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
换热器种类及原理各种换热器优缺点、原理图及适用场合一、换热器种类及原理:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热;表面式换热器有管壳式、套管式和其他型式的换热器;2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的;蓄热式换热器有旋转式、阀门切换式等;3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体;4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等;二、换热器优缺点、原理图及适用场合1、表面式换热器:间壁式换热器1、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用于温差小、单行程、压力不高以及结垢不严重的场合;2、容积式换热器:优点:供水平稳、安全,易于清除污垢;主要用于热水供应系统;但其传热系数比壳管式换热器低得多;3、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉积,都容易堵塞;在我国城镇集中供热系统中开始得到广泛应用;4、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞;缺点:不能拆卸清洗、2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换;如回转式空气预热器;局限:若两种流体不允许混合,不能采用蓄热式换热器;3、流体连接间接式换热器:4、直接接触式热交换器混合式换热器:优点:传热效率高、单位容积传热面积大、设备结构简单、价格便宜等;仅适用工艺上允许两种流体混合的场合;。
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
绪论1.在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,称为热交换器。
2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式间壁式I:热流体和冷流体间有一固体表面,一种流体恒在壁的一侧流动,而另一种流体恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
混合式!:这种热交换器内依靠热流体与冷流体的直接接触而进行传热。
蓄热式I:其中也有固体壁面,但两种流体并非同时而是轮流的和壁面接触,当热流体流过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章, ,1.Mc称为热容量,它的数字代表流体的温度没改变1°C是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W一对应单位温度变化产生的流动流体的能量存储速率。
3.1平均温差指整个热交换器各处温差的平均值。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W]、W2值的大小如何,总有p >0, 因而在热流体从进口到出口的方向上,两流体间的温差At总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,p >0,At不断降低,当W1>W2时,p V 0,At不断升高。
5.P—冷流体的实际吸热量与最大可能的吸热量的比率,称为温度效率。
(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
化工原理课程设计-热交换器引言热交换器是化工工艺中常用的一种设备,其作用是实现热量的交换,从而实现能量的转移。
本文将从热交换器的原理、设计要点、性能评价等方面进行介绍和讨论。
一、热交换器的原理热交换器是通过两个介质之间的热传导来实现能量转移的设备。
它由一个或多个传热表面组成,介质在这些表面上相互接触,并通过传热表面之间的热传导来实现热量的传递。
根据介质的流动方式,热交换器可以分为管壳式热交换器和板式热交换器。
1.1 管壳式热交换器管壳式热交换器是目前最常用的一种热交换器。
它由一个管子和一个外壳组成,在外壳内部通过一个或多个管子,介质在管子内部流动,通过管子和外壳之间的热传导来实现热量的传递。
管壳式热交换器结构简单、可靠性高,广泛应用于化工、制冷等领域。
1.2 板式热交换器板式热交换器是近年来发展起来的一种新型热交换器。
它由一系列平行排列的波纹板组成,流体通过波纹板之间的间隙流动,通过波纹板的热传导来实现热量的传递。
板式热交换器具有传热效率高、体积小、重量轻等优点,因此在化工工艺中得到广泛应用。
二、热交换器的设计要点热交换器的设计是化工工艺中非常重要的一部分,设计的好坏直接影响到热交换器的性能。
下面将介绍热交换器设计的几个关键要点。
2.1 热传导热传导是热交换器实现热量传递的基本方式。
在设计热交换器时,需要考虑介质之间的热传导系数、传热表面的材料、传热表面的形状等因素,并通过合理的设计来提高热传导效率。
2.2 流体流动流体的流动方式对热交换器的传热效果有着重要影响。
在设计热交换器时,需要考虑流体的流动速度、流动的方式(如层流、湍流)、流体的阻力等因素,并通过合理的设计来优化流体的流动方式,提高传热效率。
2.3 温度差温度差是热交换器实现热量转移的驱动力。
在设计热交换器时,需要考虑介质之间的温度差、介质的流量、介质的性质等因素,并通过合理的设计来控制温度差,提高传热效率。
2.4 材料选择热交换器的材料选择直接影响到其耐腐蚀性、耐高温性、传热效率等性能。