上海长江隧道连接通道水平冻结法施工
- 格式:pdf
- 大小:799.84 KB
- 文档页数:5
隧道及地铁事故分析与思考1.上海地铁4号线黄浦江段区间隧道联络通道透水被淹事故事故造成直接损失9.8亿,黄浦江西岸三栋高层楼房倒坍,防洪提严重损坏,为国内建筑史上经济损失最大事故。
造成整段隧道及相邻车站报废,后修复重建。
事故发生经过:江底隧道联络通道采用水平冻结矿山法开挖,在距离开挖井0.8米与另条隧道贯通时,在7层承压水中发生涌水事故,堵漏无效被水淹没。
冻结法经过专家论证,专业设计专业施工队自施工。
事故发生原因分析:(1)客观原因联络通道设在7层承压水层中,地层水压力很高,透水性很强,富水量较大。
(2)没按设计方案施工,冻结管数量不够,擅自改变方案。
(3)测温孔、观测孔数量检测不符合要求,冻结强度、温度不够仍继续开挖施工。
(4)开挖涌水堵漏措施不当,堵塞无效。
(5)管理及应急预案落实不够。
(6)冻结开挖期间外部停电,备用发电机不能工作,冷冻效果达不到要求。
事故启示:(1)给设计提醒,当初隧道线路设计上提或下埋深避开在7层承压水层是否可避免此次事故,我们可以思考,但不是主要原因。
(2)冻结设计是否还需完善?(3)施工管理和指挥存在严重缺陷,若处理得当或许可减少损失。
(4)不按设计施工方案施工或检测不合格继续施工,是事故直接原因祸因。
(5)备用应急发电机措施不当。
2.杭州地铁基坑坍塌事故事故经过:据报道杭州一号线香湖路车站,车站基坑坍塌,地铁改线,损失巨大,人员伤亡严重,社会影响较为恶劣严重。
原因分析:(1)基坑围护、挖土、支撑、降水及结构施工管理混乱无序,是主要原因。
(2)监测数据多次报警,超限不引起重视处理,且监测数据修改不真实,存在虚假问题。
(3)挖土无序、支撑不及时,底板大面积基坑长时间暴露,底板结构长时间不封闭,最终导致坍塌事故。
(4)降水及周围路面超载也存在问题。
事故启示:(1)据悉合同文件、设计文件对基坑加固、降水工作内容及范围界定存在一定模糊,各方理解不一,施工单位没有签认费用不去实施加固措施,在今后的工作中可以考虑去把文件完善。
武汉长江隧道工程冷冻法施工作业指导书编制:审核:批准:中铁隧道股份有限公司武汉长江隧道工程项目经理部二零零六年七月一、编制依据《地下铁道工程施工及验收规范·GB50299-1999》;《盾构法隧道工程施工及验收规范· DGJ08-233-1999》;《地下防水工程施工及验收规范· GBJ208-83》;《煤矿井巷工程施工及验收规范·GBJ213-90》;本工程投标文件。
二、编制目的规范操作程序,指导现场施工。
三、适用范围武汉长江隧道盾构隧道联络通道冷冻施工。
四、作业概述该工法是在地层中按预定间隔埋设冻结管(Φ100mm的管径),冷却液在冻结管上循环,则管周围地层中的孔隙水以管为中心生成年轮形状冻土。
邻近的冻土柱连接在一起,形成止水墙。
本工程用冷冻机把盐水溶液冷却到-20~-40℃,由循环泵送至冻结管冷却地层,盐水吸收地层的内热后,温度上升,经由盐水冷却泵,返回冷却机降温后,再次进入冷却管,如此反复循环。
五、人员机械配置人员配置表机械设备配置表六、部门职责1、工程部:①、负责冻结帷幕设计计算、冻结孔布置及制冷设计;②、冻结施工过程现场监督,冻结效果检查。
2、设物部:①、负责冷冻设备的维修、保养;②、保证电力持续、足量供应。
3、操作班组:①、严格按照冷冻设计布孔、埋管;②、钻机、冷冻机械操作。
七、作业流程作业流程见下图。
施工准备7.1.1在隧道内敷设一条120mm2动力电缆,用于冻结钻孔施工及隧道内冻结作业流程图系统安装供电。
7.1.2利用隧道内清水、排污管道,用于冻结孔打钻和冻结站运转的供水和排污。
7.1.3在旁通道施工工作面两端砌高约0.5m的泥浆挡墙,以免冻结孔钻进时泥浆四溢影响隧道内环境整洁。
7.1.4用厚4~6cm的木板在旁通道处铺设冻结施工场地,按不同位置的冻结孔钻进要求,用φ″钢管搭建冻结孔施工脚手架。
冻结孔定位与管片开孔根据冷冻设计计划的基准点,按冻结孔施工图进行冻结孔孔位放线,提请注意的是:孔位布置首先要依据管片配筋图和钢管片加强筋的位置,在避开主筋的前提下可适当调整,一般不应大于100mm。
上海长江隧道工程设备系统上海市隧道工程轨道交通设计研究院上海长江隧道工程设备系统简介1. 工程概况长江隧道是崇明越江通道工程中穿越长江南港的工程,全长8955m,其中盾构法隧道长度7471m,衬砌外径15m,内径13.7m,工程范围内设浦东和长兴岛两座工作井。
江中圆隧道上层按双向六车道高速公路标准设计,隧道内设计车速80km/h。
下层正中为预留的轨道交通空间。
隧道浦东、长兴岛暗埋段峒口内分别设置两座雨水泵房,在江中圆隧道上下行线之间设8条连接通道、最低点设江中泵房。
整个崇明越江通道工程设一处管理中心,管理中心位于北港桥梁工程范围内,负责隧道和桥梁的运营管理。
2. 设备系统设计工作内容2.1 通风、排烟设计1.设计标准、参数:隧道内火灾释热量:50MW;火灾位置:考虑同时只发生一处火灾。
2.公路通风系统设计:采用纵向通风结合重点排烟的通风模式;每管隧道内悬挂26组射流风机,每3台一组,两端风井设置若干台大型轴流排风(烟)机;排烟道下部设置大规格排烟风口;隧道内拟采用细水雾喷淋降温。
3.轨道交通通风系统设计:正常工况下在两座工作井内上、下行线各设置1座活塞通风井。
依靠列车行驶活塞风对其自然通风,将余热排至峒外。
阻塞工况和火灾工况下采用事故风机与射流风机组合通风方式,通风井间暂按一列车火灾的工况设计。
2.2 给排水、消防设计1.废水排水系统:隧道内消防废水、冲洗废水、结构渗漏水等由设在最低点的江中废水泵房(公轨分置)收集,并经浦东长兴岛工作井内的废水泵房接力后,分级提升排出隧道。
2.雨水排水系统:在隧道两端峒口各设一座雨水泵房拦截雨水并排出隧道。
雨水量按上海地区暴雨强度公式计算,隧道敞开段部分雨水量按暴雨重现期三十年一遇设计。
3.消防系统:灭火器及消火栓;泡沫-水喷雾联用系统;地面水消防系统。
在每条隧道内单侧每隔50m设置一组消火栓箱,全线共设消火栓箱350组。
在每条隧道的暗埋段及盾构段内设置泡沫水喷雾联用系统,以25米为一个区间,在车道侧墙上方设置近、远程喷头,共设650组;消防时二组喷头同时作用,前期喷泡沫灭火,后期喷雾防止复燃。
地铁施工技术交流材料冷冻法联络通道施工技术及风险控制措施一、冻结法的基本原理与特点采用冻结法对地层土体进行加固,是指利用人工制冷技术,使地层中的水结冰,把天然岩土变成冻土,增加其强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁的保护下进行地下工程掘砌施工的特殊施工技术.其实质是利用人工制冷临时改变岩土性质以固结地层。
1、岩土冻结实质岩土冻结性质的改变,即将含水地层(松散土层或裂隙岩层)冷却至结冰温度下,使土中孔隙水或岩石裂隙水变成冰,岩土的性质发生重要变化,形成一种新的工程材料--“冻土” .2、冻土结构特点而冻土结构具有较高的强度和绝对的封水性.3、冻土结构功能冻土结构的承载功能和封水的不承载功能。
4、制冷方法其制冷技术方法,通常使用制冷设备,利用物质由液态变为气态,即气化过程的吸热现象来完成的。
4。
1、有两种类型:⑴、冷媒剂(盐水)吸热:氨 (—33.4℃);干冰(—78。
5℃);⑵、直接气化吸热:液氮(—195.8℃);干冰(—78。
5℃)4。
2、冻结系统常有两种类型:⑴、封闭系统(盐水冻结);⑵、开放系统(液氮冻结)5、冻结法的适应性冻结法加固与其它加固方法相比,其适应性更强,能够适应粘土、粉土、砂层以及砾石、卵石等任何地层。
6、冻结法的特点6。
1、冻土帷幕的变化性:⑴、冻土范围可变;⑵、冻土温度可变;⑶、冻土强度可变(强度是温度的函数)6.2、冻土帷幕的连续性:水在负温下结冰的必然性;6.3、冻土帷幕的可知性:通过温度测试可判断冻结范围、冻土强度7、冻结法施工的优点7.1、安全性好:⑴、冻土强度较高;⑵、冻土连续性可靠、封水性好7.2、适用性强:⑴、适用于几乎所有具有一定含水量的松散地层(包括岩石);⑵、复杂地质条件可行(流砂、大深度、高水压)7.3、灵活性高:⑴、冻土帷幕性状(范围、形状、温度、强度)可控8、冻结法施工缺点由于冻结法所形成的冻土帷幕其范围、温度、强度具有变化性,其冻结范围、强度随温度的变化而变化,如果供冷不足或外部热源可导致冻土帷幕性能(范围、强度)退化,安全性能降低,施工风险增大。
上海长江隧道工程盾构施工技术上海长江隧道工程盾构施工技术摘要:位于长江口的上海长江隧道工程,其盾构直径和一次连续掘进距离均为世界之最。
结合该隧道工程超大直径、超长距离盾构掘进,研究探讨了施工中的关键技术、技术难点与风险并提出了相应的对策,以确保如期、优质安全地建成长江隧道工程。
关键词:隧道盾构泥水方案1工程概况上海长江隧桥工程是连接上海市区和崇明的高速公路通道,是我国沿海大通道的重要组成部分。
长江隧桥工程总长25.5 km,采用隧道形式穿越长江南港后,连接浦东和长兴岛;采用桥梁形式跨越长江北港后,连接长兴岛至崇明岛,见图1。
上海长江隧道工程南起浦东五号沟,北至长兴岛新开港,该工程设计线路总长8955.26 m,江中为盾构法双线隧道,上行线圆隧道段长7471.65 m,下行线圆隧道段长7469.36 m。
每条圆隧道内道路为3车道,共6车道,设计时速为80 km/h,见图2。
江中圆隧道施工采用Φ15.43 m泥水平衡盾构掘进机,一次连续掘进完成。
江中圆隧道外径15000 mm,内径13700mm,最大坡度为2.90A,最小平面曲率半径为4000m,江底最浅覆土约14.0 m,最深覆土约29.0m。
两条隧道内最低点共设4座江中泵房,在两条隧道之间设有8条连接通道。
工程沿线地质条件复杂,隧道穿越主要土层为③1、③2层粉性土、④1、④2、⑤1-1、⑤1-2层粘性土和(孰层粉性土、⑦1-1⑦1-2层砂性土,部分地段遇⑤1-t层灰色粘质粉土透镜体。
工程沿线浅部土层中的潜水,与江水有密切水力联系,基本上与江水相沟通;埋藏于⑦层、⑨层中的承压水直接相通,水量丰富,承压水水头标高在0.00 m左右睇⑤2层中分布有微承压水,与⑦层中承压水有一定的水力联系。
工程沿线地层有浅层气存在,主要分布于④层淤泥质粘土层中下部,以弥散状分布,量少、气压低。
在工程范围内还存在冲刷槽,冲刷槽深度为6~7 m,呈"V"字形,在冲刷槽坡侧上有滑塌体存在。
管线铺设——气动夯管法施工水平冻结孔技术
气动夯管技术是现代非开挖铺设管线技术的一个分支,适用于排水、自来水、电力、通信、油气等管道穿越公路、铁路、建筑物和小型河流的非开挖铺设。
它是一种特别适合当前我国非开挖地下管线施工领域的简单、经济、有效的施工技术。
特别是当水平冻结孔所处地层为砂性土、淤泥质黏土、粉质黏土、粉土等松软、含水量大且承压大的土层时(如上海地区),利用夯管法施工技术在保证施工冻结孔少出泥、控制施工对地层的扰动以及施工安全等方面有明显的优越性。
2002 年以来,采用气动夯管技术,替代传统的钻进法,进行水平冻结孔施工,先后完成了上海地铁明珠二期杨树浦路—浦东大道区间隧道联络通道及泵站(黄浦江底)、上体馆站穿越段、上体馆站—宜山路站区间泵站、成山路—高清路区间联络通道及泵站、天津土城及下瓦房联络通道及泵站等工程,取得了良好的效果。
1 工艺原理气动夯管法施工水平冻结孔, 即利用空压机驱动气动夯管锤沿导轨(设计路线)将冻结管直接夯进土层中。
在冻结管夯进的过程中,一边挤压土体,一边克服地层与管体的摩擦力,使冻结管不断进入土层,直至设计深度。
该方法所使用的主要设备是夯管锤。
它是一台低频、大冲击功的气动冲击器,借由压缩空气驱动,将要铺设的钢管沿设计路线夯入地层。
在冻结管夯进时,其受力分析如图 1 所示。
图1 中,P 为冻结管受到的冲击力;F 为冻结管管端阻力;f 为冻结管与土层接触面之间的摩擦力;N为土体对冻结管反作用力;。
doi: 10.3969/j.issn.1673-6478.2024.01.044盾构隧道长联络通道冻结法施工技术与应用郭 伟(中国水利水电第七工程局有限公司,四川 成都 610213)摘要:本文以郑州市轨道交通8号线五龙口站—同乐站区间隧道3#联络通道冻结工程为背景,详细总结了长距离联络通道施工关键技术,包括冻结加固方案、冻结施工技术要点、施工风险及应对措施等,并通过现场施工情况及实测数据进行了验证。
针对长距离联络通道的冻结施工,采用双侧搭接布置冻结管、实时压力监测并打设泄压孔、解冻期及时跟进补浆、必要情况下施作钢拱架等措施,可以有效降低长距离联络通道冻结施工中的风险。
在本工程冻结施工期间,实测地表冻胀位移及管片竖向隆起位移均小于6mm ,解冻后融沉量小于10mm ,联络通道初期支护竖向位移小于2.1mm ,验证了本工程施工技术的可靠性,可以为类似的长联络通道冻结开挖工程提供参考。
关键词:轨道交通;施工技术;技术总结;长距离联络通道;冻结法;盾构隧道 中图分类号:U455.4文献标识码:A文章编号:1673-6478(2024)01-0215-07Construction Technology and Application of Freezing Method for Long ConnectingPassage of Shield TunnelGUO Wei(Sinohydro Bureau 7 Co., Ltd., Chengdu Sichuan 610213, China)Abstract: Based on the freezing project of 3# contact channel of Wulongkou Station to Tongle Station of Zhengzhou Rail Transit Line 8, this paper summarizes the key technologies of long-distance contact channel construction in detail, including freezing reinforcement scheme, key points of freezing construction technology, construction risk and countermeasures, and verifies them through on-site construction and measured data. For the freezing construction of long-distance contact channel, measures such as arranging freezing pipes on both sides, monitoring pressure in real time and setting pressure relief holes, timely follow-up grouting during thawing period, and applying steel arches if necessary can effectively reduce the risk in the freezing construction of long-distance contact channel. During the freezing construction of this project, the measured surface frost heave displacement and the vertical uplift displacement of the segment are less than 6mm, the thawing settlement after thawing is less than 10mm, and the vertical displacement of the initial support of the contact channel is less than 2.1mm, which verifies the reliability of the construction technology of this project and can provide reference for similar long contact channel freezing excavation projects.Key words : rail transit; construction technique; technical summary; long-distance connecting aisle; freezing method; shield tunnel 0 引言双线隧道之间考虑到隧道连通、消防、集排水的收稿日期:2023-11-23作者简介:郭伟(1978- ),男,广东深圳人,高级工程师,从事地铁施工及管理工作。