上海长江隧道工程施工关键技术简介74页PPT
- 格式:ppt
- 大小:8.31 MB
- 文档页数:74
上海长江隧道试验段工程施工技术[摘要] 文章介绍了上海长江隧道试验段工程的施工技术。
对采用基坑内混合井的降水方案、超深地下连续墙的施工技术、1号工作井内预留圆隧道钢圆环的安装工艺和工作井逆作法施工作了较为详细的说明,并对为考虑盾构推进、在软土地质和特殊承压水条件下的深基坑施工,提出了相关的技术措施。
[关键词] 盾构隧道工作井地下连续墙中图分类号:u455 文献标识码:a 文章编号:1009-914x(2013)10-0135-011 前言上海长江隧桥(崇明越江通道)工程(见图1)南起浦东五号沟,途经长兴岛,向北止于崇明岛东端陈海公路,在南、北港分别采用隧道过江和桥梁过江方案,全长25.5km,道路规划为双向6车道,设计时速为80km。
穿越长江南港的隧道长8.9km,为双向6车道双线隧道。
圆隧道采用f15.43 m泥水平衡盾构连续掘进,长7.5km;内径为13.7m,外径为15.0m;管片宽2m、厚65cm。
2 地质情况本场地的地下水类型主要为潜水和承压水两种。
根据邻近工程的水质分析结果,潜水赋存于⑤2粘质粉土层以上的土层中,其中②2、②3、③2层为主要含潜水层,其渗透性强,在一定的动水条件下,易产生流砂、管涌等不良地质现象。
埋藏于⑤2粘质粉土性强,在一定的动水条件下,易产生流砂、管涌等不良地质现象。
埋藏于⑤2粘质粉土层、⑦1-2层灰色砂质粉土层中的地下水具有承压性,由勘察报告提供,⑦2层的承压水水头埋深为10.33m(标高-5.45m)。
但根据本场地的地层情况来看,必须考虑⑤2粘质粉土层的承压性,根据经验,其水头埋深暂按地表以下6.00m计,相应的绝对标高为-2.00m。
3 试验段工程施工技术3.1 超深地下连续墙施工技术试验段工作井的设计外包尺寸为48m×22m,围护结构为45m深、1m厚的地下连续墙。
暗埋段长295.5m,基坑也采用地下连续墙围护。
考虑到超大直径泥水平衡盾构掘进机的超长距离连续掘进施工特点,为确保整个盾构掘进机系统一次安装就位,需同时完成工作井及其相邻暗埋段的施工。
施 工上海长江隧道连接通道水平冻结法施工孙 威1,陈向科2,陈绍剑3(1.上海交通大学;2.上海长江隧桥建设发展有限公司;3.中国矿业大学)摘 要:主要介绍了上海长江隧道连接通道冻结法施工技术,包括冻土帷幕设计、冻结孔布置、连接通道开挖支护、控制冻胀和融沉的措施等,同时对连接通道的主要技术创新措施进行了分析。
关键词:长江隧道;连接通道;冻结法施工;技术创新1 工程概况上海长江隧道工程采用两台 15.430m 泥水加气压平衡盾构,从上海浦东五号沟一次性穿越长江南港水域到达长兴岛。
长江隧道长约8.9km (其中江中段7.5k m ),隧道内径13.7m ,外径15m 。
内部结构分上下层:上层为单向3车道高速公路;下层为轨道交通预留空间。
长江隧道东线隧道和西线隧道之间每隔830m 左右设置1条连接通道,全线共设置8条连接通道。
连接通道由与隧道钢管片相连的喇叭口和水平通道构成(见图1)。
连接通道结构标准段设计内径2.74m ,外径3.34m ,通道段钢筋混凝土支护厚度300mm ,采用抗渗等级S10C40混凝土;喇叭口段内径2.74m ,外径3.94m ,钢筋混凝土支护厚度600mm ,采用抗渗等级S10C40混凝土。
连接通道工程采用水平冻结法加固地层,矿山暗挖法施工。
图1 连接通道结构示意图2 工程地质条件长江隧道连接通道施工范围内的土层主要有⑤1、⑤2、⑤3、⑤3t 等,⑤1、⑤3层为软黏性土。
它们具有高含水量、高压缩性、高灵敏度、低强度,以及在外力作用下易发生触变和流变等特性,故在一定的动力作用下,土层的土体结构极易被破坏,使土体强度降低。
因此,在连接通道施工时应确保土体有足够的冻结强度。
而⑤2、⑤3t 层为粉性土层,其透水性强,如冻结强度不足以抵抗周围未冻结土层中微承压水水头压力,则易发生突发性的涌水、涌砂事故,容易对工程造成不可估量的损失。
3 冻结施工设计参数3.1 冻结帷幕设计冻土厚度在通道正常段取2.5m ,喇叭口处取2.2m 。
上海长江隧道盾构施工技术王吉云(上海隧道工程股份有限公司)作者介绍:王吉云,上海隧道工程股份有限公司越江项管部的总工程师。
曾参加过宁波常洪沉管隧道、上海大连路隧道、翔殷路隧道工程。
目前,正参与上海地铁4号线修复工程建设和上海长江隧道工程的建设。
报告要点:上海长江隧道工程技术上海长江隧桥(崇明越江通道)工程是我国长江口特大型交通建设项目。
其南起浦东五号沟,途经长兴岛,向北止于崇明岛东端陈海公路,在南、北港分别采用隧道过江和桥梁过江方案,全长25.5km。
上海长江隧道工程采用盾构法穿越长江南港,设计为双向六车道双线隧道,圆隧道外径15.0m,采用φ15.43m泥水平衡盾构连续掘进7.5km,其盾构掘进机直径和一次性连续掘进长度是当今世界之最。
为探索超大直径、超长距离盾构隧道工程技术,先行实施试验段工程,由上海隧道工程股份有限公司设计施工总承包。
工程概况试验段工程为上海长江隧道浦东陆域部分,由1号工作井(盾构始发井)、浦东暗埋段、浦东引道段和接线道路组成,总长657.83m,线路纵坡2.9%。
接线道路起点与规划的五洲大道——远东大道立交相接,有机地与上海地区陆域道路网衔接,可充分发挥越江通道有序、有效、快速的交通疏解能力。
工作井处开挖最深达26.963m,为上海地区临近长江开挖最深的基坑工程。
基于对超大直径泥水平衡盾构掘进机超长距离连续掘进施工的特点,试验段工程在国内外相关工程的基础上进行了大量的方案比选论证,充分考虑盾构掘进机的各种情况,度身量制。
见图2,工作井及相临暗埋段同时完成,确保整个盾构掘进机系统一次安装就位,无需二次转接。
工程地质情况②2~③2层,为粉性土或夹较多薄层粉砂,渗透性强,在一定的动水条件下易产生流砂、管涌等不良地质现象;在7°地震作用下为轻微液化土层。
③1和第④1层为灰色淤泥质软土,厚度较大,属高灵敏度软土,该层土易产生触变及蠕变。
超深地下连续墙施工技术工作井地下连续墙设计为厚1000mm,深45m,属于超深地下连续墙,需要相关施工机械设备和施工工艺进行配合。
——上海长江隧道工程采用了目前世界上直径最大的盾构机,直径达到15.43米。
2006年9月开始掘进以来,盾构维修保养小组的全体人员以饱满的工作热情投入到盾构设备维护保养工作。
盾构维修保养小组团队最初接手长江隧道盾构的维修任务时处于新盾构施工磨合期,这一时期存在着人员对盾构机系统不熟悉、图纸与实物不符、设备设计缺陷、施工人员责任心差等诸多困难。
盾构维修保养小组组员没有辜负领导的期望,尽快熟悉盾构上的设备,努力学习大型盾构控制技术,把专业学习和工作结合起来,出色的完成领导交给的各项任务,保证了盾构机稳步掘进。
盾构维修保养小组的工作主要是对盾构机中的设备进行维护和保养,由于盾构机长时间的停机会对隧道造成不可预计的后果,所以盾构机的日常检查工作尤其重要,日常检查认真仔细有高度的责任心,尽可能早的发现故障,有利于故障的解决。
在检查过程中发现了小的故障和不合理的地方并及时修复或改进才能避免停机故障和安全事故的发生。
盾构维修保养小组重点对盾构机设备中较易损坏的部件做每日检查,如各系统的液压动力设备,三部行车的钢丝绳,同步注浆搅拌机的润滑油脂,管片运输行车和口字件行车的供电轨道、拼装机旋转及提升系统的坦克链、拼装机管片真空抓取系统、三号车架船底块吊装系统、接管机设备、喂片机的安全保护系统等等。
并利用盾构机的每周清洗浆桶时间对行车钢丝绳、注浆泵活塞、盾尾油脂泵、真空泵、真空吸盘密封条等易损部位进行仔细检查有损坏立即更换,电气箱柜做清洁除尘等工作并做好相关的详细记录,盾构机运行过程中遇到故障抓紧一切时间抢修,机修和电气组员相互配合、相互合作尽可能快的解决故障,良好的团队合作与无私奉献精神增强了他们的凝聚力。
图纸不正确将会给设备的维护与保养工作带来非常大的困难,盾构机在安装完成后的调试过程中设计制造者在图纸上修改了很多地方,有相当一部分未在图纸上标明或多次修改后图示不清楚。
平时的维护保养工作中他们一边检查一边核对图纸,遇到不正确的地方及时在图纸注明,在推进过程中常常会碰到设计不合理的地方需要修改机械尺寸,更换机械零部件或更改电气原理,这时他们会仔细记录并在图纸上画出修改部分,为日后的盾构维修和拆装带来了方便。
上海长江隧道工程盾构施工技术上海长江隧道工程盾构施工技术摘要:位于长江口的上海长江隧道工程,其盾构直径和一次连续掘进距离均为世界之最。
结合该隧道工程超大直径、超长距离盾构掘进,研究探讨了施工中的关键技术、技术难点与风险并提出了相应的对策,以确保如期、优质安全地建成长江隧道工程。
关键词:隧道盾构泥水方案1工程概况上海长江隧桥工程是连接上海市区和崇明的高速公路通道,是我国沿海大通道的重要组成部分。
长江隧桥工程总长25.5 km,采用隧道形式穿越长江南港后,连接浦东和长兴岛;采用桥梁形式跨越长江北港后,连接长兴岛至崇明岛,见图1。
上海长江隧道工程南起浦东五号沟,北至长兴岛新开港,该工程设计线路总长8955.26 m,江中为盾构法双线隧道,上行线圆隧道段长7471.65 m,下行线圆隧道段长7469.36 m。
每条圆隧道内道路为3车道,共6车道,设计时速为80 km/h,见图2。
江中圆隧道施工采用Φ15.43 m泥水平衡盾构掘进机,一次连续掘进完成。
江中圆隧道外径15000 mm,内径13700mm,最大坡度为2.90A,最小平面曲率半径为4000m,江底最浅覆土约14.0 m,最深覆土约29.0m。
两条隧道内最低点共设4座江中泵房,在两条隧道之间设有8条连接通道。
工程沿线地质条件复杂,隧道穿越主要土层为③1、③2层粉性土、④1、④2、⑤1-1、⑤1-2层粘性土和(孰层粉性土、⑦1-1⑦1-2层砂性土,部分地段遇⑤1-t层灰色粘质粉土透镜体。
工程沿线浅部土层中的潜水,与江水有密切水力联系,基本上与江水相沟通;埋藏于⑦层、⑨层中的承压水直接相通,水量丰富,承压水水头标高在0.00 m左右睇⑤2层中分布有微承压水,与⑦层中承压水有一定的水力联系。
工程沿线地层有浅层气存在,主要分布于④层淤泥质粘土层中下部,以弥散状分布,量少、气压低。
在工程范围内还存在冲刷槽,冲刷槽深度为6~7 m,呈"V"字形,在冲刷槽坡侧上有滑塌体存在。
上海长江隧桥(崇明越江通道)工程简介上海长江隧桥(崇明越江通道)工程位于上海东北部长江口南港、北港水域,是我国长江口一项特大型交通基础设施项目,也是上海至西安高速公路的重要组成部分。
大桥起于隧道长兴岛登陆点,沿地面横穿长兴岛,由长兴岛东北部跨越长江口北港水域至崇明岛陈家镇,工程全长16.65公里(其中接线道路6.68公里,跨江桥梁9.97公里,设计车速100公里/小时)。
上海长江隧桥(崇明越江通道)工程位于上海东北部长江口南港、北港水域,是我国长江口一项特大型交通基础设施项目,也是上海至西安高速公路的重要组成部分。
该工程的建成将改善上海市交通系统结构和布局,加速长三角地区经济一体化,更好地带动长江流域乃至全国经济发展,提升上海在全国经济中的综合竞争力。
工程起于上海市浦东新区的五好沟,经长兴岛到达崇明县的陈家镇,全长25.5公里。
工程采用“南隧北桥“方案,即以隧道形式穿越长江口南港水域,长约8.95公里;以桥梁形式跨越长江口北港水域,长约16.65公里。
工程按高速公路标准,双向六车道,设计荷载公路I级,设计车速80-100公里/小时。
工程于1993年起开展研究,2004年下半年完成初步设计,2004年12月28日正式启动。
1、长江隧道工程。
隧道起于浦东新区五好沟,穿越南港水域在长兴岛西南方登陆,全长8.95公里,其中穿越水域部分达7.5公里。
隧道整体断面设计为上下的双管隧道,两单管间净距约为16米,沿其纵向每隔800米左右设一条横向人行联络通道。
单管外径为Φ1500厘米,内径为1370厘米,内设三条(3×3.75米)车道,双向即六车道,设计车速为80公里/小时。
隧道在浦东侧及长兴岛侧均设有敞开断矩形暗埋段及22×48米深约25米的工作井。
两台直径为Φ1543厘米泥水加气平衡盾构,从浦东侧工作井由南向北一次掘进至长兴岛侧工作井实现隧道贯通。
隧道工程共用混凝土819100立方米,使用钢筋152214吨。