组合数学(9)
- 格式:ppt
- 大小:164.00 KB
- 文档页数:43
奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。
以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。
-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。
2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。
循环置换的计算可以借助循环节的长度和总元素个数。
3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。
5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。
6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。
7. 利用对称性:-利用对称性质,减少计算量。
例如,当问题中存在对称性时,可以利用对称性简化问题。
8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。
这个原理在一些排列组合问题中经常被使用。
9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。
10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。
总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。
3.2 容斥原理将3.1节讨论的原理进一步推广,总结成一般性规律,就得到定理3.2.1所描述的容斥原理。
定理3.2.1 设S 是有限集合,12,m P P P 是同集合S 有关的m 个性质,设i A 是S 中具有性质i P 的元素构成的集合()1i m ≤≤,i A 是S 中不具有性质i P 的元素构成的集合()1i m ≤≤,则S 中不具有性质12,m P P P 的元素个数为{}{}()1211,2,21,2,2121m mi i ji m i ji k m mmA A A S A A A A A A A A A ==-+-++-∑∑∑的合的合(3.2.1)证明 可以利用等式(3.1.1),通过对m 作归纳进行证明。
下面通过其组合意义来证明。
等式(3.2.1)的左端表示的是S 中不具有性质12,m P P P 的元素的个数。
下面我们来证明:对于S 中每个元素x ,若x 不具有性质12,m P P P ,则对等式(3.2.1)的右端贡献1;否则,若x 具有某个性质()1i P i m ≤≤,则对等式(3.2.1)的右端贡献0,从而证(3.2.1)式。
任给x S ∈,则(1)若x 不具有性质12,m P P P ,即12,,m x A x A x A ∉∉∉ ,则x 在集合S 中,但不在(3.2.1)式右端的任一其他集合中。
所以,x 对(3.2.1)式右端的贡献为()1000101m-+-+-⨯=(2)若x 恰具有12,m P P P 中的()1n n ≥个性质12,i i i nP P P ,则x 对S 的贡献为10n ⎛⎫= ⎪⎝⎭因x 恰具有n 个性质12,i i i n P P P ,所以x 恰属于集合12,,n i i i A A A ,共n 个。
于是,x 对iA∑的贡献为1n n ⎛⎫= ⎪⎝⎭从12,i i i nP P P 中选出两个性质,共有2n ⎛⎫ ⎪⎝⎭种,所以x 恰在2n ⎛⎫ ⎪⎝⎭个形如()k l i i A A k l ≠ 的集合中,x 对i j A A ∑的贡献为2n ⎛⎫ ⎪⎝⎭;……;同理,x 对12n i i i A A A ∑ 的贡献为n n ⎛⎫ ⎪⎝⎭。
11转9组合计算公式在组合数学中,组合是指从给定的集合中选择出一些元素的方式。
组合数是指从n个元素中取出k个元素的组合的个数,通常用C(n,k)表示,也可以记作Cn,k或者nCk。
而11转9组合是一种特殊的组合计算方式,它是在给定的11个元素中选择出9个元素的组合个数。
下面将介绍11转9组合的计算公式及其应用。
我们可以使用组合数公式来计算11转9组合的个数:C(11,9) = 11! / (9! * (11-9)!) = 11! / (9! * 2!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
根据上述公式,我们可以计算得到:C(11,9) = 11! / (9! * 2!) = (11 * 10 * 9!) / (9! * 2) = 11 * 10 / 2 = 55因此,11转9组合的个数为55个。
接下来,我们可以通过具体的例子来说明11转9组合的应用。
假设有11个人参加一场比赛,现在需要从中选择出9个人组成一个团队。
根据11转9组合的计算公式,我们可以知道,共有55种不同的选择方式。
这种组合方式可以应用于各种不同的实际问题。
比如,在一家公司中,有11个员工可以参加一个重要的会议,但是由于会议室的容量限制,只能选择其中9个员工参加。
通过11转9组合的计算公式,我们可以知道,总共有55种不同的员工组合方式。
11转9组合还可以用于解决排列组合问题。
在某个集合中,有11个元素,现在需要选择其中的9个元素进行排列,即确定元素的顺序。
通过11转9组合的计算公式,我们可以确定不同排列的个数。
例如,当元素是数字时,可以得到不同的九位数的个数。
11转9组合计算公式可以用于确定从给定集合中选择出指定个数元素的组合个数。
通过该公式,我们可以计算出11转9组合的个数,并应用于各种实际问题中。
无论是在团队选择、员工安排还是排列组合问题中,11转9组合都能提供有用的信息和解决方案。
习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.比5400小并具有下列性质的正整数有多少个?(1)每位的数字全不同;(2)每位数字不同且不出现数字2与7;解:(1)比5400小且每位数字全不同的正整数;按正整数的位数可分为以下几种情况:① 一位数,可从1~9中任取一个,共有9个;② 两位数。
十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。
百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。
又可分三种情况:⏹ 千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;⏹ 千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;⏹ 千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A =① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。
十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。
组合的计算方法组合是数学中的一个重要概念,在概率论、统计学和组合数学等领域中有许多重要应用。
组合是指从给定的个数或集合中选择若干个元素的方式。
本文将介绍组合的计算方法,包括排列、组合公式以及应用实例。
一、排列排列是指从给定的一组元素中按照一定的顺序选择若干个元素进行排列的方式。
在排列中,每个元素只能选取一次,且顺序是重要的。
排列的计算方法如下:假设有n个元素,要从中选择r个元素进行排列,则排列的总数可以用阶乘来表示,即n的阶乘除以(n-r)的阶乘,即:P(n, r) = n! / (n-r)!其中,P(n, r)表示n个元素中选取r个元素进行排列的总数。
例如,从1、2、3三个元素中选择2个元素进行排列,排列的总数为P(3, 2) = 3! / (3-2)! = 3。
二、组合组合是指从给定的一组元素中选择若干个元素进行组合的方式。
在组合中,每个元素只能选取一次,且顺序不重要。
组合的计算方法如下:假设有n个元素,要从中选择r个元素进行组合,则组合的总数可以用公式表示,即n的阶乘除以r的阶乘再除以(n-r)的阶乘,即:C(n, r) = n! / (r! * (n-r)!)其中,C(n, r)表示n个元素中选取r个元素进行组合的总数。
例如,从1、2、3三个元素中选择2个元素进行组合,组合的总数为C(3, 2) = 3! / (2! * (3-2)!) = 3。
三、应用实例组合的计算方法在实际问题中有广泛的应用,下面以两个实例来说明。
实例一:假设有8位同学参加一场比赛,要从中选出3位同学获得奖品。
求获奖的不同组合方式。
解:根据组合的计算方法,可以得知从8位同学中选出3位同学进行组合的总数为C(8, 3) = 8! / (3! * (8-3)!) = 56。
因此,获奖的不同组合方式有56种。
实例二:某公司有9位员工,其中3位员工要参加一次培训班,问有多少种不同的组合方式?解:根据组合的计算方法,可以得知从9位员工中选出3位员工进行组合的总数为C(9, 3) = 9! / (3! * (9-3)!) = 84。
9卡特兰数(蓝桥杯)卡特兰数⼜称卡塔兰数,英⽂名Catalan number,是组合数学中⼀个常出现在各种计数问题中出现的数列。
以⽐利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名,其前⼏项为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...常规分析⾸先,我们设f(n)=序列个数为n的出栈序列种数。
(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独⽴的,也就是求出每种k最后出栈的情况数后可⽤加法原则,由于k最后出栈,因此,在k⼊栈之前,⽐k⼩的值均出栈,此处情况有f(k-1)种,⽽之后⽐k⼤的值⼊栈,且都在k之前出栈,因此有f(n-k)种⽅式,由于⽐k⼩和⽐k⼤的值⼊栈出栈情况是相互独⽴的,此处可⽤乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。
ps.author.陶百百)⾸次出空之前第⼀个出栈的序数k将1~n的序列分成两个序列,其中⼀个是1~k-1,序列个数为k-1,另外⼀个是k+1~n,序列个数是n-k。
此时,我们若把k视为确定⼀个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。
⽽k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f (0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。
9的组成与分解9的组成与分解9是一个非常特殊的数字,它是3的平方,也是3个3的乘积。
因此,9的组成和分解有很多有趣的特点。
首先,我们可以将9分解为3×3。
这个分解方法非常简单,但它告诉我们一个非常重要的事实:9是一个完全平方数。
完全平方数是指一个数可以表示为另一个整数的平方的形式,例如4、9、16等等。
完全平方数在数学中有着非常重要的应用,例如在几何学中,它们可以用来表示正方形的面积。
除了分解为3×3之外,9还有其他的分解方法。
例如,我们可以将9分解为1+8或2+7或4+5。
这些分解方法虽然看起来比较奇怪,但它们告诉我们一个非常重要的事实:9是一个奇数。
奇数是指不能被2整除的整数,例如1、3、5、7等等。
奇数在数学中也有着非常重要的应用,例如在代数学中,它们可以用来表示多项式的次数。
除了分解为1+8、2+7或4+5之外,9还有其他的分解方法。
例如,我们可以将9分解为3+6或5+4。
这些分解方法虽然看起来比较简单,但它们告诉我们一个非常重要的事实:9是一个偶数的平方。
偶数是指可以被2整除的整数,例如2、4、6、8等等。
偶数在数学中也有着非常重要的应用,例如在组合数学中,它们可以用来表示排列和组合的个数。
除了分解为3+6或5+4之外,9还有其他的分解方法。
例如,我们可以将9分解为1+2+3+3或1+1+1+1+1+1+1+1+1。
这些分解方法虽然看起来比较复杂,但它们告诉我们一个非常重要的事实:9是一个三角形数。
三角形数是指可以表示为连续自然数之和的形式,例如1、3、6、10等等。
三角形数在数学中也有着非常重要的应用,例如在几何学中,它们可以用来表示三角形的数量。
除了分解为1+2+3+3或1+1+1+1+1+1+1+1+1之外,9还有其他的分解方法。
例如,我们可以将9分解为1+1+1+1+1+1+1+1+1或2+2+2+2+1。
这些分解方法虽然看起来比较简单,但它们告诉我们一个非常重要的事实:9是一个正整数的平方和。
9阶正交拉丁方举例摘要:1.引言2.9阶正交拉丁方的定义和性质3.9阶正交拉丁方的举例4.9阶正交拉丁方的应用5.结论正文:【引言】在组合数学中,正交拉丁方是一种重要的组合设计。
特别是在阶数较高的正交拉丁方中,其应用范围广泛,从密码学、通信技术到计算机科学等领域都有涉及。
本文将以9阶正交拉丁方为例,详细介绍其定义、性质及应用。
【9阶正交拉丁方的定义和性质】9阶正交拉丁方是指一个具有9行、9列的矩阵,其中每个元素都是取自一个大小为9的有限集合。
矩阵中的每个行向量和每个列向量都是互不相同的,且满足行向量与列向量的元素之间相互正交。
正交拉丁方具有以下性质:1.行向量与列向量的元素相互正交。
2.每个元素在行向量和列向量中出现次数相等。
3.任意两个相邻元素的代数和为0。
【9阶正交拉丁方的举例】以下是一个9阶正交拉丁方的例子:```0 1 2 3 4 5 6 7 81 0 3 6 8 52 4 72 3 0 7 4 8 1 5 63 6 7 0 5 24 8 14 85 2 1 067 35 2 4 8 3 7 16 56 4 1 5 8 6 3 2 77 7 6 4 3 2 0 1 58 1 5 6 2 3 7 0 4```【9阶正交拉丁方的应用】9阶正交拉丁方在通信技术、密码学等领域有广泛应用。
例如,在保密通信中,发送方和接收方可以使用相同的9阶正交拉丁方进行加密和解密。
另外,正交拉丁方还可以用于设计高效的数据结构,如哈希表等。
【结论】通过以上介绍,我们对9阶正交拉丁方有了更深入的了解。
作为一种高效的组合设计,9阶正交拉丁方在许多领域都具有重要的应用价值。