近代电子测量技术-示波器
- 格式:ppt
- 大小:3.62 MB
- 文档页数:120
示波器的原理和使用方法在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。
常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。
万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。
示波器是一种使用非常广泛,且使用相对复杂的仪器。
本章从使用的角度介绍一下示波器的原理和使用方法。
1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
图1 示波管的内部结构和供电图示1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。
回顾示波器的发展史示波器是一种用来观察和测量电信号的仪器,它对于电子工程师和科学家来说非常重要。
它可以帮助我们分析电信号的特征,如频率、幅度、相位和波形,从而帮助我们了解电路的工作情况及故障排除。
示波器的发展历史可以追溯到19世纪末,以下是示波器的发展主要里程碑:1.1897年:英国科学家卢瑟福德·贾奇生发明了光电管示波仪,它是第一个真正意义上的示波器。
它使用了荧光屏幕和光电管,可以将电信号转换成可见的光信号。
然而,由于光电管的工作原理限制以及技术限制,它在实际应用中存在很大的局限性。
2.1931年:德国工程师阿尔贝特·伍伦和欧文·死可尼研发出了电子示波器,采用了电子运动的方式来显示信号,取代了光电管示波仪中荧光屏幕所用的光线扫描。
这种示波器利用电子束在屏幕上生成亮点,从而显示出输入信号的波形。
3.1946年:英国物理学家亨利·洛维尔和托马斯·汤普森研发出了存储示波器。
存储示波器可以通过调整扫描速度的方式“冻结”图像,从而保留了信号的瞬时状态。
这种示波器使得用户可以观察到波形的细节,而不必担心信号的快速变化。
4. 1954年:美国教育家黑尔米特·莫拉尔(Harmuth C. Morel)发明了数字示波器。
数字示波器利用模数转换器将输入信号转换为数字信号,利用数字显示屏显示波形。
与模拟示波器相比,数字示波器的主要优势在于其易于读取和分析信号的数据,并可以通过计算机进行数据处理和存储。
5.1970年代:示波器开始朝着更高的带宽和更快的采样速率发展。
随着半导体技术的不断进步,示波器的性能和功能也得到了极大的改善。
现代示波器可以实时显示高频信号,并具备更多的功能,如触发、自动测量、数据处理、数据存储等。
6.1990年代:随着计算机技术和网络技术的快速发展,示波器也开始实现远程控制和远程访问功能。
这使得工程师可以在远程地点与示波器进行交互和数据共享,从而方便了工作和协作。
示波器使用基础知识示波器(Oscilloscope)是一种用于观测和测量电信号波形的仪器,是电子实验室和工程师常用的工具之一、它能够显示电压随时间变化的波形图,并可以用于分析信号的频率、幅度、相位等特性。
本文将介绍示波器的基础知识,包括工作原理、种类、操作方法等内容。
一、示波器的工作原理示波器的工作原理基于信号的采样和显示。
当被测信号通过示波器的输入通道时,示波器会对信号进行采样,并将采样结果通过电子束扫描的方式显示在屏幕上,形成波形图。
示波器的核心部件是电子束管,它是一种真空管,内部包含有阴极、聚焦剂、水平和垂直偏转板等。
当示波器接收到信号后,会对电子束施加水平和垂直的偏转电压,使电子束在屏幕上形成波形图。
二、示波器的种类示波器根据使用范围、性能特点等因素可以分为不同的种类。
常见的示波器包括:1.模拟示波器:采用电子束管显示波形图,具有较高的输入动态范围和带宽,适用于高频、高速的信号测量。
2.数字示波器:采用数字方式对信号进行采样和处理,并通过液晶显示屏显示波形图。
数字示波器可以对波形进行数学运算、存储、触发等操作,适用于对信号进行更复杂的分析和处理。
3.存储示波器:能够将波形数据存储在内部存储器中,并可以通过接口输出到计算机进行进一步分析和处理。
4.扫描示波器:通过扫描方式显示多个信号的波形图,适用于多通道信号的观测和比较。
三、示波器的操作方法1.连接电源和信号源:示波器通常需要连接外部电源,并通过输入通道接收被测信号。
在连接信号源时,需要注意信号源的适配性和匹配阻抗。
2.调节水平和垂直控制:示波器的水平和垂直控制可以调节波形图的位置和大小。
水平控制可以调整波形图的水平偏移和触发位置,垂直控制可以调整波形图的幅度和灵敏度。
3.设置触发模式:示波器可以设置触发模式以稳定地显示波形图。
触发模式可以根据信号的上升沿、下降沿、脉冲宽度等进行设置。
4.进行波形显示和分析:根据需要可以选择采样率和时间基准进行波形显示。
简述示波器的工作原理示波器是一种广泛应用于电子测量的仪器,可以帮助电子工程师分析、检测和调整电路中的信号。
它能够快速、准确地捕捉电信号,并以波形的形式显示出来,实现对信号的观测和分析。
本文将从工作原理、示波器的分类和应用方面进行阐述。
示波器主要由三部分组成:输入系统、处理系统和显示系统。
1. 输入系统示波器的输入系统是指将输入的电信号转换成示波器可读取的信号。
输入系统一般包括探头和输入阻抗。
探头一般有两种:电压探头和电流探头。
电压探头是用于测量电压信号的,而电流探头则是用于测量电流信号的。
输入阻抗则是指示波器接收电信号的输入电路,通常为1MΩ的阻抗。
2. 处理系统处理系统是指将输入信号的强度、频率、相位等属性转换成显示信号的格式。
处理系统主要包括时间基准、放大器、触发电路等。
其中,时间基准是指示波器的时基,用于控制信号的采样频率和波形的水平位置。
放大器则是用于放大电信号的电子器件。
触发电路则是对信号进行选择性触发,使得波形在特定条件下才被测量。
3. 显示系统显示系统是将处理系统产生的波形以可视化的方式呈现出来,方便电子工程师观测和分析。
显示系统主要包括CRT显示器、LED显示器和LCD显示器等。
其中,CRT显示器是最常见的显示器,它采用电子束扫描的原理来形成图像。
二、示波器的分类示波器主要分为模拟示波器和数字示波器两种。
1. 模拟示波器模拟示波器是传统示波器的代表。
它使用模拟电路和CRT显示屏来显示波形,能够显示连续的波形,精度和分辨率较高。
此外,模拟示波器还可用于分析信号电路的同步和相位关系等问题。
数字示波器是利用数字技术来实现信号测量和波形分析的。
它采用数字处理器和显示器来处理、存储和显示信号信息。
数字示波器具有采样率高、噪声低、测量精度高等优点,也便于对测量结果的数值分析和处理。
示波器广泛应用于各种电子领域的测量、调试、故障排查等方面。
常见的应用场景包括:1. 电子电路的设计和调试,如调节电路中的传输信号、调节过渡信号。
回顾示波器的发展史示波器作为电测行业最基本的综合性仪器,设计和制造他所涉及的领域也十分广泛,从半导体到特种材料,从机加工到电子设计无所不涉及。
这就需要强大完善的工业体系作为支撑。
但是苏联早期无不具有这一切?为什么苏联没有做起来呢?其实认为市场也是很关键的,仅依靠国家力量,可能能在短时间内集中攻关力量解决一个难题,随后投入其他难题的处理中。
有些事情并不能持续的深入研究,唯有市场的持续需求不断刺激技术进步,就像战争那样,技术才可能有巨大的飞跃。
另外,一些其他技术的进步,比如电子计算机,也与仪器的发展相辅而成,这也带来了思维的全面改观。
涉及到示波器相关的具体技术,从60年代以前,一般来说我国和外国的差距不是特别的大,因为大家都用电子管,这个东西无非对工业机械设备有一定的要求,主要是冲压和焊接等等,另外电子管特殊的阴极涂层材料也对性能影响至关重要,不过这一切都不是遥不可及的。
此外这个时期的示波器带宽通常还没有超过40MHz,确实难度不是特别大,这个阶段我们和技术储备方面没有太大差距,主要是因为需求也不是太多,导致产品无论从工艺还是结构,都有些落后。
图:TEK 511示波器的局部,可以看到底板上还印有很多文字提示,比较精细。
顺便说一说这个时代的制造工艺,因为电子管本身体积较大,而且多半随着高压大电流,所用的器件体积也很大,无论国内还是国外都是这样安装元器件的,也就是元件安装在支架上,然后用线相互连接。
这种方式国内俗称搭棚焊接。
进入60年代中期,一些半导体器件开始逐渐取代电子管的地位,此时示波器的带宽开始达到100MHz。
在这个时期电子计算机的应用也开始逐渐推广开,这导致对示波器有更多的需求。
此时(大约1965年),HP公司也发布HP-IB总线,后来这种技术在70年代标准化成为IEEE488也就是GPIB。
通过这种控制总线,计算机可以控制电子仪器工作,采集仪器的数据并且进行分析。
这使得我们对数据的使用和理解上升到一个新的高度,同时催生了自动化测量系统的概念,他带来了更高的效率和更好的精确性。
电子仪器-示波器的使用电子仪器——示波器、函数信号发生器的主要技术指标、性能及正确使用方法。
示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。
1、用机内校正信号对示波器进行自检。
1)打开示波器电源示波器执行所有自检项目,并确认通过自检,按下“DEFAULT SETUP"按钮。
探头选项默认的衰减设置为1X。
将示波器探头上的开关设定为1X并将探头与示波器通道1连接。
将探头连接器上的插槽对准CH1同轴电缆插接件(BNC)上的凸槽,按下去即可以连接,然后向右旋转以拧紧探头。
将探头端部和基准导线连接到“探头原件”连接器上。
按下”AUTO"按钮,几秒内,可以看到频率为1KHZ电压约为3V峰峰值的方波。
按两次“CH1菜单”按钮消除通道1,按下“CH2菜单”按钮显示通道2,重复步骤2,和3. 2)测试“校正信号”波形的幅度、频率将示波器的“校正信号”通过专用电缆线引入选定的1通道,使示波器显示屏上显示出一个或数个周期稳定的方波波形。
a. 校准“校正信号”幅度表1-1标准值实测值幅度Up-p(V)频率f(KHz)上升沿时间μS下降沿时间μS注:不同型号示波器标准值有所不同,请按所使用示波器将标准值填入表格中。
b. 校准“校正信号”频率读取校正信号周期,记入表1-1。
c.测量“校正信号”的上升时间和下降时间2、用示波器测量信号参数调节函数信号发生器有关旋钮,使输出频率分别为100Hz、1KHz、10KHz、100KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。
用示波器测量信号源输出电压频率及峰峰值,记入表1-2。
表1-2信号电压频率示波器测量值示波器测量值周期(ms)频率(Hz)峰峰值(V)有效值(V)100Hz 1KHz10KHz 100KHz3、测量两波形间相位差1) 用双踪显示测量两波形间相位差① 按图1-2连接实验电路, 将函数信号发生器的输出电压调至频率为1KHz ,幅值为2V 的正弦波,经RC 移相网络获得频率相同但相位不同的两路信号ui 和uR ,分别加到双踪示波器的1通道和2通道。
示波器高中物理示波器是高中物理学习中重要的实验仪器之一。
它是一种用于观察和测量电信号波形的设备,不仅在物理实验室中广泛应用,也在电子工程和通信领域中发挥着重要作用。
本文将介绍示波器的基本原理、结构和应用,以及其在物理学习和实际应用中的重要性。
一、示波器的基本原理示波器基于示波管的工作原理,通过将电信号转换为可视化的波形来进行观察和分析。
示波器的工作原理基于两个关键概念:扫描和偏转。
1. 扫描:示波器通过水平扫描电子束的方式,在屏幕上形成一个水平的时间基准。
这使得我们可以在屏幕上观察到电信号随时间的变化。
2. 偏转:示波器通过垂直偏转系统控制电子束在屏幕上的位置。
电信号的电压变化将导致电子束在垂直方向上的偏移,从而形成波形。
二、示波器的结构和功能示波器通常由以下几个主要部分组成:1. 示波管:示波器的核心部件是示波管,它是一种真空管或荧光屏幕。
示波管通过电子束在屏幕上的偏转来形成波形图像。
2. 水平系统:水平系统控制电子束的水平扫描速度,以确定时间基准。
它通常包括触发电路,用于确定何时开始扫描。
3. 垂直系统:垂直系统控制电子束在屏幕上的垂直位置,以反映电信号的电压变化。
它包括垂直放大器和垂直偏移电路,可调整波形的幅度和位置。
4. 控制和显示部分:示波器还包括控制按钮、旋钮和显示屏等部分,用于控制示波器的各种功能,并显示观察到的波形。
三、示波器的应用示波器在物理学习和实际应用中具有广泛的用途。
以下是一些示波器的应用场景:1. 实验观测:在物理实验中,示波器用于观测和分析电信号的波形,例如交流电路中的正弦波、方波和脉冲波形。
它使学生能够直观地理解和分析电路中的信号变化,从而深入理解电学原理。
2. 波形分析:示波器可以用于分析复杂的波形,例如调制信号、音频信号和视频信号。
通过观察波形的特征和变化,可以研究信号的频率、振幅、相位等参数,从而帮助理解和解决相关问题。
3. 故障诊断:示波器在电子工程领域中广泛应用于故障诊断和维修。
电子测量技术实验报告实验一:示波器的一般应用一、实验目的:了解通用电子示波工器工作原理的基础上,学会正确使用示波器测量各种电参数的方法。
二、实验仪器:1、函数信号发生器,SG1646,1台;2、双踪示波器,型号CA8000系列,数量1台。
三、实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。
它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。
我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的_偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。
因此,只有当_偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。
一般说来,Y偏转板上所加的待观测信号的周期与_偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。
这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。
近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。
只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。
在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。
交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。