二次函数图象(4)
- 格式:ppt
- 大小:63.50 KB
- 文档页数:6
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
第六章 二次函数 第5课时:二次函数的图象与性质(4)班级 姓名 学号学习目标:1、会用配方法把二次函数c bx ax y ++=2化成k m x a y ++=2)(的形式;2、会用公式法求二次函数c bx ax y ++=2的顶点坐标;3、理解函数c bx ax y ++=2的性质。
问题探索: 知识回顾: 1、填表:2①++x x 42=(x + )2; ②+-x x 272=(x - )2; ③++=++22)3(126x x x ; ④+-=+-22)27(137x x x .探索与思考1:函数322++=x x y 的图象是抛物线吗?问题1:用配方法将二次函数4212++-=x x y 化成k m x a y ++=2)(的形式,并指出它的开口方向、对称轴、 顶点坐标.练一练:用配方法把下列二次函数化成k m x a y ++=2)(的形式,并指出它们的开口方向、对称轴、 顶点坐标.(1)4822+-=x x y ; (2)xx y 232--=;(3)142+--=x x y ; (4)92312+-=x x y .探索与思考2:二次函数的顶点坐标公式.用配方法把二次函数c bx ax y ++=2化成k m x a y ++=2)(的形式. 问题2:用公式法求下列二次函数的顶点坐标. (1)2122--=x x y ; (2)22134x x y -+=. (3)13432-+=x x y ; (4)x x y 6232--=.探索与思考3:二次函数c bx ax y ++=2的性质.二次函数c bx ax y ++=2的图象是 ,它的顶点坐标是( , ), 对称轴是 的直线(当0=b 时, 对称轴是 ). (1)若0>a ,开口向 ,当=x 时,函数c bx ax y ++=2有最 值 . 当<x 时,y 随x 的增大而 ; 当>x 时,y 随x 的增大而 . (2)若0<a ,开口向 ,当=x 时,函数c bx ax y ++=2有最 值 . 当<x 时,y 随x 的增大而 ; 当>x 时,y 随x 的增大而 . 练一练:填表:问题3:已知二次函数21222-++-=m x x y 。
§6.2 二次函数的图象和性质(4)
备课时间: 主备人:
教学目标:
1.会用描点法画出二次函数的图像;
2.知道抛物线的对称轴与顶点坐标;
教学重点:
会画形如的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。
教学难点:
确定形如的二次函数的顶点坐标和对称轴。
教学方法:
探索研究法。
教学过程:
一、情景创设
1、复习
函数、与及其图象间的相互关系
二、新授
1、请你在同一直角坐标系内,画出函数的图像,并指出它们的开口方向,对称轴及顶点坐标.
2、你能否在这个直角坐标系中,再画出函数的图像?
3、你能否指出抛物线的开口方向,对称轴,顶点坐标?将在上面练习
抛物线开口方向对称轴顶点坐标
三、练习
1、我们已知抛物线的开口方向是由二次函数中的a的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?
2、抛物线有什么关系?
3、它们的位置有什么关系?
①抛物线是由抛物线怎样移动得到的?
②抛物线是由抛物线怎样移动得到的?
③抛物线是由抛物线怎样移动得到的?
④抛物线是由抛物线怎样移动得到的?
⑤抛物线是由抛物线怎样移动得到的?
四、总结、扩展
一般的二次函数,都可以变形成的形式,其中:
1.a能决定什么?怎样决定的?
2.它的对称轴是什么?顶点坐标是什么?
五、作业。