九年级上册数学一元二次方程复习题1
- 格式:doc
- 大小:117.33 KB
- 文档页数:3
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
《一元二次方程》单元复习题一.选择题1.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣42.关于x的一元二次方程x2+(k+1)x+k﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是()A.a<0 B.a>0 C.a<D.a>4.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)25.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长等于()A.10cm B.12 cm C.16cm D.12cm或16cm 6.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2 B.k C.k≤且k≠﹣2 D.k7.用配方法解方程x2﹣4x=0,下列配方正确的是()A.(x+2)2=0 B.(x﹣2)2=0 C.(x+2)2=4 D.(x﹣2)2=48.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.169.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,某家快递公司,今年5月份与7月份完成投递的快递总件数分别为8.5万件和10万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.8.5(1+2x)=10B.8.5(1+x)=10C.8.5(1+x)2=10D.8.5+8.5(1+x)+8.5(1+x)2=1010.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题11.关于x的一元二次方程x2﹣4x+m2=0有两个相等的实数根,则m=.12.关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.设方程的两个实数根分别为x1,x2,且(1+x1)(1+x2)=3,则k的值是.13.设m、n是方程x2+x﹣2020=0的两个实数根,则m2+2m+n的值为.14.已知关于x的一元二次方程kx2﹣(k﹣1)x+k=0有两个不相等的实数根,求k的取值范围.15.如图,有一块矩形铁皮,长为100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为1400cm2,那么铁皮各角切去的正方形的边长为cm.三.解答题16.(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=017.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.18.已知关于x的方程(x﹣m)2+2(x﹣m)=0.(1)求证:无论m为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为﹣1,则另一个根为.19.某服装店出售某品牌的棉衣,进价为100元/件,当售价为150元/件时,平均每天可卖30件;为了增加利润和减少库存,商店决定降价销售.经调査,每件每降价1元,则每天可多卖2件.(1)若每件降价20元,则平均每天可卖件.(2)现要想平均每天获利2000元,且让顾客得到实惠,求每件棉衣应降价多少元?20.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.21.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?参考答案一.选择题1.解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.2.解:∵△=(k+1)2﹣4(k﹣2)=(k﹣1)2+8>0,∴关于x的一元二次方程x2+(k+1)x+k﹣2=0一定有两个不相等的实数根.故选:A.3.解:∵一元二次方程x2﹣2x+1﹣a=0无实根,∴△=(﹣2)2﹣4×1×(1﹣a)<0,解得,a<0,故选:A.4.解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.5.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD =DC =3cm ,AC =6cm 时,3+3=6,不符合三角形三边关系定理,此时不行; 当AD =DC =4cm ,AC =6cm 时,符合三角形三边关系定理,即此时菱形ABCD 的周长是4×4=16,故选:C .6.解:∵关于x 的一元二次方程(k +2)x 2﹣3x +1=0有实数根,∴k +2≠0且△=(﹣3)2﹣4(k +2)•1≥0,解得:k且k ≠﹣2, 故选:C .7.解:x 2﹣4x +4=4,(x ﹣2)2=4.故选:D .8.解:∵x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,∴x 1+x 2=2,x 1x 2=﹣5∴原式=(x 1+x 2)2﹣2x 1x 2=4+10=14故选:C .9.解:设该快递公司这两个月投递总件数的月平均增长率为x ,根据题意,得8.5(1+x )2=10,故选:C .10.解:设道路的宽为xm ,则草坪的长为(32﹣2x )m ,宽为(20﹣x )m ,根据题意得:(32﹣2x )(20﹣x )=570.故选:D .二.填空题(共5小题)11.解:∵关于x 的一元二次方程x 2﹣4x +m 2=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×m 2=0,解得:m =±2.故答案为:±2.12.解:由题意知x 1+x 2=﹣(2k +1),x 1x 2=k 2,∵(1+x1)(1+x2)=3,∴1+x1+x2+x1x2=3,即1﹣(2k+1)+k2=3,解得k=﹣1或k=3,∵方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4k2>0,解得:k>﹣,∴k=3,故答案为:3.13.解:∵m、n是方程x2+x﹣20200的两个实数根,∴m+n=﹣1,并且m2+m﹣2020=0,∴m2+m=2020,∴m2+2m+n=m2+m+m+n=2020﹣1=2019.故答案为:201914.解:根据题意知[﹣(k﹣1)]2﹣4k×k>0且k≠0,解得:k<且k≠0.故答案为:k<且k≠0.15.解:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意得:(100﹣2x)(50﹣2x)=1400,展开得:x2﹣75x+900=0,解得:x1=15,x2=60(不合题意,舍去),则铁皮各角应切去边长为15cm的正方形.故答案是:15.三.解答题(共6小题)16.解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,则(x﹣3)(x﹣1)=0,∴x ﹣3=0或x ﹣1=0,解得x =3或x =1;(2)∵x 2﹣10x +6=0,∴x 2﹣10x =﹣6,则x 2﹣10x +25=﹣6+25,即(x ﹣5)2=19,∴x ﹣5=±, 则x =5.17.解:(1)根据题意得x (30﹣2x )=72,化简得x 2﹣15x +36=0,即(x ﹣12)(x ﹣3)=0∴x ﹣12=0或x ﹣3=0∴x 1=12,x 2=3当x =12时,平行于墙的一边为30﹣2x =6<18,符合题意;当x =3时,平行于墙的一边为30﹣2x =24>18,不符合题意,舍去.故x 的值为12;(2)根据题意得x (30﹣2x )=120,化简得x 2﹣15x +60=0∵△=(﹣15)2﹣4×1×60=﹣15<0,∴方程无实数根故这个苗圃的面积不能是120平方米.18.(1)证明:原方程可化为(x ﹣m )(x ﹣m +2)=0,x ﹣m =0或x ﹣m +2=0.解得x 1=m ,x 2=m ﹣2,∵m >m ﹣2,∴无论m 为何值,该方程都有两个不相等的实数根;(2)当m =﹣1时,另一个根为m ﹣2=﹣1﹣2=﹣3;当m ﹣2=﹣1时,解得m =1,另一个根为m =1,即方程的另一个根为1或﹣3.19.解:(1)30+20×2=70件,故答案为:70;(2)设每件棉衣降价x 元,则日销售量是(30+2x )件依题意可得:(150﹣100﹣x )(30+2x )=2000解得x 1=10,x 2=25为了使顾客得到实惠,舍去x 1=10答:每件棉衣降价25元.20.解:(1)根据题意得:△=(2m )2﹣4(m 2+m )>0,解得:m <0.∴m 的取值范围是m <0.(2)根据题意得:x 1+x 2=﹣2m ,x 1x 2=m 2+m ,∵x 12+x 22=12,∴﹣2x 1x 2=12,∴(﹣2m )2﹣2(m 2+m )=12,∴解得:m 1=﹣2,m 2=3(不合题意,舍去),∴m 的值是﹣2.21.解:(1)设年平均增长率为x ,由题意得:20(1+x )2=28.8,解得:x 1=20%,x 2=﹣2.2(舍去).答:东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率为20%.(2)设每杯售价定为a 元,由题意得:(a ﹣6)[300+30(25﹣a )]=6300,解得:a 1=21,a 2=20.∴为了能让顾客获得最大优惠,故a 取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.。
【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。
一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
人就版数学九年级上册第二十一章-二十二章一、单选题1.下列方程是一元二次方程的是( )A.x2=x B.a x2+bx+c=0C.xy=1D.x+1x=12.把抛物线y=−x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.y=−(x+3)2+1B.y=−(x+1)2+3C.y=−(x−1)2+4D.y=−(x+1)2+43.已知关于x的一元二次方程k x2−(4k−1)x+4k−3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<14B.k<14且k≠0C.k>−14D.k>−14且k≠04.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是( )A.x(5−2x)=4B.x(5+1−2x)=4C.x(5−2x−1)=4D.x(2.5−x)=45.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.3m D.23m6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图像大致为( )A .B .C .D .7.一个等腰三角形两边的长分别等于一元二次方程x 2−16x +55=0的两个实数根,则这个等腰三角形周长为( )A .11B .27C .5或11D .21或278.已知关于x 的方程a(x−m)x =x−m 有两个相等的实数根,若M =a 2−2am ,N =4am−1m 2,则M 与N 的关系正确的是 ( )A .M +N =2B .M +N =−2C .2M +N =0D .M +N =09.y =a x 2+bx +c 与自变量x 的部分对应值如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x …−1012…y…m 2−2m 2m 2…甲同学发现当a <0时,x =3是方程a x 2+bx +c +2=0的一个根;乙同学发现当a >0时,则2a +b >0.下列说法正确的是( )A .甲对乙错B .甲错乙对C .甲乙都错D .甲乙都对10.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−2二、填空题11.方程 x 2=5x 的根是 .12.已知x =−1是关于x 的方程x 2+mx−n =0的一个根,则m +n 的值是= .13.已知点A(−1,y 1),B(1,y 2),C(4,y 3)在二次函数y =x 2−6x +c 的图象上,则y 1,y 2,y 3的大小关系是 (用“>”连接).14.如图,水池中心点О处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点О在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距О点2.5m;喷头高4m时,水柱落点距О点3m.那么喷头高 m时,水柱落点距O点4m.15.已知A(x1,y1),B(x2,y2)是抛物线y=a x2−3x+1上的两点,其对称轴是直线x=x0,若|x1−x0|>|x2−x0|时,总有y1>y2,同一坐标系中有M(−1,−2),N(3,2)且抛物线y=a x2−3x+1与线段MN有两个不相同的交点,则a的取值范围是 .16.已知抛物线y=a x2+bx+c(a,b,c是常数),其图像经过点A(2,0),坐标原点为O.①若b=−2a,则抛物线必经过原点;②若c≠4a,则抛物线与x轴一定有两个不同的公共点;③若抛物线与x轴交于点B(不与A重合),交y轴于点C且OB=OC,则a=−12;④点M(x1,y1),N(x2,y2)在抛物线上,若当x1>x2>−1时,总有y1>y2,则8a+c≤0.其中正确的结论是 (填写序号).三、解答题17.解方程:x2−4x−5=0.18.在二次函数y=x2−2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为−2,求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.19.阅读下列材料,解答问题:材料:若x1,x2为一元二次方程a x2+bx+c=0(a≠0)的两个实数根,则x1+x2=−ba ,x1⋅x2=ca.(1)已知实数m,n满足3m2−5m−2=0,3n2−5n−2=0,且m≠n,求m2n+m n2的值.解:根据题意,可将m,n看作方程3x2−5x−2=0的两个实数根.∴m+n= ,mn= .∴m2n+m n2=mn(m+n)= .(2)已知实数a,b满足a2=2a+3,9b2=6b+3,且a≠3b,求ab的值.(3)已知实数m,n满足m+mn+n=a24−6,m−mn+n=−a24+2a,求实数a的最大整数值.20.如图,在平面直角坐标系中,从原点O的正上方8个单位A处向右上方发射一个小球,小球在空中飞行后,会落在截面为矩形CDEF的平台EF上(包括端点),把小球看作点,其飞行的高度y与飞行的水平距离x满足关系式L1:y=−x2+bx+c.其中C(6,0),D(10,0),CF=2.(1)求c的值;(2)求b的取值范围;(3)若落在平台EF上的小球,立即向右上方弹起,运动轨迹形成另一条与L1形状相同的拋物线L2,在21.x轴有两个点M、N,且M(15,0),N(16,0),从点N向上作NP⊥x轴,且PN=2.若沿抛物线L2下落的小球能落在边MP(包括端点)上,求抛物线L2最高点纵坐标差的最大值是多少?定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1 3,13)是函数y=x图象的“12阶方点”;点(−1,1)是函数y=−x图象的“1阶方点”.(1)在①(−1,2);②(0,0);③(12,−1)三点中,是正比例函数y=−2x图象的“1阶方点”的有___(填序号);(2)若y关于x的一次函数y=ax−4a+1图象的“2阶方点”有且只有一个,求a的值;(3)若函数图象恰好经过“n阶方点”中的点(n,n),则点(n,n)称为此函数图象的“不动n阶方点”,若y关于x的二次函数y=14x2+(p−t+1)x+q+t−2的图象上存在唯一的一个“不动n阶方点”,且当2≤p≤3时,q的最小值为t,求t的值.22.如图,抛物线L:y=a(x+2)2+9与x轴交于A,B(−5,0)两点,与y轴交于点C.(1)写出抛物线的对称轴,并求a的值;(2)平行于x轴的直线l交抛物线L于点M,N(点M在点N的左边),交线段BC于点R.当R为线段MN的中点时,求点N的坐标;(3)将线段AB先向左平移1个单位长度,再向上平移5个单位长度,得到线段A′B′.若抛物线L平移后与线段A′B′有两个交点,且这两个交点恰好将线段A′B′三等分,求抛物线L平移的最短路程;(4)P是抛物线L上任意一点(不与点C重合),点P的横坐标为m.过点P作PQ⊥y轴于点Q,E 为y轴上的一点,纵坐标为−2m.以EQ,PQ为邻边构造矩形PQEF,当抛物线L在矩形PQEF内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】B 6.【答案】B 7.【答案】B 8.【答案】A 9.【答案】D 10.【答案】D11.【答案】x 1=0,x 2=512.【答案】113.【答案】y 1>y 2>y 314.【答案】815.【答案】109≤a <216.【答案】①②④17.【答案】x 1=−1,x 2=518.【答案】(1)t =32(2)t =5(3)3<m <4或m >619.【答案】(1)53;−23;−109(2)解:∵9b 2=6b +3,∴(3b)2=2×(3b)+3∵a 2=2a +3,a ≠3b∴a ,3b 是一元二次方程x 2=2x +3的不相等的两个实数根整理方程得:x 2−2x−3=0,∴a ×3b =−3∴ab =−1(3)解:∵m +mn +n =a 24−6①,m−mn +n =−a 24+2a②,∴①+②可得:2(m+n)=2a−6,即:m+n=a−3①−②可得:2mn=a22−2a−6,即:mn=a24−a−3∴m,n可以看作是一元二次方程x2−(a−3)x+a24−a−3=0的两个实数根∴Δ=[−(a−3)]2−4×1×(a24−a−3)≥0化简得:−2a+21≥0,解得:a≤21 2,∴实数a的最大整数值为10 20.【答案】(1)c=8;(2)5≤b≤47 5;(3)抛物线L2最高点纵坐标差的最大值是19.71.21.【答案】(1)②③(2)a的值为32或a=−12(3).t=3−3或4+5 22.【答案】(1)x=−2,a=−1;(2)6−2(3)10(4)−6−1<m<0或m>6−1。
专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。
2.解方程:$(2x-1)(x+3)=43$。
3.解方程:$4y^2+4y-1=-10-8y$。
4.解方程:$(x-1)(x-3)=8$。
5.解方程:$5x^2-8x+2=0$。
6.解方程:$x(x-3)=10$。
7.解方程:$x^2-2=-2x$。
8.解方程:$3x(7-x)=18-x(3x-15)$。
9.解方程:$4x(3x-2)=6x-4$。
10.解方程:$x^2+12x+27=0$。
11.解方程:$2x^2-4x+1=0$,使用配方法。
12.解方程:$4(x-1)^2=9(x-5)$。
13.解方程:$x^2-6=-2(x+1)$。
14.解方程:$x^2+4x-5=0$。
15.解方程:$2x^2+5x-1=0$。
16.解方程:$3(x-2)^2=x(x-2)$。
17.解方程:$2x^2-3x-2=0$。
18.解方程:$2x^2-7x+1=0$。
19.解方程:$x^2-6x-4=0$,使用配方法。
20.解方程:$x^2-4x-3=0$。
21.解方程:$x^2-5x+2=0$。
22.解方程:$x^2-4x+8=0$。
23.解方程:$3x^2-6x+4=0$。
24.解方程:$(x-2)(x-3)=12$。
25.解方程:$(x-3)(x+7)=-9$。
26.解方程:$3x^2+5(2x+1)=0$,使用公式法。
27.解方程:$x^2-12x-4=0$。
28.解方程:$(x-5)(x-6)=x-5$。
29.解方程:$x^2-8x-10=0$。
30.解方程:$x(x-3)=15-5x$。
31.解方程:$5x(x-3)=(x+1)(x-3)$。
32.解方程:$x^2+8x+15=0$。
33.解方程:$25x^2+10x+1=0$。
34.解方程:$x^2+6x-7=0$,使用配方法。
35.解方程:$x^2+4x-5=0$,使用配方法。
【单元复习】第1章一元二次方程知识精讲第1章一元二次方程一、一元二次方程的概念1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于和的代数式的值,如④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。
九年级数学上册一元二次方程试题一、一元二次方程的概念相关题目1. 题目:下列方程中,是一元二次方程的是()- 公式- 公式- 公式- 公式解析:- 一元二次方程的一般形式是公式。
- 对于选项公式,它含有两个未知数公式和公式,所以它是二元二次方程,不是一元二次方程。
- 对于选项公式,它是分式方程,因为方程中含有分式公式,不符合一元二次方程的整式方程要求。
- 对于选项公式,它符合一元二次方程的一般形式,其中公式,公式,公式。
- 对于选项公式,先将左边展开得到公式,则原方程变为公式,化简后为公式,它是一元一次方程,不是一元二次方程。
答案:公式2. 题目:若关于公式的方程公式是一元二次方程,则公式的值为多少?解析:- 因为方程公式是一元二次方程,所以根据一元二次方程的定义,公式的最高次数为公式,且二次项系数不为公式。
- 首先公式,解方程公式,得到公式。
- 又因为二次项系数公式,即公式。
- 所以公式。
答案:公式二、一元二次方程的解法相关题目1. 题目:用直接开平方法解方程公式。
解析:- 直接开平方法的原理是如果公式,那么公式。
- 对于方程公式,则公式。
- 当公式时,解得公式;- 当公式时,解得公式。
答案:公式或公式2. 题目:用配方法解方程公式。
解析:- 配方法的步骤:首先将方程移项,使得常数项在等号右边,即公式。
- 然后在方程两边加上一次项系数一半的平方,一次项系数为公式,一半为公式,平方为公式,得到公式。
- 左边可以写成完全平方式公式。
- 然后用直接开平方法,公式。
- 解得公式。
答案:公式3. 题目:用公式法解方程公式。
解析:- 对于一元二次方程公式,其求根公式为公式。
- 在方程公式中,公式,公式,公式。
- 先计算判别式公式。
- 然后将公式、公式、公式的值代入求根公式,公式。
答案:公式4. 题目:用因式分解法解方程公式。
解析:- 因式分解法就是将方程左边分解因式,使得方程化为两个一次因式乘积等于公式的形式。
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++=3.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=4.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -=B .()217x -=C .()214x -=D .()215x +=5.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=6.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根 D .没有实数根7.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( ) A .12B .16C .l2或16D .158.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( )日 一 二 三 四 五 六图1图2A .17B .18C .19D .209.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( ) A .a <-2 B .a >-2C .-2<a <0D .-2≤a <010.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根11.下列方程中是关于x 的一元二次方程的是( ) A .210x x+= B .ax 2+bx +c =0 C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2 12.方程23x x =的根是( ) A .3x =B .0x =C .123,0x x =-=D .123,0x x ==13.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75 B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7 14.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 15.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题16.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.17.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.18.一元二次方程(x +2)(x ﹣3)=0的解是:_____. 19.写出有一个根为1的一元二次方程是______.20.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 21.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____. 22.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____. 23.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.24.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____25.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________26.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题27.解方程:y(y-1)+2y-2=0.28.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0. (1)代数式22x -的不变值是________,A=________. (2)已知代数式231x bx -+,若A=0,求b 的值.29.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 30.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.。
第21章一元二次方程复习题一.选择题(共25小题)1.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣32.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=4423.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.484.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关5.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.66.已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.137.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=6008.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=09.已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠110.已知x=1是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.﹣1或2B.﹣1C.2D.011.设方程x2+x﹣2=0的两个根为α,β,那么a+β﹣αβ的值等于()A.﹣3B.﹣1C.1D.312.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a≤13.若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.202414.某县开展关于精准扶贫、精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.3620(1﹣x)2=4850B.3620(1+x)=4850C.3620(1+2x)=4850D.3620(1+x)2=485015.关于x的一元二次方程x2+(a2﹣3a)x+a=0的两个实数根互为倒数,则a的值为()A.﹣3B.0C.1D.﹣3 或016.一元二次方程y2+y=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=17.关于x的方程(m+2)x|m|+mx﹣1=0是一元二次方程,则m=()A.2或﹣2B.2C.﹣2D.0。
九年级上册数学一元二次方程复习题1
一、选择题。
姓名 日期:
1、下列方程是关于x 的一元二次方程的是( )
A 、02=++c bx ax
B 、2112=+x x
C 、1222-=+x x x
D 、)1(2)1(32+=+x x 2、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( )
A 、6-
B 、1
C 、6-或1
D 、2
3、方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A 、12
B 、12或15
C 、15
D 、不能确定 4、用配方法解方程2250x x --=时,原方程应变形为( )
A 、()216x +=
B 、()216
x -= C 、()229x += D 、()229x -= 5、若α,β是一元二次方程0132=-+x x 的两个实数根,则βα1
1
+的值是( )
A 、2
B 、-1
C 、-2
D 、1
二、填空题。
1、错误!未指定书签。
把一元二次方程12)3)(31(2+=+-x x x 化成一般形式
是: 。
它的二次项系数是 ;一次项系数是 ;常数项是 。
2、已知关于x 的方程02)1()1(22=-+++-m x m x m 当m 时,方程为一元二次方程;当m 时,方程是一元一次方程。
3、关于x 的方程0232=+-m x x 的一个根为-1,则=m ,方程的另一个根为 。
4、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为 。
5、已知()()5312222=-+++y x y x ,则22y x +的值等于 。
三、解方程。
(1)32x 2--x =0 (2)()4122=+x (3)()()x x -=-3532
四、解答题。
1、设21x x 和是方程0342=+-x x 的两个根,利用根与系数关系求下列各式的值:
(1)2221x x + (2))1)(1(21++x x (3)
2
111x x + (4)221)(x x -
2、已知关于x 的一元二次方程02)12(2=-+--m x m mx (0>m )。
(1)求证:这个方程有两个不相等的实数根.
(2)如果这个方程的两个实数根分别为1x ,2x ,且m x x 5)3)(3(21=--,求m 的值。
3、已知a ,b ,c 均是实数,且│a -1│+221b b +++(c+2)2=0,求方程:ax 2+bx+c=0的根。
4、已知:平行四边形ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+
2m 错误!未找到引用源。
﹣14
错误!未找到引用源。
=0的两个实数根。
(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;
(2)若AB 的长为2,那么平行四边形ABCD 的周长是多少?。