2018备战高考之以函数为背景的创新题型
- 格式:pdf
- 大小:319.94 KB
- 文档页数:10
高考数学创新题型解读1. 选择题:(1) 下列哪个函数的图像在x=1处取得最小值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(2) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=1时取得最大值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 0(3) 下列哪个函数的图像在y轴上截距为1?A. f(x) = x^2 + 2x + 1B. f(x) = x^2 - 2x + 1C. f(x) = x^2 + 2x - 1D. f(x) = x^2 - 2x - 1(4) 已知f(x) = ax^2 + bx + c,若f(x)的图像是开口向上的抛物线,则a的取值范围是?A. a > 0B. a < 0C. a = 0D. a ≠ 0(5) 下列哪个函数的图像在x=0时取得最大值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(6) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=2时取得最小值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 0(7) 下列哪个函数的图像在x=0时取得最小值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(8) 已知f(x) = ax^2 + bx + c,若f(x)的图像是开口向下的抛物线,则a的取值范围是?A. a > 0B. a < 0C. a = 0D. a ≠ 0(9) 下列哪个函数的图像在y轴上截距为-1?A. f(x) = x^2 + 2x + 1B. f(x) = x^2 - 2x + 1C. f(x) = x^2 + 2x - 1D. f(x) = x^2 - 2x - 1(10) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=3时取得最大值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 02. 填空题:(1) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=1时取得最小值,则a的取值范围是________。
2018全国3卷第21题分析1处理函数在不断传承中创新对函数的处理:在求导之前、求导的过程中,注意对函数及导函数的处理,在比较大小和解不等式的题目中,求导之前、提取公因式、利用常用指对数不等式放缩可以简化函数,对分式函数利用分界点可以只考虑分子,从而大大简化运算。
求导之后,是优先提取公因式。
文化是不断传承中的积淀,经典是在不断传承中的拓展和创新。
例.(2018全国3卷第21题)已知函数()()()xx axx x f 21ln 22-+++=(1)若0=a ,证明:当01<<-x 时,()0<x f ;当0>x 时,()0>x f ;(2)若0=x 是()x f 的极大值点,求a【解析】(1)若0=a ,则()()()()()⎥⎦⎤⎢⎣⎡+-++=-++=221ln 221ln 2x x x x x x x x f 令()()221ln +-+=x xx x g ,则()()()()0212411'222>++=+-+=x x x x x x g (希望对数函数单独存在,一次求导就没有对数,往往使得研究导数更为容易,这也是全国卷一直坚持的思路。
)所以()x g 在()+∞,0单增,又因为()00=g 故当01<<-x 时,()()00=<g x g ,即()0<x f ;当0>x 时,()()00=>g x g ,即()0>x f ;(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f >++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当min{x <时,22x ax o ++>,故()h x 与()f x 的符号相同.又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.(直接对函数一次求导,得()00'=f ,二阶求导,导函数非常复杂,依然有()00''=f ,很多学生放弃了再次求导,或许这也是命题者希望看到的。
灵活的函数创新问题创新能体现一个民族的活力,数学创新问题一直是高中的热点。
而做为数学主干知识的基本初等函数,在高考命题和高考模拟试题中,常常出现创新型问题。
下面结合这方面的最新题型,给以分类例析。
一、阅读理解型例1函数⎩⎨⎧∈-∈=Mx x Px x x f ,,)(其中M P ,为实数集R 的两个非空子集,又规定=)(P f{}{}M x x f y y M f P x x f y y ∈==∈=),(|)(,),(|,给出下列四个判断:①若φ=⋂M P ,则φ=⋂)()(M f P f ; ②若φ≠⋂M P ,则φ≠⋂)()(M f P f ; ③若R M P =⋃,则R M f P f =⋃)()(; ④若R M P ≠⋃,则R M f P f ≠⋃)()(;其中正确判断有( )(A )1个 (B )2个 (C )3个 (D )0个解析:本题可以通过以下特例来判断。
⎩⎨⎧-∞∈-+∞∈=)0,(,),0(,)(x x x x x f 及⎩⎨⎧-∞∈-+∞∈=]0,(,),0[,)(x x x x x f ,检验一下,立得②、④正确,选(B ) 点评:本题的特点是题目文字较多,给出的信息量较大,对同学们的阅读能力,理解能力和快整处理信息能力都较高。
二、新定义型例2设函数f (x )的定义域为R ,若存在与x 无关的正常数M ,使|||)(|x M x f ≤对一切实数x 均成立,则称f (x )为“有界泛函”,给出以下函数: ①f (x ) =x 2, ②f (x )=2x,③1)(2++=x x xx f④x x x f sin )(= 其中是“有界泛函”的个数为 ( )A .0B .1C .2D .3解析:|||)(|x M x f ≤对于③x M x x x ≤++12,则112++≥x x M 112++=x x ,而34431112=≤++x x 。
所以只须34≥M 。
对于④x M x x ≤sin ,所以x M sin ≥。
函 数 创 新 试 题 解 读河 北 尚 继 惠函数创新试题非常多见,因为函数本身内容深厚,何况又有数形等多种表达形式,因此有关函数创新试题灵活多变、花样翻新、层出不穷。
这方面的试题既有利于考查对函数知识与方法的理解与掌握,又有利于考查学生的创新精神和探索能力。
下面我们分类进行解读,以期对同学们学习与复习有所帮助。
1. 创新“概念”题例1 已知函数))(2(log)(*1N n nn f n ∈+=+,定义使),2(),1(f f …,)(k f 为整数的数k k (∈*N )叫做企盼数,则在区间[1,100]内这样的企盼数共有______个.解读:这里创新定义的“企盼数”非常独到,且有对数的介入,因而试题设计得精巧、深刻.依题意有:,5log )3(,4log )2(,3log )1(432===f f f …,)2(log )(1+=+k k f k ,则有)2(log )()3()2()1(2+=⋅⋅k k f f f f ,令n k =+)2(log 2,则22-=n k ,由k ∈[1,100]得:100221≤-≤n ,∴10223≤≤n 。
∵*N n ∈,∴6,5,4,3,2=n ,故所求企盼数共有5个。
2. 创新“符号”题例2 对任意函数)(x f 、)(x g 在公共定义域内,规定)(x f ※)}(),(m in{)(x g x f x g =,若x x g x x f 2log )(,3)(=-=,则)(x f ※)(x g 的 最大值为_________。
解读:解此题关键在于理解规定符号※式子的含义,其实)(x f ※)(x g 就是)(x f 、)(x g 中函数值较小者,在同一坐标系中作出两个函数x x g x x f 2log )(,3)(=-=的图象(此略),且当)(x f =)(x g 即x x 2log 3=-时,观察易知2=x ;又当2=x 时,1)2()2(==g f ,则有)(x f ※⎪⎩⎪⎨⎧≥-≤<=)2(3)20(log )(2x x x x x g , ∴)(x f ※)(x g 的 最大值为1。
专题07 函数的图象1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数。
2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题。
热点题型一 作函数的图象 例1、作出下列函数的图象。
(1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =2x -1x -1。
1 图【提分秘籍】函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征找出图象的关键点直接作出图象。
(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图象。
(3)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响。
【举一反三】 作出下列函数的图象:(1)y =x 3|x |;(2)y =x +2x -1; (3)y =|log 2x -1|;解析:(1)首先要化简解析式,y =⎩⎪⎨⎪⎧x 2,x >0-x 2,x <0。
利用二次函数的图象作出其图象,如图①所示。
(2)原式变形为y =1+3x -1,先作出y =3x的图象,再将其图象向右平移一个单位,再向上平移一个单位,即得.如图②所示。
(3)先作出y =log 2x 的图象,再将其图象向下平移一个单位,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方来,即得y =|log 2x -1|的图象,如图③所示。
热点题型二 函数图象的辨识例2、【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【提分秘籍】 有关图象辨识问题的常见类型及解题思路(1)由实际情景探究函数图像:关键是将生活问题转化为我们熟悉的数学问题求解,但要注意实际问题中的定义域。
函数、导数、不等式等这三部分或它们的综合,在每年高考试题中都有大量出现,综合性都比较强,,题目都有较高的难度;利用函数解不等式,利用导数研究函数的单调性,求函数的极值和最值等是考查的重点.特别今后,高考的应用题不一定是概率题,那么函数作为解决生活实际问题的重要方法,其应用题出现在高考试题中,并且可能常态化那也在情理之中.考试要求 能结合实例,借助几何直观探索并了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会用导数求函数的极大值、极小值以及生活中的优化问题.能够利用函数解决一些生活实际问题.题型一 函数与不等式例1设函数⎪⎩⎪⎨⎧≥--<+=1141)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A.]10,0[]2,( --∞B. ]1,0[]2,( --∞C. ]10,1[]2,( --∞D. ]10,1[)0,2[ - 点拨:由分段函数的表达式知,需分成两类:解析:由1)(≥x f ,则21(1)1x x <⎧⎨+≥⎩或1411x x ≥⎧⎪⎨--⎪⎩, 解该不等式组得,(,2][0,10]a ∈-∞-.选A例2 已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是 A (22,)+∞ B [22,)+∞ C (3,)+∞ D [3,)+∞点拨:注意a 的取值范围,利用均值不等式求解.解:作出函数f (x )=|lg x |的图象,由()(),0f a f b a b =<<知01,lg lg ,1a b a b ab <<<-=∴=,22a b a a ∴+=+,考察函数2y x x =+的单调性可知,当01x <<时,函数单调递减,223a b a a∴+=+>, 故选C .易错点:例1分段函数不等式一般通过分类讨论的方式求解,解对数不等式没注意到真数大于0,或没注意底数在(0,1)上时,或不等号的方向写错等;例2直接利用均值不等式求解得2222a b a a∴+=+>最小值为22.变式与引申1 已知函数(2)1,1()log ,1aa x x f x x x --≤⎧=⎨>⎩.若()f x 在(,)-∞+∞上单调递增,则实数a 的取值范围为________.变式与引申2 已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(. ①若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式;②若)(x f 的最大值为正数,求实数a 的取值范围. 题型二 函数与数列例3 已知函数.21)1()())((=-+∈=x f x f R x x f y 满足(1)求*))(1()1()21(N n nn f nf f ∈-+和的值; (2)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++= 满足,求列数}{n a 的通项公式;(3)若数列{b n }满足1433221,41+++++==n n n n n b b b b b b b b S b a ,则实数k 为何值时,不等式n n b kS <2恒成立.点拨 (2)注意到1122011n n n n n n --+=+=+==,及1()(1)2f x f x +-=,构成对进行运算;(3)求出n b ,将11112n n b b n n +=⨯++裂项,并求和求出n S ,再利用二次函数单调性性质求解. 解:(1)令 41)21(21)211()21(21=∴=-+=f f f x ,,则. 令 21)1()1(21)11()1(1=-+=-+=n n f n f n f n f n x ,即,则(2)∵)1()1()2()1()0(f n n f n f n f f a n +-++++= ①∴)0()1()2()1()1(f n f n n f n n f f a n +++-+-+= ②由(1),知 21)1()1(=-+n n f n f ∴①+②,得.41.21)1(2+=∴⨯+=n a n a n(31431+++=n n b b b b b 11111111111()()()()2334451223344512n n n n =⨯++⨯=-+-+-++-++++ )2(22121+=+-=n nn )2)(1(2)1(11222++---=+-+=-∴n n n k kn n n kn b kS n n 由条件,可知当02)1(2<---n k kn 恒成立时即可满足条件.设2)1()(2---=n k kn n f ,当k >0时,又二次函数的性质知02)1(2<---n k kn 不可能恒成立; 当k=0时,f (n )=-n -2<0恒成立;当k <0时,由于对称轴直线2121212)1(-<-=---=k k k n . ∴f(n )在),1[+∞上为单调递减函数∴只要f (1)<0,即可满足02)1(2<---n k kn 恒成立, ∴由0,23,02)1()1(<<<---=k k k k f 又得,∴k<0. 综上知,k≤0,不等式n n b kS <2恒成立. 易错点 没有发现1122011n n n n n n--+=+=+==,可以结合1()(1)2f x f x +-=,进行逆序求和;对1433221+++++=n n n b b b b b b b b S 不能裂项求和或求和中出错,对02)1(2<---n k kn 恒成立的讨论不够严谨造成错误.变式与引申3:已知()f x 定义在R 上的函数,对于任意的实数,a b 都有()()()f ab af b bf a =+,且(2)1f =.①求12()f 的值;②求(2)(*)n f n N -∈的解析式.变式与引申4:一企业生产的某产品在不做电视广告的前提下,每天销售量为b 件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S (件)与电视广告每天的播放量n (次)的关系可用如图所示的程序框图来体现.①试写出该产品每天的销售量S (件)关于电视广告每天的播放量n (次)的函数关系式;90%,则②要使该产品每天的销售量比不做电视广告时的销售量至少增加每天电视广告的播放量至少需多少次? 题型三 含参数的函数极值问题值点.例4 设x 1、)0()()(223212>-+=≠a x a bx ax x f x x x 是函数的两个极 (1)若2,121=-=x x ,求函数f (x )的解析式; (2)若b x x 求,22||||21=+的最大值;(3)若)()()(,,1221x x a x f x g a x x x x --'==<<函数且, 求证:.)23(121|)(|2+≤a a x g点拨(2)根据根与系数关系得出两根异号,则212121212||||||()4x x x x x x x x +=-=+-,再用导数求b 的最大值;(3)将不等式问题转化为求函数的最大值问题.解 ).0(23)(22>-+='a a bx ax x f(1)2,121=-=x x 是函数f (x )的两个极值点, .0)2(,0)1(='=-'∴f f.9,6,0412,02322-===-+=--∴b a a b a a b a 解得.3696)(23x x x x f --=∴(2)∵x 1、x 2是 f (x )是两个极值点,.0)()(21='='∴x f x f ∴x 1、x 2是方程02322=-+a bx ax 的两根.∵△= 4b 2+ 12a 3, ∴△>0对一切a > 0,R b ∈恒成立.1223b ax x +=- 123ax x =-,∵0a >,∴120x x <..3494)3(4)32(||||||2222121a a b a a b x x x x +=---=-=+∴由).6(3,22349422||||222221a a b a ab x x -=∴=+=+得.60,0)6(3,022≤<≥-∴≥a a a b 令.369)(),6(3)(22a a a h a a a h +-='-=则)(0)(,40a h a h a ∴>'<<时在(0,4)内是增函数;0)(,64<'<<a h a 时∴h (a )在(4,6)内是减函数.∴a = 4时,h (a )有极大值为96,(]6,0)(在a h ∴上的最大值是96, ∴b 的最大值是.64(3)证法一:∵x 1、x 2是方程0)(='x f 的两根,))((3)(21x x x x a x f --='∴,22121)2|31|||(3|31|||3|)(|--+-≤--⋅-=∴x x x x a x x x x a x g.31,,3.)31(43)]31()[(43|)(|,0,0,12212122212121-=∴=-=⋅+-=----≤∴<->-∴<<x a x a x x x x a x x x x a x g x x x x x x x .)23(121)3131(43|)(|22+=++⋅≤∴a a a a x g 证法二:∵x 1、x 2是方程0)(='x f 的两根,))((3)(21x x x x a x f --='∴..31,,31221-=∴=-=⋅x a x a x x|]1)(3)[31(|.|)31())(31(3||)(|--+=+--+=∴a x x a x a a x x a x g∵12x x x <<,)133)(31(|)(|++-+=∴a x x a x g 32213131332433()()3()a a a a x x a x a a +=-+-=--+++12)23(3143223+=++≤a a a a a易错点 本题讨论、计算较多,不小心都容易出错,对问题的转化能力要求较高. 变式与引申5:若函数()()11213123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围. 变式与引申6:已知函数()()0221ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围; 题型四 函数应用题例 5 2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测. 为了方便起见,以10数的时间,即1=n ;9点20午9点到晚上24点分成了90个计算单位.对第n 个时刻进入园区的人数()f n 和时间n (n N *∈) 满足以下关系(如图1-4-2):⎪⎪⎩⎪⎪⎨⎧≤≤≤≤+-≤≤⋅≤≤=-)9073(0)7237(21600300)3625(33600)241(3600)(1224n n n n n n f n ,*∈N n 对第n 个时刻离开园区的人数()g n 和时间n (n N *∈)满足以下关系(如图1-4-3):⎪⎩⎪⎨⎧∈≤≤≤≤-≤≤=*N n n n n n n g ,)9073(5000)7225(12000500)241(0)((1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?(2)请求出当天世博园区内游客总人数最多的时刻.点拨 (1)计算出入园游客总数与出园游客总数,其差就是所求;(2)当入园游客总数与出园游客总数之差最大,则游客总人数最多,按每段函数分别计算()()f n g n -.(i)当241≤≤n 时,园区人数越来越多,人数不是最多的时间; (ii)当3625≤≤n 时,令360012000500≤-n ,得出31≤n ,即当3125≤≤n 时,进入园区人数多于离开人数,总人数越来越多; 当3632≤≤n 时,12000500336001224->⋅-n n ,进入园区人数多于离开人数,总人数越来越多;(iii)当7237≤≤n 时, 令3002160050012000n n -+=-时,42n =,即在下午4点整时,园区人数达到最多.此后离开人数越来越多,故园区内人数最多的时间是下午4点整. 易错点 (1)下午3点是哪个时段算不清出错;(2)不能读懂题意和看图,无从下手.变式与引申7:提高过江大桥的车辆通行能力可改善整个城市的交通状况。
函数与导数热点一利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围。
【例1】已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求实数a的取值范围。
解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈错误!时,f′(x)>0;当x∈错误!时,f′(x)<0,所以f(x)在错误!上单调递增,在错误!上单调递减。
综上,知当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在错误!上单调递增,在错误!上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=错误!处取得最大值,最大值为f错误!=ln 错误!+a错误!=-ln a+a-1。
因此f错误!>2a-2等价于ln a+a-1<0。
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1)。
【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1〈0,则需要构造函数来解.【对点训练】已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数)。
(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围。
函数图象创新题例析李昭平“函数”是贯穿于高中数学的一条主线,函数图象又是表述函数问题的重要工具,因此函数图象问题与其它知识的联系非常紧密。
尤其是导数和向量的引入,拓宽了函数图象问题的命题空间,出现了不少的创新题,下面介绍几例。
例1. 已知函数,其中,,当时的大致图象是()图1解析:由于的图象问题已超出了高中大纲的范围,因此想通过画出图象来确定答案,将是十分困难的。
作反面思考,从选择支出发:选择支(A)、(D)的图象均关于坐标原点对称,选择支(B)的图象关于y轴对称,而函数既非奇函数又非偶函数,因此排除(A)、(B)、(D)。
答案(C)正确。
点评:本题以平面向量为载体,考查非常规型函数的图象,灵活运用函数的相关性质排除错误是解题的关键。
例2. 设函数在定义域内可导,的图象如图2所示,则导函数的图象可能为()图2图3解析:观察图2,发现时,单调递增,因此时,,立即排除(B)、(C)。
再从图2中发现,且x靠近0时,单调递增,此时,立即排除(A)。
答案(D)正确。
点评:本题是函数图象与其导函数图象的交汇,主要考查两者图象之间的关系。
利用函数的单调性确定导函数的符号是解题的关键。
例3. 如图4所示,函数的图象上有一列点P1,P2,P3,…,Pn,…,已知时,。
设线段的长分别为,且,则()图4A.B.C.D.解析:由得所以即所以将这个等式相乘,得答案(B)正确。
点评:本题在函数的图象上构建向量,融函数图象、平面向量、数列等知识于一体,利用向量的和差运算寻求递推关系是解题的关键。
例4. 定义在(0,3)上的函数的图象如图5所示,,,那么不等式的解集是___________。
图5解析:因此的解集是点评:本题以平面向量为载体,考查抽象函数与三角函数的复合型不等式的解集,分类讨论、由图定数是解题的关键。
例5. 已知某质点在运动过程中,热量Q随位移x变化的规律是,其图象关于坐标原点对称,如图6所示是其图象的一部分,则Q(x)的解析式是___________。
第9讲 函数模型及其应用基础巩固题组(建议用时:40分钟) 一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 ①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案 ①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析 设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案 205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析 当t=0时,y=a,当t=8时,y=a e-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=a e-bt=a,e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.答案 166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km h,B 的速度是16 km h,经过________h,AB间的距离最短.解析 设经过x h,A,B相距为y km,则y==(0≤x≤),求得函数的最小值时x的值为.答案 7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2 +1.5=21.5,当且仅当x=,即x=10时取等号.答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,∴1.12x=,∴x=log1.12=log1.1220-log1.1213=-===3.8.即3年后不到200万元,第4年超过200万元,即2019年超过200万元.答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=x(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2 m时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为(万元).则=+-48≥2 -48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====≤=≤=<.P不可能大于.法二 依题意x=0.2a,所以P====.假设P>,则ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解,假设不成立.P不可能大于.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126 000-,又f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x-300·x,f′(x)=9 000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240 000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.解 (1)由题意得AD=12 千米,≤,解得≤v≤,故乙的速度v的取值范围是.(2)设经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故<2,即v>8.①当0<vt≤5,即0<t≤时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=t2.因为v2-v+36>0,所以当t=时,f(t)取最大值,所以×2≤25,解得v≥.②当5<vt≤13,即<t≤时,f(t)=(vt-1-6t)2+9=(v-6)22+9.因为v>8,所以<,(v-6)2>0,所以当t=时,f(t)取最大值,所以(v-6)22+9≤25,解得≤v≤.③当13≤vt≤16,即≤t≤时,f(t)=(12-6t)2+(16-vt)2因为12-6t>0,16-vt>0,所以f(t)在上单调递减,所以当t=时,f(t)取最大值,2+2≤25,解得≤v≤.因为v>8,所以8<v≤.综上所述,v的取值范围是.。