(北京专用)2019版高考数学一轮复习第八章立体几何第一节空间几何体的结构特征及其三视图和直观图课件文
- 格式:ppt
- 大小:1.75 MB
- 文档页数:30
§8.4 平行关系1.直线与平面平行的判定与性质2.面面平行的判定与性质知识拓展重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊈α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊈平面ACE,EO 平面ACE,所以BD1∥平面ACE.题组三易错自纠4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a α,b β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是________.(填上所有正确的序号)答案②④解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又F 是PC 的中点,∴FO ∥AP ,又FO 平面BEF ,AP ⊈平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点,∴FH ∥PD ,又PD 平面P AD ,FH ⊈平面P AD , ∴FH ∥平面P AD .又O 是BE 的中点,H 是CD 的中点,∴OH ∥AD ,又AD 平面P AD ,OH ⊈平面P AD , ∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD . 又GH 平面OHF ,∴GH ∥平面P AD .命题点2 直线与平面平行的性质典例 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC 平面PBC , 且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 底面ABCD , 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊈平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊈α,b α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊈α,a ⊈β,a ∥α⇒a ∥β).跟踪训练 (2016·全国Ⅲ)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体N-BCM 的体积. (1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM , 所以四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT 平面P AB ,MN ⊈平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N-BCM 的体积 V 四面体N-BCM =13×S △BCM ×P A 2=453.题型二 平面与平面平行的判定与性质典例 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵G ,H 分别是A 1B 1,A 1C 1的中点, ∴GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别是AB ,AC 的中点, ∴EF ∥BC .∵EF ⊈平面BCHG ,BC 平面BCHG , ∴EF ∥平面BCHG . ∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB .又∵A 1E ⊈平面BCHG ,GB 平面BCHG , ∴A 1E ∥平面BCHG .又∵A 1E ∩EF =E ,A 1E ,EF 平面EF A ,∴平面EF A1∥平面BCHG.引申探究在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B 平面A1BD1,DM⊈平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊈平面A1BD1,BD1 平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM 平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练(2018·唐山质检)如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊈平面DMF,MO 平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊈平面MNG,GN 平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊈平面MNG,MN 平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE 平面BDE,所以平面BDE∥平面MNG.题型三平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF ∥平面β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长. (1)证明 ①当AB ,CD 在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD 知,AC ∥BD . ∵AE ∶EB =CF ∶FD ,∴EF ∥BD . 又EF ⊈β,BD β,∴EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=DH ,且DH =AC ,∵平面α∥平面β,平面α∩平面ACDH =AC , ∴AC ∥DH ,∴四边形ACDH 是平行四边形,在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .又∵AE ∶EB =CF ∶FD =AG ∶GH , ∴GF ∥HD ,EG ∥BH .又EG ∩GF =G ,BH ∩HD =H , ∴平面EFG ∥平面β.又EF 平面EFG ,∴EF ∥平面β. 综合①②可知,EF ∥平面β.(2)解 如图所示,连接AD ,取AD 的中点M ,连接ME ,MF .∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG 平面ABD ,EF ⊈平面ABD , ∴EF ∥平面ABD .又∵EF 平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊈平面EFGH ,EF 平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD , ∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x4. ∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l 不平行于平面α,且l ⊈α,则( ) A .α内的所有直线与l 异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交答案 B解析因为l⊈α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a β且α∥βD.存在一个平面β,a∥β且α∥β答案 C解析在A,B,D中,均有可能a α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.3.(2018·攀枝花质检)平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l α答案 D解析当l∥α时,直线l上任意点到α的距离都相等;当l α时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.故选D.5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥n B.若m∥α,n α,则m∥nC.若m∥α,n⊥α,则m∥n D.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合答案 C解析如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.7.(2018·重庆模拟)在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n β;②m∥γ,n∥β;③n∥β,m γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.(2017·承德模拟)如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN 平面FHN,∴MN∥平面B1BDD1.10.(2018·海口调研)将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填序号) 答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.(2017·南昌模拟)如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G为△P AD 的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G—PCD的体积.(1)证明 方法一 连接AG 并延长交PD 于点H ,连接CH .由梯形ABCD 中AB ∥CD 且AB =2DC 知,AF FC =21.又E 为AD 的中点,G 为△P AD 的重心,∴AG GH =21. 在△AHC 中,AG GH =AF FC =21,故GF ∥HC .又HC 平面PCD ,GF ⊈平面PCD , ∴GF ∥平面PDC .方法二 过G 作GN ∥AD 交PD 于N ,过F 作FM ∥AD 交CD 于M ,连接MN ,∵G 为△P AD 的重心,GN ED =PG PE =23,∴GN =23ED =233.又ABCD 为梯形,AB ∥CD , CD AB =12,∴CF AF =12, ∴MF AD =13,∴MF =233,∴GN =FM . 又由所作GN ∥AD ,FM ∥AD ,得GN ∥FM , ∴四边形GNMF 为平行四边形.∴GF ∥MN ,又∵GF ⊈平面PCD ,MN 平面PCD , ∴GF ∥平面PDC .方法三 过G 作GK ∥PD 交AD 于K ,连接KF ,GK ,由△P AD 为正三角形,E 为AD 的中点,G 为△P AD 的重心,得DK =23DE ,∴DK =13AD ,又由梯形ABCD 中AB ∥CD ,且AB =2DC , 知AF FC =21,即FC =13AC , ∴在△ADC 中,KF ∥CD , 又∵GK ∩KF =K ,PD ∩CD =D , ∴平面GKF ∥平面PDC ,又GF 平面GKF ,∴GF ∥平面PDC .(2)解 方法一 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE 平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 由(1)知GF ∥平面PDC ,∴V 三棱锥G —PCD =V 三棱锥F —PCD =V 三棱锥P —CDF =13×PE ×S △CDF . 又由梯形ABCD 中AB ∥CD ,且AB =2DC =23,知DF =13BD =233,又△ABD 为正三角形,得∠CDF =∠ABD =60°, ∴S △CDF =12×CD ×DF ×sin ∠BDC =32,得V 三棱锥P —CDF =13×PE ×S △CDF =32,∴三棱锥G —PCD 的体积为32. 方法二 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知 PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE 平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 连接CE ,∵PG =23PE ,∴V 三棱锥G —PCD =23V 三棱锥E —PCD =23V 三棱锥P —CDE=23×13×PE ×S △CDE , 又△ABD 为正三角形,得∠EDC =120°, 得S △CDE =12×CD ×DE ×sin ∠EDC =334.∴V 三棱锥G —PCD =23×13×PE ×S △CDE=23×13×3×334=32, ∴三棱锥G —PCD 的体积为32. 12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.(1)证明 因为PD ⊥平面ABCD ,BC 平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ,CD 平面PCD , 所以BC ⊥平面PCD .因为PC 平面PDC ,所以PC ⊥BC .(2)解 连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO 平面MEG ,P A ⊈平面MEG , 所以P A ∥平面MEG . 因为△OCG ≌△OAM , 所以AM =CG =23,所以AM 的长为23.13.(2018·南昌质检)在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45° 答案 C解析 因为截面PQMN 是正方形,所以MN ∥QP , 又PQ 平面ABC ,MN ⊈平面ABC ,则MN ∥平面ABC , 由线面平行的性质知MN ∥AC ,又MN 平面PQMN ,AC ⊈平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.14.(2017·山西太原五中月考)过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条. 答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线只可能落在平面DEFG 中(其中D ,E ,F ,G 分别为AC ,BC ,B 1C 1,A 1C 1的中点).易知经过D ,E ,F ,G 中任意两点的直线共有C 24=6(条).15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图像大致是()答案 C解析过M作MQ∥DD1,交AD于点Q,连接QN.∵MN∥平面DCC1D1,MQ∥平面DCC1D1,MN∩MQ=M,∴平面MNQ∥平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,∴NQ∥DC,可得QN=CD=AB=1,AQ=BN=x,∵MQAQ=DD1AD=2,∴MQ=2x.在Rt△MQN中,MN2=MQ2+QN2,即y2=4x2+1,∴y2-4x2=1(x≥0,y≥1),∴函数y=f(x)的图像为焦点在y轴上的双曲线上支的一部分.故选C.16.(2018·哈尔滨模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG 平面SGB , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB 平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.。
章末总结C.28πD.32πⅡ,T14,5分)α,β是两个平面,是两条直线,有下列四个命题:的中点;在平面P AC内的正投影ABCD中,AB∥CD,且∠一、选择题1.(必修2 P10B组T1改编)如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台解析:选D.因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,所以EH∥平面BCC1B1.又因为平面EFGH∩平面BCC1B1=FG,所以EH∥FG,且EH=FG,由长方体的特征知四边形EFGH为矩形,Ω为五棱柱,所以选项A,B,C都正确.故选D.2.(必修2 P61练习、P71练习T2、P73练习T1改编)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选D.A中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C 中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.(必修2 P78A组T7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为()A .25πB .252πC .253πD .254π解析:选C .由三视图画出直观图与其外接球示意图,且设O 1是底面中心.由三视图知,O 1A =2,O 1P =3,所以正四棱锥P -ABCD 的外接球的球心O 在线段O 1P 上.设球O 的半径为R .由O 1O 2+O 1A 2=OA 2得(3-R )2+(2)2=R 2. 所以R =523.则外接球的表面积为S =4πR 2=4π·⎝⎛⎭⎫5232=253π.4.(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD -A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论. ①B 1D ⊥平面A 1BC 1;②平面A 1BC 1将正方体体积分成1∶5两部分;③H 是B 1D 的中点;④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为33.则正确结论的个数有( )A .1B .2C .3D .4解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确. 对于②.设正方体棱长为a . 则V 三棱锥B -A 1B 1C 1=13·12a ·a ·a =16a 3.所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3-16a 3)=1∶5.故②正确.对于③,设正方体棱长为a , 则A 1B =2a .由V B 1-A 1BC 1=16a 3,得13×34×(2a )2·B 1H =16a 3, 所以B 1H =33a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小. cos ∠A 1B 1H =B 1H A 1B 1=33aa =33.故④正确.故选C .二、填空题5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =22,由余弦定理得cos ∠A 1AB =1+1-122×1×1=34. 答案:346.(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有AE ⊥平面CDE .故AE ⊥CD .故⑤正确.答案:①②④⑤三、解答题7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.(1)求证:A ′D ⊥EF .(2)当BE =BF =13BC 时,求三棱锥A ′EFD 的体积.解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F , A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF , 因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .(2)由(1)知,A ′D ⊥平面A ′EF ,所以A ′D 的长即为三棱锥D -A ′EF 的高,则A ′E =A ′F =23BC =23,EF =BE 2+BF 2=6,作A ′O ⊥EF 于点O , 所以A ′O =A ′E 2-⎝⎛⎭⎫12EF 2=422,则V A ′EFD =V D -A ′EF =13A ′D ·S △A ′EF=13×33×12EF ·A ′O =13×33×12×6×422=3212. 8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是C 1B 1,C 1D 1和AB 的中点.(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .因为M 、F 分别为AB 与C 1D 1的中点,且ABCD -A 1B 1C 1D 1是正方体. 所以MB ═∥D 1F .所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,所以BE =5,BG =12(BD -EF )=12(22-2)=22.所以EG =BE 2-BG 2=5-12=322. 所以S △EBD =12BD ×EG =12×22×322=3.又S △MBD =12MB ×AD =12×1×2=1.E 到平面ABCD 的距离为2,设M 到平面BEFD 的距离为d . 由V 三棱锥M -BDE =V 三棱锥E -MBD 得13S △EBD ·d =13S △MBD ×2. 所以d =S △MBD ×2S △EBD =1×23=23.所以M 到平面BED 的距离为23.。
§8.3 空间图形的基本关系与公理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫作异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.知识拓展1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面ABC与DBC相交于线段BC.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a α,b β,则a,b是异面直线.(×) 题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C 与EF所成角的大小为()A.30°B.45°C.60°D.90°答案 C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A —BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形; (2)当AC ,BD 满足条件________时,四边形EFGH 为正方形. 答案 (1)AC =BD (2)AC =BD 且AC ⊥BD 解析 (1)∵四边形EFGH 为菱形, ∴EF =EH ,故AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH , ∵EF 綊12AC ,EH 綊12BD ,∴AC =BD 且AC ⊥BD .题组三 易错自纠4.(2017·湖南省湘中名校联考)已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ∥β,α⊥β,则m ⊥nC .若α∩β=l ,m ∥α,m ∥β,则m ∥lD .若α∩β=m ,α∩γ=n ,l ⊥m ,l ⊥n ,则l ⊥α 答案 C解析 A 中,m ,n 可能的位置关系为平行、相交、异面,故A 错误;B 中,m 与n 也有可能平行,B 错误;C 中,根据线面平行的性质可知C 正确;D 中,若m ∥n ,根据线面垂直的判定可知D 错误,故选C.5.(2017·湖北七市联考)设直线m 与平面α相交但不垂直,则下列说法中正确的是( ) A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不可能与平面α平行 D .与直线m 平行的平面不可能与平面α垂直 答案 B解析 对于A ,在平面α内有且只有一条直线与直线m 垂直,过交点与直线m 垂直的直线只有一条,在平面内与此直线平行的直线都与m 垂直,不正确;对于B ,过直线m 有且只有一个平面与平面α垂直,在直线m 上取一点作平面α的垂线,两条直线确定一个平面与平面α垂直,正确;对于C ,与直线m 垂直的直线不可能与平面α平行,不正确;对于D ,与直线m 平行的平面不可能与平面α垂直,不正确.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案 3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用典例如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P ,如图所示.则由P ∈CE ,CE 平面ABCD ,得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA , ∴P ∈直线DA ,∴CE ,D 1F ,DA 三线共点. 思维升华 共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点. 跟踪训练 (2018·沈阳质检)如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线. 证明 (1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD . ∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH . ∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG 平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点. 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 题型二 判断空间两直线的位置关系典例 (1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析方法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.方法二如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.(2)(2017·唐山一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)答案②④解析在图①中,直线GH∥MN;在图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;在图③中,连接GM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直或面面垂直的性质来解决.跟踪训练(1)(2016·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. (2)已知a ,b ,c 为三条不重合的直线,已知下列结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c ,则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c . 其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.题型三 求两条异面直线所成的角典例 (2018·南宁模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB的值.解 设AA 1AB =t ,则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1, ∴cos ∠A 1BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910. ∴t =3,即AA 1AB=3.思维升华 用平移法求异面直线所成的角的三步法 (1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.跟踪训练 (2017·佛山模拟)如图所示,在正三棱柱ABC —A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.答案 60°解析 取A 1C 1的中点E ,连接B 1E ,ED ,AE ,在Rt △AB 1E 中,∠AB 1E 为异面直线AB 1与BD 所成的角. 设AB =1,则A 1A =2,AB 1=3, B 1E =32, 故∠AB 1E =60°.构造模型判断空间线面位置关系典例 已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.(填序号)思想方法指导本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后利用模型直观地对问题作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α,β可能垂直,如图(2)所示,故②不正确;对于③,平面α,β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案 A解析选项A是由公理推证出来的,而公理是不需要证明的.2.(2018·佛山模拟)在三棱柱ABC-A1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B1,EF,BC都相交.3.(2017·济南模拟)a,b,c是两两不同的三条直线,下面四个命题中,真命题是() A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案 C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.4.(2017·福州质检)直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°答案 C解析如图,延长CA到点D,使得AD=AC,连接DA1,BD,则四边形ADA1C1为平行四边形,所以∠DA1B就是异面直线BA1与AC1所成的角.又A1D=A1B=DB,所以△A1DB为等边三角形,所以∠DA1B=60°.故选C.5.下列命题中,正确的是()A.若a,b是两条直线,α,β是两个平面,且a α,b β,则a,b是异面直线B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条答案 D解析对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.对于B,设a,b确定的平面为α,显然a α,故B错误.对于C,当a α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.6.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.3答案 B解析①显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③中构造长方体(或正方体),如图所示,显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.7.给出下列命题,其中正确的命题为________.(填序号)①如果线段AB在平面α内,那么直线AB在平面α内;②两个不同的平面可以相交于不在同一直线上的三个点A,B,C;③若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;④若三条直线两两相交,则这三条直线共面;⑤两组对边相等的四边形是平行四边形.答案①③8.(2018·广州质检)如图是正四面体(各面均为正三角形)的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.答案 4解析EF与正方体左、右两侧面均平行,所以与EF相交的平面有4个.10.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为 2.11.(2018·石家庄调研)如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.证明如图,连接BD,B1D1,则BD∩AC=O,∵BB1綊DD1,∴四边形BB1D1D为平行四边形,又H∈B1D,B1D 平面BB1D1D,则H∈平面BB1D1D,∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.即D1,H,O三点共线.12.如图所示,等腰直角三角形ABC中,∠A=90°,BC=2,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.解如图所示,取AC的中点F,连接EF,BF,∵在△ACD中,E,F分别是AD,AC的中点,∴EF∥CD.∴∠BEF 或其补角即为异面直线BE 与CD 所成的角. 在Rt △EAB 中,AB =AC =1,AE =12AD =12,∴BE =52. 在Rt △EAF 中,AF =12AC =12,AE =12,∴EF =22. 在Rt △BAF 中,AB =1,AF =12,∴BF =52.在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010.∴异面直线BE 与CD 所成角的余弦值为1010.13.(2018·长春质检)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 如图,在长方体ABCD —A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA .若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若取C 1D 为l 4,则l 1与l 4相交;若取BA 为l 4,则l 1与l 4异面;若取C 1D 1为l 4,则l 1与l 4相交且垂直.因此l 1与l 4的位置关系不能确定.14.(2017·郑州质检)如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是___________________________.(填序号)①BM 是定值;②点M 在某个球面上运动;③存在某个位置,使DE ⊥A 1C ;④存在某个位置,使MB ∥平面A 1DE . 答案 ③解析 取DC 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,可得④正确;若存在某个位置,使DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.15.(2017·山西四校联考)如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是( )A .4πB .πC .2π D.π2答案 D解析 连接DN ,则△MDN 为直角三角形,在Rt △MDN 中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2.16.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.答案66解析 设直线AC 与BD ′所成的角为θ,平面ACD 翻折的角度为α,设点O 是AC 的中点,由已知得AC =6,如图,以点O 为坐标原点,以OB 所在直线为x 轴,OA 所在直线为y 轴,过点O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 由A ⎝⎛⎭⎫0,62,0,B ⎝⎛⎭⎫302,0,0, C ⎝⎛⎭⎫0,-62,0,作DH ⊥AC 于点H ,翻折过程中,D ′H 始终与AC 垂直, ∵△CDA ∽△CHD ,∴CD CH =CACD ,∴CH =CD 2CA =16=66,则OH =63,DH =1×56=306, 因此可设D ′⎝⎛⎭⎫-306cos α,-63,306sin α,则BD ′—→=⎝⎛⎭⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD ′→,n 〉|=|BD ′→·n ||BD ′→||n |=639+5cos α,所以当cos α=-1时,cos θ取最大值66.。
章末总结C.28πD.32πⅡ,T14,5分)α,β是两个平面,是两条直线,有下列四个命题:的中点;在平面P AC内的正投影ABCD中,AB∥CD,且∠一、选择题1.(必修2 P10B组T1改编)如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台解析:选D.因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,所以EH∥平面BCC1B1.又因为平面EFGH∩平面BCC1B1=FG,所以EH∥FG,且EH=FG,由长方体的特征知四边形EFGH为矩形,Ω为五棱柱,所以选项A,B,C都正确.故选D.2.(必修2 P61练习、P71练习T2、P73练习T1改编)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选D.A中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C 中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.(必修2 P78A组T7改编)正四棱锥的三视图如图所示,则它的外接球的表面积为()A .25πB .252πC .253πD .254π解析:选C .由三视图画出直观图与其外接球示意图,且设O 1是底面中心.由三视图知,O 1A =2,O 1P =3,所以正四棱锥P -ABCD 的外接球的球心O 在线段O 1P 上.设球O 的半径为R .由O 1O 2+O 1A 2=OA 2得(3-R )2+(2)2=R 2. 所以R =523.则外接球的表面积为S =4πR 2=4π·⎝⎛⎭⎫5232=253π.4.(必修2 P 79 B 组 T 2改编)如图,在正方体ABCD -A 1B 1C 1D 1中,B 1D ∩平面A 1BC 1=H . 有下列结论.①B 1D ⊥平面A 1BC 1;②平面A 1BC 1将正方体体积分成1∶5两部分; ③H 是B 1D 的中点;④平面A 1BC 1与正方体的六个面所成的二面角的余弦值都为33.则正确结论的个数有( )A .1B .2C .3D .4解析:选C .对于①,连接B 1C 与A 1D ,由正方体性质知,BC 1⊥B 1C ,BC 1⊥A 1B 1, 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1CD . 所以BC 1⊥平面A 1B 1CD . 又B 1D ⊂平面A 1B 1CD . 所以B 1D ⊥BC 1.同理B 1D ⊥A 1B ,A 1B ∩BC 1=B . 所以B 1D ⊥平面A 1BC 1,故①正确. 对于②.设正方体棱长为a . 则V 三棱锥B -A 1B 1C 1=13·12a ·a ·a =16a 3.所以平面A 1BC 1将正方体分成两部分的体积之比为16a 3∶(a 3-16a 3)=1∶5.故②正确.对于③,设正方体棱长为a , 则A 1B =2a .由V B 1-A 1BC 1=16a 3,得13×34×(2a )2·B 1H =16a 3, 所以B 1H =33a ,而B 1D =3a . 所以B 1H ∶HD =1∶2,即③错误.对于④,由对称性知,平面A 1BC 1与正方体六个面所成的二面角的大小都相等. 由①知B 1H ⊥平面A 1BC 1,而A 1B 1⊥平面B 1BCC 1. 所以∠A 1B 1H 的大小即为所成二面角的大小.cos ∠A 1B 1H =B 1H A 1B 1=33aa =33.故④正确.故选C .二、填空题5.(必修2 P 53 B 组 T 2改编)已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,点A 1在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为________.解析:连接A 1D ,AD ,A 1B ,易知∠A 1AB 为异面直线AB 和CC 1所成的角,设三棱柱的侧棱长与底面边长均为1,则AD =32,A 1D =12,A 1B =22,由余弦定理得cos ∠A 1AB =1+1-122×1×1=34. 答案:346.(必修2 P 79 B 组 T 1改编)如图在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,M ,N 分别是AD ,BE 的中点,将△ADE 沿AE 折起.则下列说法正确的是________.(填上所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN ⊥AE ;③不论D 折至何位置(不在平面ABC 内)都有MN ∥AB ; ④在折起过程中,一定存在某个位置,使EC ⊥AD ; ⑤无论D 折至何位置,都有AE ⊥DC . 解析:如图,设Q ,P 分别为CE ,DE 的中点,可得四边形MNQP 是矩形,所以①②正确;不论D 折至何位置(不在平面ABC 内)都有MN 与AB 是异面直线,不可能MN ∥AB ,所以③错;当平面ADE ⊥平面ABCD 时,可得EC ⊥平面ADE ,故EC ⊥AD ,④正确.无论D 折到何位置,均有AE ⊥平面CDE .故AE ⊥CD .故⑤正确.答案:①②④⑤ 三、解答题7.(必修2 P 79B 组T 1改编)如图,边长为33的正方形ABCD 中,点E ,F 分别是边AB ,BC 上的点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于点A ′.(1)求证:A ′D ⊥EF .(2)当BE =BF =13BC 时,求三棱锥A ′EFD 的体积.解:(1)证明:因为A ′D ⊥A ′E ,A ′D ⊥A ′F , A ′E ∩A ′F =A ′,所以A ′D ⊥平面A ′EF , 因为EF ⊂平面A ′EF , 所以A ′D ⊥EF .(2)由(1)知,A ′D ⊥平面A ′EF ,所以A ′D 的长即为三棱锥D -A ′EF 的高, 则A ′E =A ′F =23BC =23,EF =BE 2+BF 2=6,作A ′O ⊥EF 于点O , 所以A ′O =A ′E 2-⎝⎛⎭⎫12EF 2=422,则V A ′EFD =V D -A ′EF =13A ′D ·S △A ′EF =13×33×12EF ·A ′O =13×33×12×6×422=3212. 8.(必修2 P 78 A 组 T 4改编)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 、M 分别是C 1B 1,C 1D 1和AB 的中点.(1)求证:MD 1∥平面BEFD . (2)求M 到平面BEFD 的距离. 解:(1)证明:连接BF .因为M 、F 分别为AB 与C 1D 1的中点,且ABCD -A 1B 1C 1D 1是正方体. 所以MB ═∥D 1F .所以四边形MBFD 1为平行四边形, 所以MD 1∥BF .又MD 1⊄平面BEFD ,BF ⊂平面BEFD . 所以MD 1∥平面BEFD . (2)过E 作EG ⊥BD 于G . 因为正方体的棱长为2,所以BE =5,BG =12(BD -EF )=12(22-2)=22.所以EG =BE 2-BG 2=5-12=322. 所以S △EBD =12BD ×EG =12×22×322=3.又S △MBD =12MB ×AD =12×1×2=1.E到平面ABCD的距离为2,设M到平面BEFD的距离为d.由V三棱锥M-BDE=V三棱锥E-MBD得13S△EBD·d=13S△MBD×2.所以d=S△MBD×2S△EBD =1×23=23.所以M到平面BED的距离为23.。
精品基础教育教学资料,仅供参考,需要可下载使用!第八章⎪⎪⎪立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.。