立体几何及解题技巧以及空间距离专题复习
- 格式:doc
- 大小:3.17 MB
- 文档页数:23
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
专题45立体几何中的向量方法(二)——求空间角和距离 最新考纲1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用.基础知识融会贯通1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.重点难点突破【题型一】求异面直线所成的角【典型例题】如图,直棱柱(侧棱垂直于底面的棱柱) ABC ﹣A 1B 1C 1,在底面ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点. (1)求的值;(2)求证:BN ⊥平面C 1MN .【再练一题】如图,BC =2,原点O 是BC 的中点,点A 的坐标为(,,0),点D 在平面yOx 上,且∠BDC =90°,∠DCB =30°. (1)求向量的坐标.(2)求与的夹角的余弦值.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【题型二】求直线与平面所成的角【典型例题】如图所示,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,BC=BA AD=m,VA⊥平面ABCD.(1)求证:CD⊥平面VAC;(2)若VA m,求CV与平面VAD所成角的大小.【再练一题】如图,四棱锥P﹣ABCD中,底面为直角梯形,AB∥CD,∠BAD=90°,AB=2CD=4,P A⊥CD,在锐角△P AD 中,E是边PD上一点,且AD=PD=3ED.(1)求证:PB∥平面ACE;(2)当P A的长为何值时,AC与平面PCD所成的角为30°?思维升华利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.【题型三】求二面角【典型例题】四棱锥P﹣ABCD中,平面PCD⊥平面ABCD,四边形ABCD为矩形,AB=4,AD=3,∠P AB=90°.(1)求证:PD⊥平面ABCD;(2)若直线BD与平面P AB所成角的正弦值为,求二面角C﹣P A﹣D的余弦值.【再练一题】如图在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC的中点,将△AEF沿EF折起,使点A 到达点D的位置,连接BD,CD,M为CD的中点.(Ⅰ)证明:MF⊥面BCD;(Ⅱ)若DE⊥BE,求二面角E﹣MF﹣C的余弦值.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【题型四】求空间距离【典型例题】四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PB=PD.(1)求证:PD⊥AB;(2)若AB=6,PC=8,E是BD的中点,求点E到平面PCD的距离.【再练一题】如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是A B.PC的中点.(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离.思维升华求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.基础知识训练1.【天津市部分区2019届高三联考一模】在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ; (Ⅱ)求二面角C PB Q −−的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB ,求线段DH 的长. 2.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知正方形的边长为4,,E F 分别为,AD BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60的二面角,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF ,由,,A D E 三点所确定平面的交点为O ,试确定点O 的位置,并证明直线//OD 平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60;若存在,求此时二面角M EC F −−的余弦值,若不存在,说明理由.3.【陕西省汉中市2019届高三全真模拟考试】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C −−的余弦值为3,求PF 的长度. 4.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,三棱柱111ABC A B C −中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C −−的余弦值.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.6.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合考试】如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.7.【西藏拉萨市2019届高三第三次模拟考试】如图,等边三角形PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD BC ∥,2AB AD DC ===,4BC =.(1)证明:平面PAB ⊥平面PAC ; (2)求二面角B PC D −−的余弦值.8.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)】如图,在直三棱柱111ABC A B C −中,D 、E 、F 、G 分别是BC 、11B C 、1AA 、1CC 中点.且AB AC ==,14BC AA ==.(1)求证:BC ⊥平面ADE ; (2)求二面角1G EF B −−的余弦值.9.【广东省肇庆市2019届高中毕业班第三次统一检测】如图,在三棱柱111ABC A B C −中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A −−的余弦值.10.【广东省潮州市2019届高三第二次模拟考试】如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F −−的大小.11.【山东省栖霞市2019届高三高考模拟卷】如图,在三棱锥V ABC −中,,90,2VC AB ABC AB BC ︒<∠===,侧面ACV ⊥底面ABC ,45ACV ︒∠=,D 为线段AB 上一点,且满足AD CV =.(1)若E 为AC 的中点,求证:BE CV ⊥; (2)当DV 最小时,求二面角A BC V −−的余弦值.12.【河南省百校联盟2019届高三考前仿真试卷】如图,在几何体1111ACD A B C D −中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.13.【江西省上饶市横峰中学2019届高三考前模拟考试】如图,在三棱锥P ABC −中,20{28x x −>−≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D −−的平面角的余弦值。
高三数学立体几何知识点归纳
高三数学立体几何知识点归纳
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
接下来由店铺为大家整理出高三数学立体几何知识点归纳,仅供参考,希望能够帮助到大家!
1、空间的距离问题
主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的.)、平面和它的平行直线、以及两个平行平面之间的距离(在会求距离问题之前,需要明确其位置关系,详见空间点、直线、平面的位置关系)、求距离的一般方法和步骤是:一作出表示距离的线段;二证明它就是所要求的距离;三计算其值、此外,我们还常用体积法求点到平面的距离、
2、面积和体积
柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。
3、三视图
几何体的三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。
【高三数学立体几何知识点归纳】。
AB CD α βl知识点整理(一)平行与垂直的判断(1)平行:设,αβ的法向量分别为,u v ,则直线,l m 的方向向量分别为,a b ,平面 线线平行l ∥m ⇔a ∥b a kb ⇔=;线面平行l ∥α⇔a u ⊥0a u ⇔⋅=; 面面平行α∥β⇔u ∥v .u kv ⇔=(2)垂直:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则 线线垂直l ⊥m ⇔a ⊥b 0a b ⇔⋅=;线面垂直l ⊥α⇔a ∥u a ku ⇔=; 面面垂直α⊥β⇔⊥.0=⋅⇔(二)夹角与距离的计算 注意:以下公式可以可以在非正交基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则①两直线l ,m 所成的角为θ(02πθ≤≤),cos a b a bθ⋅=;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=;③二面角α─l ─β的大小为θ(0θπ≤≤),cos .u v u vθ⋅=(2)空间距离点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难, ① 点到平面的距离h :(定理)如图,设n 是是平面α的法向量,AP 是平面α的一条斜线,其中A α∈则点P 到平面α的距离 ② h =||||AP n n ⋅(实质是AP 在法向量n 方向上的投影的绝对值)③ 异面直线12,l l 间的距离d :||||CD n d AB n ⋅==(12,l l 的公垂向量为n ,C D 、分别是12,l l 上任一点).题型一:非正交基底下的夹角、距离、长度的计算例1.如图,已知二面角α-l -β的大小为1200,点A ∈α,B ∈β,AC ⊥l 于点C ,BD ⊥l 于点D ,且AC=CD=DB=1. 求:(1)A 、B 两点间的距离;(2)求异面直线AB 和CD 的所成的角 (3)AB 与CD 的距离.解:设,,,===则,60,,90,,,1||||||00>=<>=>=<<===(1)2|AB |===∴,∴ A 、B 两点间的距离为2.(2)异面直线AB 和CD 的所成的角为600(3)设与AB 、CD 都垂直的非零向量为c z b y a x n ++=,由AB ⊥得0z 3y 2x 30)()z y x (=++⇒=++⋅++①; 由CD ⊥得0y 0)z y x (=⇒=⋅++②,令x=1,则由①、②可得z=-1,∴-=,由法则四可知,AB 与CD 的距离为21|n ||AC |n ||d ====. 小结:任何非正交基底下的证明、计算都先设基底,并将条件也用基底表示,特别证明线面平行时,如AB//平面PEF 可以将AB 有基底表示,PE ,PF 也用基底表示,最后用待定系数法μ+λ=,将λ和μ求出。
第三篇立体几何专题05 立体几何中的距离问题常见考点考点一点面、线面、面面距离典例1.如图,四棱锥P ABCD-中,底面ABCD是平行四边形,45ABC∠=︒,CF BC⊥,2CF BC==,PA PB=,平面PAB⊥平面ABCD,E,F分别是PD,AB中点.(1)求证:EF∥平面PBC;(2)若CE与平面PCF成角θ为30°,求点B到平面CEF的距离d.【答案】(1)证明过程见解析【解析】【分析】(1)作出辅助线,构造平行四边形,证明线线平行,进而证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解.(1)取PC中点G,连接EG,BG,因为E是PD中点,所以EG是三角形PCD的中位线,所以EG∥CD且EG=12CD,又因为F是AB中点,四边形ABCD是平行四边形,所以BF∥CD,BF=12AB,故EG∥BF,EG=BF,所以四边形BFEG是平行四边形,所以EF∥BG,因为EF⊄平面PBC,BG⊂平面PBC,所以EF∥平面PBC.(2)因为PA PB =,F 是AB 中点,所以PF ∥AB ,因为平面PAB ⊥平面ABCD ,交线为AB ,所以PF ∥平面ABCD ,因为CF BC ⊥,所以以F 为坐标原点,FC 所在直线为x 轴,过点F 平行于BC 的直线为y 轴,FP 所在直线为z 轴建立空间直角坐标系,2CF BC ==,45ABC ∠=︒,则()0,0,0F ,()2,2,0B -,()2,0,0C ,()2,4,0D -,设()0,0,P m (0m >),则1,2,2m E ⎛⎫- ⎪⎝⎭,3,2,2m CE ⎛⎫=- ⎪⎝⎭,其中平面PCF 的法向量设为()0,1,0n =,则1sin 30294CE n CE n⋅︒===⋅+,解得:m=(3,CE =-,设平面CEF 的法向量为()1,,n x y z =,则1132020n CE x y n FC x ⎧⋅=-++=⎪⎨⋅==⎪⎩,解得:0x =,设1z =,则y =10,n ⎛⎫= ⎪ ⎪⎝⎭,则(110,BC n d n ⋅===变式1-1.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,2CA =,侧棱12AA =,D 、E 分别是1CC 和1A B 的中点.(1)求证:平面ADE ⊥平面1A AB ; (2)求点1A 到平面ADE 的距离. 【答案】(1)证明见解析【解析】 【分析】(1)建立空间直角坐标系,利用向量证明1,DE A B DE AE ⊥⊥,然后可证; (2)求出法向量,然后根据点到平面的距离向量公式可得. (1)易知CA 、CB 、1CC 两两垂直,于是如图建立空间直角坐标系 则(2,0,0)A 、(0,2,0)B 、(0,0,0)C 、1(2,0,2)A 、(0,0,1)D 、(1,1,1)E所以(1,1,0)DE =、(2,0,1)DA =-、1(2,2,2)A B =--、(1,1,1)AE =-、1(1,1,1)A E =-- 因为1220DE A B ⋅=-+=,110DE AE ⋅=-+= 所以1,DE A B DE AE ⊥⊥又因为11,A B AE E A B =⊂平面1A AB ,AE ⊂平面1A AB 所以DE ⊥平面1A AB 又DE ⊂平面ADE 所以平面ADE ⊥平面1A AB(2)设平面ADE 的法向量为(,,)n x y z =则020n DE x y n DA x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取1x =得(1,1,2)n =- 则点1A 到平面ADE的距离1643n A E d n⋅===变式1-2.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA AD⊥,2PA AB ==,在棱PD 上取点Q ,使得PB ∥平面ACQ .(1)求证:PA ⊥平面ABCD ;(2)求平面ACQ 与平面ABCD 夹角的余弦值; (3)求直线PB 到平面ACQ 的距离. 【答案】(1)证明见解析【解析】 【分析】(1)根据面面垂直的性质定理证得结论成立.(2)判断出Q 点的位置,建立空间直角坐标系,利用向量法求得平面ACQ 与平面ABCD 夹角的余弦值.(3)利用向量法求得直线PB 到平面ACQ 的距离. (1)由于平面PAD ⊥平面ABCD ,且交线为AD ,PA ⊂平面PAD ,PA AD ⊥,所以PA ⊥平面ABCD . (2)设AC BD O =,连接OQ ,由于//PB 平面ACQ ,PB ⊂平面PBD ,平面PBD 平面ACQ OQ =, 所以//PB OQ ,由于O 是BD 的中点,所以Q 是PD 的中点. 由于PA ⊥平面ABCD ,所以,PA AD PA AB ⊥⊥,故,,AB AD AP 两两垂直,以A 为原点建立空间直角坐标系,如图所示,()()2,2,0,0,1,1C Q ,设平面ACQ 的法向量为(),,n x y z =,所以0220n AQ y z n AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,故可设()1,1,1n =--,平面ABCD 的法向量为()0,0,1m =, 平面ACQ 与平面ABCD 夹角为θ,则1cos 3m n m nθ⋅===⋅. (3)由于//PB 平面ACQ ,则PB 到平面ACQ 的距离,即B 到平面ACQ 的距离.()0,2,0BC AD ==,B 到平面ACQ 的距离为233BC n n⋅==.即直线PB 到平面ACQ .变式1-3.如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,2BC =,14CC =,点E 在棱1BB 上,11EB =,D ,F ,G 分别为1CC ,11B C ,11A C 的中点,EF 与1B D 相交于点H .(1)求证:1B D ⊥平面ABD ; (2)求证:平面//EGF 平面ABD ; (3)求平面EGF 与平面ABD 的距离.【答案】(1)证明见解析;(2)证明见解析;(3. 【解析】 【分析】(1)建立空间直角坐标系,利用向量法证得1B D ⊥平面ABD . (2)利用向量法证得平面//EFG 平面ABD . (3)利用向量法求得平面EFG 与平面ABD 的距离. 【详解】(1)设AB a ,建立如图所示空间直角坐标系,()()()()11,0,0,0,2,0,,1,0,0,1,0,0,0,12a A a C G F E ⎛⎫⎪⎝⎭,()()()()0,2,2,,0,4,0,0,4,0,2,4D A a B C ,()()()10,2,2,,0,0,0,2,2B D BA a BD ===-, 所以110,0B D BA B D BD ⋅=⋅=,即11,,B D BA B D BD BA BD B ⊥⊥⋂=,所以1B D ⊥平面ABD .(2)()0,1,1,,0,02a EF FG ⎛⎫=-= ⎪⎝⎭,110,0B D EF B D FG ⋅=⋅=,即11,,B D EF B D FG EF FG F ⊥⊥⋂=,所以1B D ⊥平面EGF . 所以平面//EFG 平面ABD .(3)由(2)可知平面//EFG 平面ABD ,1B D ⊥平面ABD ,1B D ⊥平面EGF .()0,0,3EB =,所以平面EFG 与平面ABD的距离为112EB B D B D⋅==.考点二 点线、线线距离典例2.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F为线段1BB 的中点.(1)求点1A 到直线1B E 的距离;(2)求直线1FC 到直线AE 的距离; (3)求点1A 到平面1AB E 的距离; (4)求直线1FC 到平面1AB E 的距离. 【答案】(1(2;(3)23;(4)13.【解析】 【分析】(1)建立坐标系,求出向量11A B 在单位向量11||B E u B E =上的投影,结合勾股定理可得点1A 到直线1B E的距离;(2)先证明1//,AE FC 再转化为点F 到直线AE 的距离求解; (3)求解平面的法向量,利用点到平面的距离公式进行求解;(4)把直线1FC 到平面1AB E 的距离转化为1C 到平面1AB E 的距离,利用法向量进行求解. 【详解】建立如图所示的空间直角坐标系,则11111(1,0,1),(1,1,1),(0,0,),(1,1,),(0,1,1),(1,0,0).22A B E F C A (1)因为111111221(1,1,),(,,),(0,1,0)2333||B E B E u A B B E =---==---=, 所以1123A B u ⋅=-. 所以点1A 到直线1B E 221111()13A B A B u -⋅==. (2)因为111(1,0,),(1,0,),22AE FC =-=-所以1//AE FC ,即1//,AE FC所以点F 到直线AE 的距离即为直线1FC 到直线AE 的距离.1((0,1,).2||AE u AF AE === 255,,410AF AF u =⋅= 所以直线1FC 到直线AE(3)设平面1AB E 的一个法向量为(),,n x y z =,11(0,1,1),(1,0,),2AB AE ==-1(001)AA =,,.由10,10,2n AB y z n AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令2z =,则2,1y x =-=,即(1,2,2)n =-. 设点1A 到平面1AB E 的距离为d ,则123AA n d n⋅==,即点1A 到平面1AB E 的距离为23. (4)因为1//,AE FC 所以1//FC 平面1AB E ,所以直线1FC 到平面1AB E 的距离等于1C 到平面1AB E 的距离.()111,0,0C B =,由(3)得平面1AB E 的一个法向量为(1,2,2)n =-,所以1C 到平面1AB E 的距离为1113C B n n⋅=, 所以直线1FC 到平面1AB E 的距离为13.变式2-1.在如图所示的多面体中,AD BC ∥且2AD BC =.AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)求点F 到直线EC 的距离;(2)求平面BED 与平面EDC 夹角的余弦值. 【答案】【解析】 【分析】(1)根据线面垂直的性质可得DG DA ⊥,DG DC ⊥,以D 为坐标原点建立空间直角坐标系,代入)22CE EF EF CE ⎛⎫⋅ ⎪- ⎪ ⎪⎝⎭即可; (2)求出平面BED 与平面EDC 的法向量,再利用向量的夹角公式即可得解.(1)因为DG ⊥平面ABCD ,DA ⊂平面ABCD ,DC ⊂平面ABCD ,所以DG DA ⊥,且DG DC ⊥, 因为AD DC ⊥,如图所示,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(2,0,0)A ,(0,2,0)C ,(0,0,2)G ,(2,0,2)E ,(0,1,2)F ,(1,2,0)B ,所以(222)=-CE ,,,(2,1,0)=-EF ,所以求点F 到直线EC 的距离为)22CE EF EF CE ⎛⎫⋅ ⎪-== ⎪ ⎪⎝⎭(2)(1,2,0)DB =,(2,0,2)DE =设平面BED 的法向量为1(,,)n x y z =,则110DB D n E n ⎧⋅=⎪⎨⋅=⎪⎩,即20220x y x z +=⎧⎨+=⎩,令1y =,有1()2,1,2n =-,设平面EDC 的法向量为2(,,)n x y z =,则220DC D n E n ⎧⋅=⎪⎨⋅=⎪⎩,即20220y x z =⎧⎨+=⎩,令1x =,有2(101)n =,,-,设平面BED 和平面EDC 的夹角为θ,121212(cos cos ,34n n n n n n θ⋅=<>====⋅, 所以平面BED 和平面EDC .变式2-2.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.【答案】(1(2(3【解析】 【分析】(1)以D 为原点,建立空间直角坐标系,由1BD •EF =0,1CC •EF =0,知EF 为BD 1与CC 1的公垂线,再计算|EF |,即可;(2)求得平面BDE 的法向量n ,设直线BD 1与平面BDE 所成角为θ,由sinθ=|cos n <,1BD >|,即可得解;(3)点F 到平面BDE 的距离为n BFn⋅,代入相关数据,进行运算即可得解. 【详解】(1)以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系, 则B (1,1,0),D 1(0,0,2),C (0,1,0),C 1(0,1,2),E (0,1,1),F (12,12,1), ∥1BD =(﹣1,﹣1,2),1CC =(0,0,2),EF =(12,12-,0), ∥1BD •EF =0,1CC •EF =0,∥BD 1∥EF ,CC 1∥EF ,即EF 为BD 1与CC 1的公垂线, 而|EF|== ∥异面直线BD 1与CC 12.(2)由(1)知,DB =(1,1,0),DE =(0,1,1),1BD =(﹣1,﹣1,2),设平面BDE 的法向量为n =(x ,y ,z ),则00n DB n DE ⎧⋅=⎪⎨⋅=⎪⎩,即00x y y z +=⎧⎨+=⎩,令y =1,则x =﹣1,z =﹣1,∥n =(﹣1,1,﹣1), 设直线BD 1与平面BDE 所成角为θ, 则sinθ=|cos n <,1BD >|=|11n BD n BD ⋅⋅|==故直线BD 1与平面BDE. (3)由(1)知,BF =(12-,12-,1),由(2)知,平面BDE 的法向量为n =(﹣1,1,﹣1),∥点F 到平面BDE 的距离为n BF n ⋅=111-- 变式2-3.如图,三棱柱111ABC A B C -中,侧面11A ACC ⊥底面ABC ,1,ABC A AC ∆∆是边长为2的正三角形,已知D 点满足BD BA BC =+.(1)求二面角1B AC B --的大小; (2)求异面直线1A A 与BC 的距离;(3)直线1A A 上是否存在点G ,使1//DG AB C 平面?若存在,请确定点G 的位置;若不存在,请说明理由.【答案】(1)4π(2(3)存在点G ,其坐标为(,即恰好为1A 点【解析】(1)建立空间直角坐标系,利用平面1AB C 的法向量和平面ABC 的法向量,计算出二面角1B AC B --的余弦值,由此求得其大小.(2)求得异面直线1AA 与BC 的公垂线的方向向量,并由此计算出异面直线1A A 与BC 的距离. (3)根据BD BA BC =+求得D 点的坐标,设出G 点的坐标,根据1AG AA λ=、DG 与平面1AB C 的法向量垂直列方程组,解方程组求得G 点的坐标,由此判断出存在G 点符合题意. 【详解】(1)侧面11A ACC ⊥底面ABC ,又1,ABC A AC ∆∆均为正三角形,取AC 得中点O ,连接1A O ,BO ,则1AO ⊥底面ABC,11,AO OA OB BO AC ∴===⊥故以O 为坐标原点,分别以1,,OB OC OA 为x 轴、y 轴、z 轴建立O xyz -如图所示空间直角坐标系, 则())(()10,1,0,,,0,1,0A BA C-1B(1AA ∴= ()()()()13,2,3,3,1,0,3,1,0,0,2,0AB BC AB AC ==-==设平面1AB C 的法向量为(),,n x y z =10n AB n AC ⎧⋅=⎨⋅=⎩取1z =,可得()1,0,1n =-又平面ABC 的一个法向量为(1OA =111cos 22n OA n OA n OA ⋅∴⋅=== 由图知二面角1B AC B --为锐角,故二面角1B AC B --的大小为4π.(2)异面直线1AA 与BC 的公垂线的方向向量()222,,m x y z =,则100m AA m BC ⎧⋅=⎪⎨⋅=⎪⎩ 易得()1,3,1m =-,异面直线1A A 与BC 的距离2AB m d m⋅===(3)BD BA BC =+,而()()3,1,0,3,1,0BA BC =--=-()BD ∴=-又()3,0,0B,∴点D 的坐标为()假设存在点G 符合题意,则点G 的坐标可设为()0,,y z()()3,,,0,1,DG y z AG y z ∴==+//DG 平面1AB C (),1,0,1n =-为平面1AB C 的一个法向量,∴由()10,AG AA λλ==,得1330y z n DG zλλ+=⎧⎪=⎨⎪⋅=-=⎩0y z =⎧⎪∴⎨=⎪⎩又DG ⊄平面1AB C ,故存在点G ,使//DG 平面1AB C ,其坐标为(,即恰好为1A 点.【点睛】本小题主要考查利用空间向量法计算二面角、异面直线公垂线段的长,考查利用空间向量法研究线面平行的条件,考查数形结合的数学思想方法,考查空间想象能力,属于中档题.巩固练习练习一 点面、线面、面面距离1.如图,直三棱柱111ABC A B C -中,90ACB ∠=︒,1AC BC ==,13AA =,且112AD DA =.(1)求平面BDC 与平面1BDC 所成角的余弦值; (2)求点1B 到平面BDC 距离. 【答案】【解析】 【分析】(1)以C 为原点.1,,CA CB CC 的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系,求得平面BDC 的法向量n →与平面1BDC 的法向量m →,利用数量积公式计算即可得出结果. (2)利用向量公式11cos ,BB BB n d →=计算即可得出结果. (1)依题意1,,CA CB CC 两两互相垂直,以C 为原点.1,,CA CB CC 的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系,则1(0,0,0),(0,1,0),(1,0,1),(0,0,3),C B D C11(0,1.0),(1,0,1),(1,0,2),(0,1,3).CB CD DC BC ===-=-设平面BDC 的一个法向量为111(,,)n x y z →=,则1110,0,n CB y n CD x z ⎧⋅==⎪⎨⋅=+=⎪⎩令11z =,则得111,0x y =-=,此时(1,0,1)n →=-.设平面1BDC 的一个法向量为222(,,),m x y z →=则12212220,30,m DC x z m BC y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令21,z =则得222,3,x y ==此时(2,3,1),m →=因为cos,m nm nm n→→→→→→⋅===所以平面BDC与平面1BDC(2)因为1(0,0,3)BB =,点1B到平面BDC距离为111cos,BB nBB BB nnd→→→==⋅==.2.如图,在四棱锥P ABCD-中,底面ABCD为矩形且22AD AB==,侧面PAD⊥底面ABCD,且侧面P AD是正三角形,E、F分别是AD,PB的中点.(1)求证:AF∥平面PCE;(2)求直线CF 与平面PCE 所成角的正弦值; (3)求点F 到平面PCE 的距离. 【答案】(1)证明见解析【解析】 【分析】(1)作出辅助线,证明线线平行,进而证明出线面平行;(2)建立空间直角坐标系,利用空间向量求解线面角;(3)在第二问的基础上求解点面距离. (1)取PC 的中点M ,连接MF ,ME ,因为F 是PB 的中点,所以MF 是三角形PBC 的中点,所以MF ∥BC ,且12MF BC =,因为底面ABCD 为矩形,E 是AD 的中点,所以AE ∥BC ,12AE BC =,所以MF ∥AE ,且MF =AE ,所以四边形AFME 是平行四边形,故AF ∥ME ,因为AF ⊄平面PCE ,ME ⊂平面PCE ,所以AF ∥平面PCE(2)因为侧面P AD 是正三角形,E 是AD 的中点,所以PE AD ⊥,又因为侧面PAD ⊥底面ABCD ,交线为AD ,所以PE ⊥底面ABCD ,以E 为坐标原点,ED 所在直线为x 轴,取BC 中点H ,EH 所在直线为y 轴,EP 所在直线为z 轴建立空间直角坐标系,()1,1,0C ,(P ,()1,1,0B -,11,22F ⎛- ⎝⎭,()0,0,0E ,设平面PCE 的法向量()111,,m x y z =,则111030CE m x y EP m z ⎧⋅=+=⎪⎨⋅==⎪⎩,解得:10z =,令11x =得:11y =-,所以()1,1,0m =-,31,22CF ⎛=-- ⎝⎭,设直线CF 与平面PCE 所成角为α,故sin cos ,CF m CF m CF m α⎛- ⋅⎝====⋅; 所以直线CF 与平面PCE . (3) 点F 到平面PCE 的距离31222m CF d m-+⋅===. 3.如图在直三棱柱111ABC A B C -中,190,2,BAC AB AC AA M ∠====为AB 的中点,N 为11B C 的中点,H 是11A B 中点,P 是1BC 与1B C 的交点,Q 是1A N 与1C H 的交点.(1)求证:11A C BC ⊥;(2)求证:PQ 平面1ACM ; (3)求直线PQ 与平面1ACM 的距离. 【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过线面垂直证明,法三:根据三垂线证明;(2)法一:通过建立空间直角坐标系,运用向量数量积证明,法二:通过面面平行证明线面平行; (3)法一:通过建立空间直角坐标系,运用向量方法求解,法二:运用等体积法求解.(1)证明:法一:在直三棱柱111ABC A B C -中,因为90BAC ∠=,以点A 为坐标原点,1AB CA AA 、、方向分别为x y z 、、轴正方向建立如图所示空间直角坐标系.因为12AB AC AA ===,所以()()10,0,2,0,2,0A C -,()()12,0,0,0,2,2B C -所以()()112,2,2,0,2,2BC AC =--=-- 所以()()110,2,22,2,20AC BC ⋅=--⋅--=,所以11A C BC ⊥.法二:连接1AC ,在直三棱柱111ABC A B C -中,有1AA ⊥面ABC , AB 面ABC ,所以1AA AB ⊥,又90BAC ∠=,则AB AC ⊥,因为1AA AC A =,所以AB ⊥面11ACC A因为1AC ⊂面11ACC A ,所以1AB A C ⊥ 因为11,2AA AC AC AA ⊥==,所以四边形11AAC C 为正方形,所以11A C AC ⊥因为1AB AC A ⋂=,所以1A C ⊥面1ABC因为1BC ⊂面1ABC ,所以11A C BC ⊥.法三:用三垂线定理证明:连接1AC ,在直三棱柱111ABC A B C -中,有1AA ⊥面ABC 因为AB 面ABC ,所以1AA AB ⊥,又90BAC ∠=,则AB AC ⊥, 因为1AA AC A =,所以AB ⊥面11ACC A所以1BC 在平面11ACC A 内的射影为1AC ,因为四边形11AAC C 为正方形,所以11A C AC ⊥,因此根据三垂线定理可知11A C BC ⊥(2)证明:法一:因为12,AB AC AA M ===为AB 的中点,N 为11B C 的中点,H 为11A B 中点,P 是1BC 与1B C 的交点,所以()()()10,0,20,2,01,1,1A C P --、、、()()()1,0,01,1,21,0,2M N H -、、,依题意可知Q 为111A B C △重心,则1123AQ A N =, 可得22,,233Q ⎛⎫- ⎪⎝⎭所以11,,133PQ ⎛⎫=- ⎪⎝⎭, ()()110,2,2,1,0,2AC A M =--=-,设(),,n x y z =为平面1ACM 的法向量,则1100n A C n A M ⎧⋅=⎪⎨⋅=⎪⎩即22020y z x z --=⎧⎨-=⎩取1z =得2,1x y ==- 则平面1ACM 的一个法向量为()2,1,1n =-. 所以()11,,12,1,1033PQ n ⎛⎫⋅=-⋅-= ⎪⎝⎭,则PQ n ⊥, 因为PQ ⊄平面1ACM ,所以//PQ 平面1ACM . 法二:连接BH MH 、.在正方形11AA B B 中,M 为AB 的中点,所以1//BM A H 且 1BM A H =,所以四边形1BMA H 是平行四边形,所以1//BH A M又H 为11A B 中点,所以四边形1AA HM 是矩形,所以1//MH AA 且1MH AA = 因为11//AA C C 且11AA C C =,所以11//,MH CC MH C C =,所以四边形1MHC C 为平行四边形,所以1//C H CM .因为1C H BH H ⋂=,1C H ⊂平面1,BHC BH ⊂平面1BHCCM ⊂平面11,A MC A M ⊂平面1A MC ,所以平面1//BHC 平面1A MC ,PQ ⊂平面1BHC ,所以//PQ 平面1ACM (3)法一:由(2)知平面1ACM 的一个法向量()2,1,1n =-,且//PQ 平面1ACM , 所以PQ 到平面1ACM 的距离与P 到平面1ACM 的距离相等,()()10,0,2,1,1,1A P -,所以()11,1,1PA =-,所以点P 到平面1ACM 的距离121PA nd n ⋅--===所以PQ 到平面1ACM 法二:因为N H 、分别为11B C 和11A B 中点,所以Q 为111A B C △的重心,所以1123AQ A N =,所以Q 到平面1ACM 的距离是N 到平面1ACM 距离的23. 取1B H 中点E 则1//NE C H ,又1//,//,C H CM NE CM NE ⊄平面1ACM CM ⊂平面1ACM ,所以//NE 平面1ACM , 所以N 到平面1ACM 的距离与E 到平面1ACM 的距离相等. 设点E 到平面1ACM 的距离为h ,由11E A CM C A ME V V --=得11ΔΔ1133A CM A ME S h S AC =,又1136,2A CM A ME S S ==,所以h =,所以Q 到平面1ACM ,所以PQ 到平面1ACM 4.如图,正方体ABCD A 1B 1C 1D 1的棱长为1, M , N 分别是BB 1, B 1C 1的中点.(1)求直线MN 到平面ACD 1的距离;(2)若G 是A 1B 1的中点,求平面MNG 与平面ACD 1的距离.【答案】【解析】【分析】(1)证明MN∥平面ACD 1,转化为求点M 到平面ACD 1的距离,利用向量法求解即可; (2)证明平面MNG ∥平面ACD 1,转化为求直线MN 到平面ACD 1的距离,由(1)得解.(1)以1,,DA DC DD 分别为,,x y z 轴建立如图所示的空间直角坐标系,则111(1,0,0),(0,0,1),(0,1,0),(1,1,),(,1,1)22A D C M N ,1(1,1,0),(1,0,1)AC AD ∴=-=-,11(,0,)22MN =-,1(0,1,)2AM →=, 故112MN AD =.因为直线MN 与AD 1不重合,所以MN ∥AD 1. 又因为MN ⊄平面ACD 1, AD 1⊂平面ACD 1,所以MN ∥平面ACD 1. 故直线MN 到平面ACD 1的距离等于点M 到平面ACD 1的距离. 设平面ACD 1的一个法向量为(,,)m x y z →=,所以100m AD x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令1x =,则1y z ==,所以(1,1,1)m →=, 所以点M 到平面ACD 1的距离为11||||m AM m →→→+⋅= 即直线MN 到平面ACD 1(2)连接A 1C 1, 因为G , N 分别为A 1B 1, B 1C 1的中点,所以GN ∥A 1C 1. 又因为A 1C 1∥AC ,所以GN ∥AC .因为GN ⊄平面ACD 1, AC ⊂平面ACD 1,所以GN ∥平面ACD 1. 同理可得MN ∥平面ACD 1.因为MN ∩GN =N , MN , GN ⊂平面MNG , 所以平面MNG ∥平面ACD 1,所以平面MNG 与平面ACD 1的距离即为直线MN 到平面ACD 1的距离,由(1)练习二 点线、线线距离5.已知三棱柱111ABC A B C -的侧棱垂直于底面,90o BAC ∠=,11AB AC AA ===,E F 、分别是棱1C C BC 、的中点.(1)求证:1B F ⊥平面AEF ;(2)求点1A 到直线1B E 的距离.【答案】(1)证明见解析;【解析】【分析】(1)以A 为坐标原点,建立空间直角坐标系,利用向量证明10B F AE ⋅=和10B F AF ⋅=即可;(2)利用向量投影即可求解.(1)∥三棱柱111ABC A B C -的侧棱垂直于底面,90BAC ∠=︒, ∥以A 为坐标原点,建立如图空间直角坐标系,∥11AB AC AA ===,E F 、分别是棱1C C BC 、的中点, ∥1111(0,0,0),(1,0,1),0,1,,,,0222A B E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 111111,,1,0,1,,,,022222B F AE AF ⎛⎫⎛⎫⎛⎫=--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∥10B F AE ⋅=,10B F AF ⋅=,∥1B F AE ⊥,1B F AF ⊥, ∥AE AF A ⋂=,AE ⊂平面AEF ,AF ⊂平面AEF ,∥1B F ⊥平面AEF .(2)∥1(0,0,1)A ,∥11(1,0,0)A B =,111,1,2B E ⎛⎫=-- ⎪⎝⎭,∥1112cos ,3A B B E ==-,∥1115sin ,3A B B E = 故点1A 到直线1B E 的距离为111115sin ,3d A B A B B E =⋅= 6.已知四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,2PA AD ==,1AB =,点M 在PD上,且BM =(1)求PM MD的值;(2)求点B 到直线CM 的距离.【答案】(1)1【解析】【分析】(1)以A 为原点建立空间直角坐标系,设PM PD λ=,通过坐标运算得到结果; (2)在棱CM 上取点N ,使得CM BN ⊥,则BN 长即为所求.(1)以A 为原点建立空间直角坐标系如图所示: 则(1B ,0,0),(0P ,0,2),(1C ,2,0),(0D ,2,0), ∴(1PB =,0,2)-,(0PD =,2,2)-,(1CD =-,0,0), 设(0PM PD λ==,2λ,2)λ-,则(1BMPM PB =-=-,2λ,22)λ-,1BM =+ 即24410λλ-+=,12λ=,∥1PM MD =(2)在棱CM 上取点N ,使得CM BN ⊥,设MN k MC =,[0k ∈,1],则MN kMC =,又()1,1,1MC =-,∴(),,MN k k k =-故()1,1,1,BN BM MN k k k =+=-+-,因为CM BN ⊥,则1110MC BN k k k ⋅=-+++-=, 解得1[03k =∈,1], ∥242,,,333BN ⎛⎫=- ⎪⎝⎭ ∥263BN =∥点B 到直线CM . 7.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE EC ⊥.已知PD 2CD =,12AE =.(1)求直线AD 与平面PBC 间的距离;(2)求异面直线EC 与PB 间的距离;(3)求点B 到平面PEC 的距离.【答案】(1(2)3;(3【解析】【分析】(1)以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴,建立空间直角坐标系,设(),0,0A x ,()0x >,根据2304PE CE x ⋅=-=得到x ,再利用向量法求解直线AD 与平面PBC 间的距离即可. (2)利用向量法求解异面直线EC 与PB 间的距离即可. (3)利用向量法求解求点B 到平面PEC 的距离即可.【详解】(1)由题知:以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴, 建立空间直角坐标系,如图所示:设(),0,0A x ,()0x >,由题知:(P ,1,,02E x ⎛⎫ ⎪⎝⎭,()0,2,0C ,1,,2PE x ⎛= ⎝,3,,02CE x ⎛⎫=- ⎪⎝⎭. 因为PE EC ⊥,所以2304PE CE x ⋅=-=,解得x即A ⎫⎪⎪⎝⎭,2,0B ⎫⎪⎪⎝⎭,(0,2,PC =,BC ⎛⎫=- ⎪ ⎪⎝⎭. 设平面PBC 的法向量()111,,nx y z =,则11120302PC n y BC n x ⎧⋅=-=⎪⎨⋅=-=⎪⎩,令11y =得(0,1,2n=. 又因为()0,2,0DC =,所以直线AD 与平面PBC 间的距离123n DC d n ⋅===(2)设()222,,m x y z =,满足设m EC ⊥,m PB ⊥,因为3,02EC ⎛⎫=-⎪ ⎪⎝⎭,32,2PB⎛= ⎝, 所以 22222330223202m EC y m PB x y ⎧⋅=-+=⎪⎪⎨⎪⋅=+=⎪⎩,令21y =,得3,1,m ⎛= ,又因为32CB ⎛⎫= ⎪ ⎪⎝⎭, 所以异面直线EC 与PB间的距离233m CB d m ⋅===. (3)设平面PCE 的法向量()333,,a x y z =,(0,2,PC =,33,022CE ⎛⎫=- ⎪⎪⎝⎭, 所以33332033022a PC y a CE x y ⎧⋅==⎪⎨⋅=-=⎪⎩,令3x =(3,1,a =, 又因为BC ⎛⎫=- ⎪ ⎪⎝⎭, 所以点B 到平面PEC 的距离333a BCd a ⋅===+ 8.如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值; (2)求异面直线PB 与CD 之间的距离.【答案】(1(2)23. 【解析】【分析】以A 为原点,建立空间直角坐标系,(1)分别求两个平面的法向量,利用二面角的向量公式即得解;(2)设Q 为直线PB 上一点,转化为求点Q 到直线CD 的距离的最小值,即()22cos d CQ CQ CQ CD =-⋅,分析即得解 【详解】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P . (1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD , 所以PA AD ⊥,又AB AD ⊥,且PA AB A =, 所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量. 易知()()1,1,2,0,2,2PC PD =-=-,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩, 令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量, 从而3cos ,3AD mAD mAD m ⋅==PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD (2)()1,0,2BP =-,设Q 为直线PB 上一点, 且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-, 所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-, 所以点Q 到直线CD 的距离 ()22cos d CQ CQ CQ CD=-⋅ 22||CQ CD CQ CD ⎛⎫⋅-== ⎪ ⎪⎝⎭, 因为22919144222999λλλ⎛⎫++=++≥ ⎪⎝⎭,所以23d ≥, 所以异面直线PB 与CD 之间的距离为23.。
立体几何中的距离问题【要点精讲】 1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。
其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P 在该平面上的射影为P ′,则线段PP ′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。
求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。
异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定) 点到面的距离的做题过程中思考的几个方面:①直接作面的垂线求解;②观察点在与面平行的直线上,转化点的位置求解; ③观察点在与面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。
空间中的各种距离1.点到平面的距离(1)定义 平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)常用方法 1)定义法①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离. 3)体积法4)转化法 将点到平面的距离转化为(平行)直线与平面的距离来求. 5)向量法 建立三维直角坐标系求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 例1 如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅲ)求点C 到平面1A BD 的距离. 解法一:(Ⅰ)取BC 中点O ,连结AO . ABC Q △为正三角形,AO BC ∴⊥.Q 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅲ)1A BD △中,1115226A BD BD A D A B S ===∴=△,,,1BCD S =△. 在正三棱柱中,1A 到平面11BCC B 的距离为3.设点C 到平面1A BD 的距离为d .ABC DABC DO F由11A BCD C A BD V V --=,得111333BCD A BD S S d =g g △△, 1322BCD A BD S d S ∴==△△. ∴点C 到平面1A BD 的距离为22.解法二:(Ⅰ)取BC 中点O ,连结AO .ABC Q △为正三角形,AO BC ∴⊥.Q 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB uuu r ,1OO u u u u r ,OA uu u r的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,,1(123)AB ∴=-u u u r ,,,(210)BD =-u u u r ,,,1(123)BA =-u u u r ,,. 12200AB BD =-++=u u u r u u u r Q g ,111430AB BA =-+-=u u u r u u u rg ,1AB BD ∴u u u r u u u r ⊥,11AB BA u u u r u u u r⊥. 1AB ∴⊥平面1A BD .2.直线和平面的距离(1)定义 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离例. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解析一 BD Θ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥Θ,A A D B 111⊥,⊥∴11D B 平面11ACC A , 又⊂11D B Θ平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,xz AB C DO FyBA CDOGH作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解析二 BD Θ∥平面11D GBBD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V 34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h 即BD 到平面11D GB 的距离等于362. 3.平行平面的距离(1)定义 与两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.4.异面直线的距离(1)定义 与两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 任何两条确定的异面直线都存在唯一的公垂线段.例1已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又Θ线面之间的距离可转化为线CD 上一点C 到平面SEF的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF 又3,6=∴=∆SEF S EF Θ由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h故CD 与SE 间的距离为332. 综合练习 点到平面的距离:1、如图,已知ABCD 是矩形,AB =a , AD =b , P A ⊥平面ABCD ,P A =2c , Q 是P A 的中点 求 (1)Q 到BD 的距离;(2)P 到平面BQD 的距离解 (1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b ,∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为(2)解法一 ∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(bac b aabc ++解法二 设点A 到平面QBD 的距离为h ,由V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQh =22222)(ba cb a abcS AQ S BQD ABD ++==⋅∆∆Λ线和平面的距离:2. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 解析一 BD Θ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥Θ,A A D B 111⊥,⊥∴11D B 平面11ACC A , 又⊂11D B Θ平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解析二 BD Θ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V 34222213111=⨯⨯⨯⨯=-GBB D V , BACDOGH,36264==∴h 即BD 到平面11D GB 的距离等于362. 异面直线的距离:3、已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B 且面EAC 与底面ABCD 所成的角为45°,AB =a ,求(1)截面EAC 的面积;(2)异面直线A 1B 1与AC 之间的距离; (3)三棱锥B 1—EAC 的体积解 (1)连结DB 交AC 于O ,连结EO ,∵底面ABCD 是正方形∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45°又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a(2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=- 两条异面直线间的距离4.如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22.1A CA例1题图BACD5. 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离.解:设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.点到平面的距离:6.如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离;解答:过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫⎝⎛-=-BO AB . ∴A 到平面BCD 的距离是36.7.正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
第^一讲立体几何之空间距离一、空间距离包括:点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。
要理解各个距离的概念。
二、空间距离的求法重点掌握:线线距离、点面距离、尤其点面距离(1)线线距离:找公垂线段(2)点面距离①直接法(过点向面作作垂线段,即求公垂线段长度)②等体积法(三棱锥)③向量法:设平面的法向量为n , P为平面外一点,Q是平面内任一点,一n PQ 则点P到平面的距离为d等于PQ在法向量n上的投影绝对值。
d --------------------n三、例题讲解1、下列命题中:①PA 矩形ABCD所在的平面,则P、B间的距离等于P到BC的距离;②若a//b,a ,b ,则a与b的距离等于a与的距离;③直线a、b是异面直线,a ,b// ,则a、b之间的距离等于b与的距离④直线a 、b 是异面直线,a ,b ,且// ,则a 、b 之间的距离等于 、 间的距离其中正确的命题个数有( C )A. 1个B. 2个C. 3个D. 4个1,C 、D 为两条棱的中点,A 、B 、M 是顶点,那么点 M 到截面ABCD 的距离是 ________________解析:取AB 、CD 中点P 、Q ,易证 MPQ 中,PQ 边长的高 MH 为所求,PM丄PQ 口MH2243A-BCDE 中,AE 底面 BCDE 且 AE=CD=a, G 、H 是 BE 、ED 的中点,贝U GH 到面ABD 的距离是解析:连结EC ,交BD 于0,且交GH 于0,则有平面 AEO 面ABD 。
2、如图所示,正方形的棱长为3、在底面是正方形的四棱锥1 i AE EO :"3过E作EK AO于K,则所求距离等于—EK a2 2 AO 64、如图,在棱长为a的正方体ABCD A1B1C1D1中,E、F分别为棱AB和BC的中点, G为上底面A1B1C1D1的中心,则点D到平面B1EF的距离_______________ _解:方法1 :建立如图直角坐标系,a a a a则Aa,0,0,B a,a,0,C 0,a,0,E a,2,0 , F2,a,0 ,B1a,a,a ,G 2,2,a设平面B1FE的法向量为n1 x,y,zEFa a —2,2,0 ,EB10,|,an1EF 0, n1 EB, 0a—x2ayaz 0取y 2,则x 2,z可取n12,2, 1DB1ri| 又DB1 a, a, a D到平面B1 EF的距离d —厂l n12a 2a aa3方法2 :等体积法3h a即D到平面B1EF的距离为a 。
αnr A ⋅P⋅O⋅h ABD α βl知识点整理(一)平行与垂直的判断(1)平行:设,αβ的法向量分别为,u v r r ,则直线,l m 的方向向量分别为,a b r r,平面线线平行l ∥m ⇔a r ∥b r a kb ⇔=r r ;线面平行l ∥α⇔a r u ⊥r 0a u ⇔⋅=r r; 面面平行α∥β⇔u r ∥v r .u kv ⇔=r r(2)垂直:设直线,l m 的方向向量分别为,a b r r ,平面,αβ的法向量分别为,u v r r,则线线垂直l ⊥m ⇔a r ⊥b r 0a b ⇔⋅=r r ;线面垂直l ⊥α⇔a r ∥u r a ku ⇔=r r;面面垂直α⊥β⇔u ⊥v .0=⋅⇔v u(二)夹角与距离的计算 注意:以下公式可以可以在非正交基底下用,也可以在正交基底下用坐标运算(1)夹角:设直线,l m 的方向向量分别为,a b r r ,平面,αβ的法向量分别为,u v r r,则①两直线l ,m 所成的角为θ(02πθ≤≤),cos a b a bθ⋅=r r r r ;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=r rr r ;③二面角α─l ─β的大小为θ(0θπ≤≤),cos .u vu vθ⋅=r r r r(2)空间距离点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难,① 点到平面的距离h :(定理)如图,设n r是是平面α的法向量,AP 是平面α的一条斜线,其中A α∈则点P 到平面α的距离② h =||||AP n n ⋅u u u r u u ru u r (实质是AP u u u r 在法向量n r 方向上的投影的绝对值) ③ 异面直线12,l l 间的距离d :||||CD n d AB n ⋅==u u u r u u rr (12,l l 的公垂向量为n r ,C D 、分别是12,l l 上任一点). 题型一:非正交基底下的夹角、距离、长度的计算例1.如图,已知二面角α-l -β的大小为1200,点A ∈α,B ∈β,AC ⊥l 于点C ,BD ⊥l 于点D ,且AC=CD=DB=1. 求:(1)A 、B 两点间的距离;(2)求异面直线AB 和CD 的所成的角 (3)AB 与CD 的距离.解:设,c DB ,b CD ,a AC ===则,60c ,a ,90c ,b b ,a ,1|c ||b ||a |00>=<>=>=<<===(1)()2a c 2c b 2b a 2c b a c b a |AB |2222=⋅+⋅++⋅+++=++=∴,∴ A 、B 两点间的距离为2.(2)异面直线AB 和CD 的所成的角为600(3)设与AB 、CD 都垂直的非零向量为c z b y a x n ++=,由AB n ⊥得0z 3y 2x 30)c b a ()c z b y a x (=++⇒=++⋅++①; 由CD n ⊥得0y 0b )c z b y a x (=⇒=⋅++②,令x=1,则由①、②可得z=-1,∴c a n -=,由法则四可知,AB 与CD 的距离为()21c a a c a (|n |AC n |AC |n |n |d 2=-==⋅=. 小结:任何非正交基底下的证明、计算都先设基底,并将条件也用基底表示,特别证明线面平行时,如AB//平面PEF 可以将AB 有基底表示,PE ,PF 也用基底表示,最后用待定系数法PF PE AB μ+λ=,将λ和μ求出。
例2。
如图,在三棱锥A —BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1。
另一个侧面ABC 是正三角形. (1)求证:AD ⊥BC ;(2)求二面角B —AC —D 的大小;(3)在段线AC 上是否存在一点E ,使ED 与面BCD成30°角?若存在,确定点E 的位置;若不存 在,说明理由.20.解法一:(1)方法一:作AH ⊥面BCD 于H 连DH.AB ⊥BD ⇒HB ⊥BD ,∵AD =3,BD =1∴AB =2=BC =AC ∴BD ⊥DC又BD =CD ,则BHCD 是正方形, 则DH ⊥BC. ∴AD ⊥BC ,方法二:取BC 的中点O ,连AO 、DO , 则有AO ⊥BC ,DO ⊥BC . ∴BC ⊥面AOD ,∴BC ⊥AD(2)作BM ⊥AC 于M ,作MN ⊥AC 交AD 于N , 则∠BMN 就是二面角B —AC —D 的平面角.∵AB =AC =BC =2,∴M 是AC 的中点,且MN //CD .则BM =.2321,2121,26====AD BN CD MN 由余弦定理得arccos ,362cos 222=∠∴=⋅-+=∠BMN MN BM BN MN BM BMN 36.(3)设E 为所求的点,作EF ⊥CH 于F ,连FD ,则EF//AH ,∴EF ⊥面BCD ,∠EDF 就是ED 与面BCD 所成的角,则∠EDF =30°, 设EF =x ,易得AH =HC =1,则CF =x ,FD =21x +.,12,22,331tan 2====+==∠∴x CE x xx FD EF EDF 则解得故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°角.解法二:(1)作AH ⊥面BCD 于H ,连BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1, 以D 为原点,以DB 为x 轴,DC 为y 轴建立空间直角坐标系如图, 则B (1,0,0),C (0,1,0),A (1,1,1)..,0),1,1,1(),0,1,1(AD BC DA BC DA BC ⊥=⋅∴=-=则(2)设平面ABC 的法向量为1n =),,(z y x ,).1,1,1(.0;0:11111-==+=⊥⊥=+-=⋅⊥n z x CA n CA n y x BC n BC n 可取知同理由知则由 同理,可求得平面ACD 的一个法向量为)1,0,1(2-=n . 由图可以看出,二面角B —AC —D 的大小应等于><21,n ncos 则><21,n n =3623101||||2121=⋅++=n n n n ,即所求二面角的大小是.36arccos (3)设E (x ,y ,z )是线段AC 上一点,则,1,0=>=y z x 平面BCD 的一个法向量为),,1,(),1,0,0(x x DE n ==要使ED 与面BCD 成30°角,由图可知n DE 与的夹角为60°,ABCDEFxyzG.30,1,.12,22,,212.2160cos 21||||,cos 22角成与面时且点上存在故线段则解得则所以οοBCD ED CE E AC x CE x x x x xn DE ====+===+=>=< 题型二、利用坐标系或几何法解决距离、角度及其证明问题例3、如题(18)图,在五面体ABCDEF 中,AB ∥DC ,2BAD π∠=,2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3,7FC ED ==(Ⅰ)直线AB 到平面EFCD 的距离;(Ⅱ)二面角F AD E --的平面角的正切值. 解法一:(Ⅰ),AB DC DC ⊂Q P 平面EFCD , ∴AB 到面EFCD 的距离等于点A 到面EFCD 的距离,过点A 作AG FD ⊥于G ,因2BAD π∠=AB ∥DC ,故CD AD ⊥;又Q FA ⊥平面ABCD ,由三垂线定理可知,CD FD ⊥,故CD FAD ⊥面,知CD AG ⊥,所以AG 为所求直线AB 到面EFCD 的距离在Rt ABC △中,22945FD FC CD =-=-=由FA ⊥平面ABCD ,得FA ⊥AD ,从而在Rt △FAD 中,22541FA FD AD =-=-=∴255FA AD AG FD ⋅===。
即直线AB 到平面EFCD 的距离为55。
(Ⅱ)由己知,FA ⊥平面ABCD ,得FA ⊥AD ,又由2BAD π∠=,知AD AB ⊥,故AD ⊥平面ABFE∴DA AE ⊥,所以,FAE ∠为二面角F AD E --的平面角,记为θ.在Rt AED △中, 22743AE ED AD =-=-=,由ABCD Y 得,FE BA P ,从而2AFE π∠=在Rt AEF △中, 22312FE AE AF =-=-=故tan 2FEFAθ==所以二面角F AD E --2.解法二: (Ⅰ)如图以A 点为坐标原点,,,AB AD AF u u u r u u u r u u u r的方向为,,x y z 的正方向建立空间直角坐标系数,则A(0,0,0) C(2,2,0) D(0,2,0) 设00(0,0,)(0)F z z >可得0(2,2,)FC z =-u u u r,由||3FC =u u u r .2220223z ++=,解得(0,0,1)F Q AB ∥DC ,DC ⊂面EFCD ,所以直线AB 到面EFCD 的距离等于点A 到面EFCD 的距离。
设A 点在平面EFCD 上的射影点为111(,,)G x y z ,则111(,,)AG x y z =u u u r因0AG DF ⋅=u u u r u u u r 且0AG CD ⋅=u u u r u u u r ,而(0,2,1)DF =-u u u r(2,0,0)CD =-u u u r ,此即1112020y z x -+=⎧⎨-=⎩ 解得10x = ① ,知G 点在yoz 面上,故G 点在FD 上.GF DF u u u r u u u r P ,111(,,1)GF x y z =---+u u u r 故有1112y z =-+ ② 联立①,②解得, 24(0,,)55G .∴||AG uuu r 为直线AB 到面EFCD 的距离. 而24(0,,)55AG =u u u r所以||AG =u u u r (Ⅱ)因四边形ABFE 为平行四边形,则可设00(,0,1)(0)E x x <,0(2,1)ED x =--u u u r.由||ED =u u u r=解得0x =.即(E .故(AE =u u u r由(0,2,0)AD =u u u r ,(0,0,1)AF =u u u r因0AD AE ⋅=u u u r u u u r ,0AD AF ⋅=u u u r u u u r ,故FAE ∠为二面角F AD E --的平面角,又Q EF =u u u r,||EF =u u u r ,||1AF =u u u r ,所以||tan ||EF FAE FA ∠==u u u ru u u r 例3、如图,四棱锥S -ABCD 中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD.已知∠ABC =45°,AB =2,BC=22, SA =SB =3.(1)证明:SA ⊥BC ;(2)求直线SD 与平面SAB 所成角的大小.求异面直线DC 、SA 的距离.解: (1)作AE BC ⊥于E 点,则cos 2cos 45AE BE AB ABE ==⋅∠=⋅=o又∵BC=22∴12BE BC =,即E 点是BC 的中点. 又∵SEA SB ∆≅∆ ∴ 90SEB SEA ∠=∠=o, 即SE 是BC 的中垂线. 又∵侧面SBC ⊥底面ABCD ∴SE AC ⊥面.(2) 以E 为原点,分别以向量,,EA EB ES u u u r u u u r u u u r的正方向为x 轴、y 轴、z 轴的非负半轴,建立空间直角坐标系,如图4所示. 容易求得SE=1,于是A(2,0,0),B(0,2,0),C(0,-2,0),D(2,-22,0),S(0,0,1),E(0,0,0).设平面SAB 的法向量(x,y,z)n =r,∵ (2,0,1)SA =-u u r,SB=(0,2,-1)u u r∴2-02-0n SA x z n SB y z ⎧⋅==⎪⎨⋅==⎪⎩r u u r r u u r 令2z =,得(1,1,2)n =r. 又∵(2,22,1)SD =--u u u r设直线SD 与平面SAB 所成的角为θ,则2222sin 11114SD n SD nθ⋅===⋅⋅u u u r r u u u r r∴22arcsinθ=.题型三、探索性问题已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB=60°,E 、F 分别是AC 、AD 上的动点,且).10(<<==λλADAF ACAE(Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? 21.证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD ,∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC.………………………………3分 又),10(<<==λλADAF AC AE Θ∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值恒有平面BEF ⊥平面ABC …………....................6分 (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD , ∴BE ⊥平面ACD ,∴BE ⊥AC.………………8分 ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2===οAB BD,722=+=∴BC AB AC 由AB 2=AE ·AC 得,76,76==∴=ACAE AE λ故当76=λ时,平面BEF ⊥平面ACD.………………………………………………12分 22.(2009宁夏海南卷理)(本小题满分12分)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的2倍,P 为侧棱SD 上的点。