上教版高二数学教案——向量7
- 格式:doc
- 大小:196.50 KB
- 文档页数:3
新高中数学老师备课教案教学目标:
1. 了解并掌握矢量的基本概念和运算规则。
2. 掌握几何矢量的相关定理和性质。
3. 能够熟练应用几何矢量解决相关问题。
教学重点和难点:
1. 矢量的基本概念和运算规则。
2. 几何矢量的长度、夹角、共线、共面等性质。
3. 矢量的运算和应用。
教学过程:
一、导入(5分钟)
1. 引导学生回顾向量的概念和性质。
2. 提出学习几何矢量的重要性和实际应用背景。
二、讲解(20分钟)
1. 介绍几何矢量的定义和基本性质。
2. 讲解几何矢量的长度、夹角、共线、共面等性质。
3. 提出几何矢量的运算规则,并通过例题进行演练。
三、练习(15分钟)
1. 让学生进行几何矢量的练习题,巩固概念和运算规则。
2. 带领学生讨论并总结解题方法和技巧。
四、拓展(10分钟)
1. 给学生提供更复杂的几何矢量问题,拓展他们的思维。
2. 鼓励学生自主探索解决问题的方法和步骤。
五、总结(5分钟)
1. 总结本节课的重点内容和学习收获。
2. 引导学生思考几何矢量在实际生活中的应用和意义。
教学反思:
通过本节课的教学,学生能够初步了解几何矢量的概念和性质,掌握基本运算规则,并能够运用几何矢量解决相关问题。
在教学过程中,需要注意引导学生思考和独立解决问题的能力,提高他们的数学思维和应用能力。
同时,也要根据学生的实际情况调整教学内容和方法,确保教学效果达到预期目标。
8.4(1)向量的应用(1)一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明平面几何中的平行、垂直问题,以及不等式、有关三角公式的证明、物理学中的应用.本小结的难点是如何结合向量知识去解决有关问题,突破难点的关键是如何启发学生发现问题和提出问题,学会分析问题和创造性地解决问题.二、教学目标设计运用平面向量的知识解决平面几何中的平行、垂直等问题;提高分析问题、解决问题的能力.三、教学重点及难点教学重点:利用平面向量知识证明平行、垂直等问题; 教学难点:数形结合方法的渗透,思维能力的提高. 四、教学流程设计五、教学过程设计一、复习与回顾思考并回答下列问题1.判断:(平行向量的理解)(1)若A、B、C、D四点共线,则向量//;()(2)若向量//,则A、B、C、D四点共线;()(3)若=,则向量=;()(4)只要向量→→ba,满足→→=ba,就有→→=ba;()2.提问:(1)两个非零向量平行的充要条件是什么?(2)两个非零向量垂直的充要条件是什么?[说明] 教师可引导学生多写出一些两向量平行、垂直的表达形式.二、学习新课例题分析例1、证明:菱形对角线互相垂直。
(补充)证:设==→a , ==→b∵ABCD为菱形∴|→a| = |→b|∴⋅= (→b +→a)(→b-→a) =→b 2 -→a2 =|→b|2 - |→a|2 = 0 ∴AC⊥BD证法二:设B(b ,0),D(d1,d2),则AB= (b ,0), AD= (d1,d2)于是=AB+AD= (b ,0) + (d1,d2)= (b +d1 ,d2)C A=-= (d 1 -b ,d 2)∵•= (b +d 1)(d 1 -b ) + d 2d 2 = (d 12+ d 22)- b 2= ||2- b 2= ||2- b 2= b 2- b 2= 0∴AC ⊥[说明]二种方法进行比较,开拓学生的解题思维,提高能力.例2、已知)2,1(A ,)3,2(B ,)5,2(-C ,求证ABC ∆是直角三角形.(补充).,900),3,3(),1,1(:0是直角三角形即证明ABC BAC ∆=∠∴=⋅-==Θ例3、.,,.AC BH BC AH ABC ⊥⊥∆已知中在如图.:AB CH ⊥求证(课本P72例2)[小结]以上三题均是垂直问题的证明,请同学们注意它们间的区别与联系. 例4、证明:对角线互相平分的四边形是平行四边形.(课本P71例1)三、课堂练习例5、用向量方法证明:对角线相等的平行四边形是矩形.(习题册P39习题8.4 A 组1)四、课堂小结1.用向量知识证明平行、垂直问题.2.要注意挖掘平面图形本身的几何性质.四、作业布置1、书面作业:课本P73, 练习8.4 1, 2, 32、习题册P39,习题8.4 A 组/1;习题册P40,习题8.4 B 组/13、思考题:如图,在ABC 中,D ,E 分别是边AB 、AC 的中点,F ,G 分别是DB 、EC 的中点, 求证:向量与共线.3、思考题:如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点.七、教学设计说明1.注意区分两向量平行、垂直充要条件的差别.建议学生结合图形,这样理解较为深刻. 2.在用向量证明有关数学问题时,要注意利用平面图形的几何性质,找到解题的突破口. 3.学生要注重综合能力的训练,要会举一反三、融会贯通.EB C。
第一章 空间向量与立体几何1.2 空间向量基本定理1.2.1 空间向量基本定理一、教学目标1、了解掌握空间向量基本定理;2、通过类比的方式快速掌握空间向量基本定理及其应用.二、教学重点、难点重点:空间向量基本定理的理解与掌握.难点:空间向量基本定理的应用.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题【引入问题】平面向量中,学习了平面向量基本定理?在空间向量中,是否存在相对应的定理?【复习回顾】1e ,2e 是同一平面内的两个不共线向量,有且只有一对实数12,λλ,使1122a e e λλ=+.12,e e 不共线,则称1e ,2e 为表示这一平面内所有向量的一个ABC ∆中,M 是边BC 的中点,则1()2AM AB AC =+ 布置学生阅读课本1112P P -,类比阅读中获得的结论.(二)阅读精要,研讨新知【类比转化】类比平面向量基本定理,获取空间向量基本定理.空间向量基本定理如果三个向量,,a b c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(,,)x y z ,使得p xa yb zc =++. 【基底】 若三个向量,,a b c 不共面,则{,,}a b c 叫做空间的一个基底,,,a b c 都叫做基向量.单位正交基底{,,}i j k 中的三个基向量两两垂直且为单位向量.a xi y j zk =++称为空间向量的正交分解.【例题研讨】阅读领悟课本12P 例1(用时约为1分钟,教师作出准确的评析.)例1如图1.2-2, M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上, 点P 在线段AN 上,且13,24MN ON AP AN ==,用向量,,OA OB OC 表示OP . 解:34OP OA AP OA AN =+=+3()4OA ON OA =+- 131321111()444432444OA ON OA OB OC OA OB OC =+=+⨯⨯+=++【小组互动】完成课本12P 练习1、2、3,同桌交换检查,老师答疑.【练习答案】(三)探索与发现、思考与感悟1. 在四棱锥P ABCD -中,四边形ABCD 为平行四边形, AC 与BD 交于点O ,点G 为BD 上一点, 2BG GD =, ,,,PA a PB b PC c ===用基底{,,}a b c 表示向量PG =________.解:23PG PB BG PB BD =+=+2()3PB BA BC =++ 2212212()3333333PB PA PB PC PB PA PB PC a b c =+-+-=-+=-+ 答案:212333a b c -+2. (多选)如图,在四面体P ABC -中,下列说法正确的是( )A .若,,PA PB PB PC PA PC ⊥⊥⊥,则AC PB ⊥B .若四面体各棱长均为4,,M N 分别是,PA BC 的中点,则||2MN =C .若在平面ABC 上存在一点D ,使1233CB CD CA =+,则2BD AB = D .若该四面体为正四面体,则二面角PAB C 的大小为060 解:因为,,PA PB PB PC PA PC P ⊥⊥=,所以PB ⊥平面PAC , 因为AC ⊂平面PAC ,所以PB AC ⊥,A 正确;连接,PN AN ,因为四面体各棱长均为4,,M N 分别是,PA BC 的中点, 则224223PN AN ==-=PAN ∆是等腰三角形,所以MN AP ⊥, 从而22||12422MN PN PM =-=-=,B 错误;1233CB CD CA =+,即12()()33CB CD CA CB -=-, 所以2DB BA =,所以2BD AB =,C 正确;取AB 中点G ,连接,PG CG ,因为该四面体为正四面体,所以,PG AB CG AB ⊥⊥,则PGC ∠为二面角PAB C 的平面角,设正四面体棱长为2a ,则3PG CG a == 则22223341cos 233a a a PGC a +-∠==⨯,所以二面角P AB C 的大小不是060,D 错误.故选AC(四)归纳小结,回顾重点空间向量基本定理a b c不共面,那么对任意一个空间向量p,,,=++.存在唯一的有序实数组(,x y p xa yb zca b c不共面,则{,,},,a b c都叫做基向量a b c叫做空间的一个基底,,,i j k中的三个基向量两两垂直且为单位向量.单位正交基底{,,}=++称为空间向量的正交分解.a xi y j zk(五)作业布置,精炼双基P习题1.2 1-41.完成课本152.预习1.3 空间向量及其运算的坐标表示五、教学反思:(课后补充,教学相长)。
优秀高中数学向量教案
课时安排:2个课时
课堂内容:
第一课时:
1.引入向量的概念,介绍向量的定义和表示方法。
让学生了解向量的性质和运算规则。
2.教授向量的加法和减法。
通过示范和练习,让学生掌握向量加减法的方法。
3.讨论向量的数量积和向量的夹角。
引导学生理解向量的数量积和夹角的概念,并通过实例演练加深理解。
第二课时:
1.复习向量的加减法,数量积和夹角概念。
2.讲解向量的应用,如解决平面几何问题,力的合成与分解等。
3.进行一些综合练习,让学生熟练运用向量知识解题。
作业布置:完成课堂练习,巩固所学内容。
课堂评价:通过课堂练习和课后作业,检查学生对向量的理解和掌握情况。
补充材料:提供相关的练习题和习题解析,帮助学生巩固向量知识。
教学目标:使学生掌握向量的概念、运算方法和相关的应用,提高学生的数学解题能力和思维能力。
8.1(1)向量的坐标表示及其运算(1)一.教学内容分析按现行上海市中小学数学课程标准,本章内容是在初中学习了向量的基本概念、向量的加法、减法、实数与向量的积等基础之上的后继学习.但与初中有所不同的是,初中教材对向量的学习是以“形”为主,主要从“形”的角度展开,而本章内容则主要是以“数”为主,从“数”的角度进行论述.当然,由于向量本身所具有的数形结合的特点,本章教材在以“数”为主旨处理教学内容的同时并没有弱化向量的“形”的方面的特征,而是二者相得益彰,互为依赖、互为补充.以“数”为主旨研究向量,其核心手段是向量及其运算的坐标表示.向量的坐标表示,实际上是向量的代数表示.在引入向量的坐标表示后,向量的加法、减法、实数与向量的积、向量的数量积等就完全可以用它们的坐标的加法、减法、数乘、数量积等运算来进行,使向量运算完全代数化,将数与形紧密结合起来.这样,就使得很多问题,可以转化为熟知的数量的运算进行解决.向量及其运算的坐标表示,一方面为用代数方法处理几何问题提供了通道,另一方面也为向量概念推广到高维空间指明了途径,同时,它也是高中数学中描述与处理如立几、解几、三角等诸多问题的一个有力的工具,在高考中也占有一个重要的地位.作为本章的第一课时,本节课的主要内容是向量的坐标表示及其运算.它是本章重要的基础性与前提性内容,它引入了将向量问题代数化的基本手段与方法——向量的坐标表示.本节内容课本上的基本处理方法是在引入一些相关的基础性的概念之后,通过任意向量都可以正交分解为基本单位向量,i j的线性组合,在向量的正交分解的基础上抽象概括出向量的坐标表示形式,并依据向量的正交分解的本质得到向量坐标形式下的运算法则.本节课要着力解决三个问题:一是要解决引入向量的坐标形式的必要性的问题,以引起学生学习的动机,二是要解决如何引入向量的正交分解及如何由此抽象出向量的坐标形式或者说是如何让学生理解向量坐标的本质的问题,三是要解决引入向量坐标形式以后如何以坐标形式进行运算的问题.作为本节课(本章的第一个课时)来说,第二个问题是重中重之中,因为如果学生不能理解向量的坐标是怎么来的,它的本质是什么,就会对后继学习带来一定的困难.因此,我们在课上要对这一点特别的重视.二.教学目标设计1.了解基本单位向量、位置向量、向量的正交分解等概念;会用坐标表示向量;会用两向量的坐标形式的和、差及实数与向量的积等运算解决相关问题.2. 经历如何将位置向量及任意向量表示为基本单位向量的线性组合这一正交分解的过程,以及经历如何通过向量的正交分解的本质概括抽象出向量的坐标表示的过程,初步形成抽象思维的能力;理解平面向量与一对有序实数对的一一对应关系,理解向量的坐标表示方法及其运算法则;体会数形结合的思想方法.3.感知数学中的运动、变化、相互联系与相互转化的规律,加深对辩证唯物主义观点的体验;发展从数学的角度分析和解决问题的能力,以及通过积极参与数学学习和问题解决的过程,增强学习的主体意识,形成数学的应用意识,养成严谨、慎密的思维习惯.三.教学重点及难点教学重点是如何写向量的坐标以及向量坐标形式的运算及其应用;教学难点是对向量的正交分解的过程的理解以及由向量的正交分解抽象出向量的坐标表示的过程的理解.四.教学流程设计五.教学过程设计一.情境引入上海市莘庄中学的健美操队四名队员A 、B 、C 、D 在一个长10米,宽8米的矩形表演区域EFGH 内进行健美操表演.(1)若在某时刻1t ,四名队员A 、B 、C 、D 保持如图1所示的平行四边形队形.队员A 位于点F 处,队员B 在边FG 上距F 点3米处,队员D 位于距EF 边2米距FG 边5米处.你能确定此时队员C 的位置吗?GHG[说明] 此时队员C 在位于距EF 边5米距FG 边5米处.这个图形比较特殊,学生很快就会得到答案,这时教师引入第二个问题.(2)若在某时刻2t ,四名队员A 、B 、C 、D 保持如图2所示的平行四边形队形.队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员D 位于距EF 边4米距FG 边5米处.你能确定此时队员C 的位置吗?[说明] 不要求学生写出结果,只引导学生思考.这个图形更为一般一些,学生解决的可能不是很顺,这时,教师就可以说,这一节我们就来学习一个新的内容:向量的坐标表示及其运算,学习了这个内容之后,同学们只要花上两分钟或者只要一分钟的时间就可以解决这个问题了,引起学生学习的兴趣与探究的欲望.二.学习新课 1. 向量的正交分解我们称在平面直角坐标系中,方向与x 轴和y 轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j ,如图,称以原点O 为起点的向量为位置向量,如下图左,OA 即为一个位置向量.思考1:对于任一位置向量OA ,我们能用基本单位向量,i j 来表示它吗?如上图右,设如果点A 的坐标为(),x y ,它在小x 轴,y 轴上的投影分别为M ,N ,那么向量OA 能用向量OM 与ON 来表示吗?(依向量加法的平行四边形法则可得OA OM ON =+),OM与ON 能用基本单位向量,i j 来表示吗?(依向量与实数相乘的几何意义可得,OMxi ON y j ==),于是可得: OA OM ON xi y j =+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA 都能表示成两个相互垂直的基本单位向量,i j 的线性组合,这种向量的表示方法我们称为向量的正交分解.2.向量的坐标表示思考2:对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使O Aa=.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)ij ===.例1.(课本例题)如图,写出向量,,a b c 的坐标. 解:由图知()1,2a=与向量b 相等的位置向量为OA , 可知()1,2b OA ==与向量c 相等的位置向量为OB , 可知()1,2c OB ==-[说明] 对于位置向量a ,它的终点的坐标就是向量的坐标;对于起点不在原点的向量,b c ,我们是通过先找到与它相等的位置向量,再利用位置向量的坐标得到它们的坐标.那么,有没有不通过位置向量,直接就写出任意向量的坐标的方法呢?答案是肯定的,而且很简便,但我们需几分钟后再来解决这个问题.让我们先学习向量坐标表示的运算:3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j=+±+ ()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±±()()11111111(,),ax y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积.4.应用与深化下面我们来研究刚才提出的不通过位置向量,如何直接写出任意向量的坐标的问题: 例2.如下图左,设()11,Px y 、()22,Q x y 是平面直角坐标系内的任意两点,如何用P 、Q 的坐标来表示向量PQ ?解:如上图右,向量PQ OQ OP =-()()()22112121,,,x y x y x x y y =-=--从而有 ()2121,PQ x x y y =--[说明]上面这个式子告诉我们:平面直角坐标系内的任意向量的横坐标等于它终点的横坐标与它起点的横坐标的差,纵坐标也等于它终点的纵坐标与它起点的纵坐标的差,可简称为“任意向量坐标=终点坐标-起点坐标”.例3.(课本例题)如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标;(2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=-()()()13,322,1BC=----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB =设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---=又 ()()32,215,1AB =---=-故()()1,35,1D D x y ---=-由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.练习:(1)请大家用两分钟的时间解答本节课一开始我们所提出的在某时刻2t ,健美操队员C 的位置问题.即:在某时刻2t ,四名队员A 、B 、C 、D 保持如图所示的平行四边形队形.如下图左,队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员D 位于距EF 边4米距FG 边5米处.你能确定此时队员C 的位置吗?GH解:以点F 为坐标原点,以边FG 为x 轴,以边FE 为y 轴,建立如上图右所示直角坐标系.则依题意有A(2,1),B(6,3),D(4,5),设C(x,y),则由ABCD 是平行四边形可得:(4,2)(2,4)(6,6)AC AB AD =+=+=又(,)(2,1)(2,1)ACx y x y =-=--故(2,1)(6,6)x y --= 于是 x=8, y=7,即C (8,7).答:队员C 位于距EF 边8米、距FG 边7米处.(2)在某时刻3t ,四名队员A 、B 、C 、D 保持平行四边形队形.已知队员A 位于距EF 边2米距FG 边1米处,队员B 在距EF 边6米距FG 边3米处,队员C 位于如下图左所示的矩形阴影部分区域内(包括边界)某一位置.你能确定此时队员D 可能的位置区域吗?解:以点F 为坐标原点,以边FG 为x 轴,以边FE 为y 轴,建立如上图右所示直角坐标系.依题意有A(2,1),B(6,3),设D(x,y),则由ABCD 是平行四边形可得:(4,2)DC AB == 又D(x,y),所以可得C(x+4,y+2)由题意54101642826x x y y ≤+≤≤≤⎧⎧⇒⎨⎨≤+≤≤≤⎩⎩ 于是可得队员D 可能的位置区域如图所示阴影部分(除去点B ):例4.已知向量()4,1a =-与()5,2b =,求23a b +的坐标.解:因为()28,2a =-,()315,6b =所以 ()()23815,2623,4a b +=+-+=三.巩固练习1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;若其起点坐标是(2,1),则其终点的坐标是 .3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-四.课堂小结: 本节课我们讲了哪些内容?(请学生作答)1.向量的正交分解(是如何对向量进行正交分解的?)2.向量的坐标表示(是用什么表示向量的坐标的?)3.向量的坐标运算(运算法则是什么?)五.作业布置1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( )(A)(3,3),(3,-3) (B)(3,3),(1,-3)(C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( )(A)(-2,-7) (B)(2,7)(C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是 .5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a mn b mn =+=,且.a b =求,.m n 的值.六.教学设计说明及反思在本节课的设计上,我是先用一个实际的情境问题引入,引起学生学习的兴趣,同时也在最后通过应用向量坐标这个工具对于这个问题的简便解决以及对于这一问题的进一步深化,使学生体会到引入向量坐标形式这个工具的必要性,并培养学生数学的应用意识,体会到数学是有用的,是有价值的;另外,在新授课内容的设计上,主要采用了以知识内容本身的逻辑关系而形成的继承关系为顺序的直线型的设计,主要有四个板块:一是向量的正交分解,二是向量的坐标表示,三是向量的坐标运算,四是应用与深化.其中向量的正交分解是从介绍基本单位向量与位置向量的概念入手,然后通过先处理位置向量的正交分解,再处理任意向量的正交分解;向量的坐标表示也是先处理位置向量的坐标表示然后再处理可化为位置向量的向量的坐标表示,最后在研究了坐标形式的运算之后才以例题的形式处理任意向量的坐标表示,这样设计的思路与课本上先交代任意向量都可以作一个与之相等的位置向量,然后只要研究位置向量就能得到原来向量的性质的思路略有不同,这样设计的出发点主要是希望能够给学生的学习创造一个按知识自身的逻辑顺序而层层递进的、螺旋上升的学习过程,使学生能够步步为营的在充分弄清前一个问题的基础上进入下一个问题,从而达到有效分散学生在学习中的难点的目的.在应用与深化这一板块上,我主要设计了五个问题,第一个问题是例1,置于向量的坐标表示这一板块之中,其目的是为了在初次接触坐标表示时,加深对位置向量与可化为位置向量的坐标的理解,以及舒缓一下学生在较长时间的数学纯理论学习中所聚集的紧张或疲劳情绪,为下面的学习作点准备;第二个问题是例2,解决任意向量的坐标表示问题,这也是这一节课必须要解决的一个重点问题;第三个问题是例3,其目的是通过对任意向量的坐标表示公式的应用,强化对这一公式的记忆与掌握,同是也为下一问题即引入问题的解决作知识与方法上的铺垫;第四个问题是解决引入的情境问题并作进一步深化;第五个问题是对向量坐标表示运算公式的应用.同时,最后又设置了三个小题,作为课内练习,机动使用.整个一节课,如果用一句话概括基本的设计思路,那就是:低起点(使学生容易入手)、小步走(使学生容易理解)、重视过程(重视知识的发生过程及重视学生的学习过程)、强化训练(训练是掌握与提高的有效途径).。
高中数学优秀教学设计7篇高中数学优秀教学设计篇1一、课程性质与任务数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。
本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。
掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。
2.技能与能力培养要求(分为三项技能与四项能力)计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。
计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。
数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。
观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
高二数学向量的应用教案设计简介这是一节关于高二数学向量的应用教学课程,主要包括向量的概念、向量的加减、数量积及其应用,以及叉积及其应用。
通过本课程的学习,学生应该能够熟练掌握向量及其应用问题的解法,提高数学思维和创造力,增强学生对向量的理解和兴趣。
教学目标1.理解向量的基本概念,知道向量加减的基本操作;2.掌握向量的数量积及其应用,能够灵活运用数量积求解问题;3.理解向量的叉积及其应用,了解叉积在几何和物理学中的应用。
教学重点和难点教学重点1.向量的基本概念;2.向量的数量积及其应用;3.向量的叉积及其应用。
教学难点1.向量运算的应用;2.叉积在几何和物理学中的应用。
教学过程1. 向量的基本概念1.向量的定义及其表示法;2.向量的长度及其坐标表示法;3.向量的方向及其单位向量表示法。
2. 向量的加减1.向量的加法及其几何意义;2.向量的减法及其几何意义;3.向量的线性运算及其几何意义。
3. 向量的数量积及其应用1.数量积的定义及其坐标表示法;2.数量积的性质和计算方法;3.应用:向量的正交、平行、夹角及其相关问题。
4. 向量的叉积及其应用1.叉积的定义及其坐标表示法;2.叉积的性质和计算方法;3.应用:向量的垂直、面积及其相关问题。
教学反思通过本次教学,我发现学生在学习向量的概念和基本运算时掌握较好,但在应用问题上还存在一定的困难。
在教学过程中,我注重了解学生掌握情况,及时进行疑难解答,并利用多种教学方法激发学生的兴趣,帮助学生提高应用水平。
在下一次教学中,我将更加注重应用问题的训练,增加应用练习题的数量,加强学生对数学概念的理解和思考能力。
同时,在教学过程中,我将会积极参考学生的建议和反馈,不断改进教学方法,提高教学效果。
第七章直线和圆的方程教材分析本章的最主要的内容是直线方程、圆的方程以及线性规划的初步知识(直线的倾斜角和斜率.直线方程的点斜式、两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的夹角.点到直线的距离.用二元一次不等式表示平面区域,简单的线性规划问题. 研究性课题和实习作业. 曲线与方程的概念由已知条件列出曲线方程. 圆的标准方程和一般方程.圆的参数方程).本章共需22课时,课时具体分配如下(供参考):7.1直线的倾斜角和斜率约2课时7.2直线的方程约3课时7.3两条直线的位置关系约5课时7.4简单的线性规划约3课时研究性课题和实习作业:线性规划的实际应用约1课时7.5曲线和方程约3课时7.6圆的方程约3课时小结与复习约2课时一、内容与要求本章六小节的内容大致可以分为三个部分:第一部分包括直线的倾斜角和斜率、直线的方程、两条直线的位置关系;第二部分包括简单的线性规划、研究性课题和实习作业;第三部分包括曲线和方程、圆的方程直线和圆都是最常见的简单几何图形,在实际生活和生产实践中有广泛的应用.初中几何对直线和圆的基本性质作了比较系统的研究.初中代数研究了一次函数的图象和性质,高一数学研究了平面向量、三角函数.直线和圆的方程是以上述知识为基础的,同时是平面解析几何学的基础知识,是进一步学习圆锥曲线以及其它曲线方程的基础,也是学习导数、微分、积分等的基础线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划是在学习了直线方程的基础上,介绍直线方程的—个简单应用.通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学习数学的兴趣、应用数学的意识和解决实际问题的能力为了建立直线的方程,本章首先引入了直线的倾斜角和斜率的概念,导出经过两点的直线的斜率公式.然后,利用经过两点的斜率公式,推导出直线方程的点斜式,利用点斜式,推导出直线方程的两点式;作为以上直线方程的特殊形式,介绍了直线方程的斜截式、截距式.指出了在平面直角坐标系中直线与二元一次方程的关系,介绍了直线方程的一般式.接着,研究了判定平面直角坐标系中两条直线平行和垂直的充要条件、两条直线的夹角和交点、点到直线的距离等问题作为直线方程的一个简单应用,介绍了简单的线性规划问题.首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个实例,介绍了线性规划问题及有关的几个基本概念及一种基本的图象解法,并利用几道例题说明线性规划在实际中的应用.安排了一个研究性课题和实习作业,使学生了解身边实际问题中线性规划的应用在第一部分研究了直线的方程的基础上,第三部分进一步讨论了一般的曲线的方程、方程的曲线概念,并着重研究了求曲线的方程的问题.作为一般曲线的具体例子,介绍了圆的标准方程、一般方程和参数方程.此外,本章安排了介绍向量与直线、笛卡儿和费马的两个阅读材料本章的重点是直线的方程、两条直线的位置关系、曲线和方程以及圆的方程,这些都是平面解析几何的重要基础知识.直线的方程、圆的方程是最基本的曲线方程.直线的方程是研究两条直线位置关系的基础,同时也是讨论圆的方程及其它圆锥曲线方程的基础.曲线的方程、方程的曲线概念,是解析几何的基本概念,理解和掌握这两个基本概念,是求曲线的方程和讨论曲线的性质的基础.本章的教学要求有:1.理解直线斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程2.掌握两条直线平行与垂直的条件,掌握两条直线的夹角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系3.会用二元一次不等式表示平面区域4.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用5.了解解析几何的基本思想,了解用坐标法研究几何问题6.掌握圆的标准方程和一般方程,了解参数方程的概念.理解圆的参数方程7.结合教学内容进行对立统一观点的教育8.实习作业以线性规划为内容,培养解决实际问题的能力二、本章的特点(一)注意渗透数学思想方法数学思想方法是重要的数学基础知识.本章注意通过教学内容渗透从中反映出来的数学思想方法数与形是数学的两个最基本的研究对象,但是,在数学的早期发展历史上,人们对数与形的研究是相对独立和隔离的,从中发展出相对独立的代数学和几何学,直到解析几何学的产生,才使数与形这两个对象完美地结合起来.本章主要内容属于解析几何学的基础知识,学生初次接触借助于坐标方法研究图形.教科书注意渗透数形结合这一解析几何学中反映出来的重要数学思想方法.在本章引言中,教科书直接指出:“通过坐标系,把点和点的坐标、曲线和曲线方程联系起来,达到了形与数的结合”.引言中的实际问题都涉及到怎样把形转化为数,又把数转化成形的问题,分别属于计算机图形学、三维动画技术等领域,解析几何学的知识是这些现代技术的重要基础.在本章的一些参考例题和习题中都注意配备能比较明显体现数形结合这一重要数学思想方法的问题,在本章的“小结与复习”的需要注意的问题的(1)中又再次提出要注意这种重要数学思想.当然,数形结合这一重要数学思想是通过本章的主要内容为途径来体现的,新教科书直接提出这一思想,使之更加突出.教科书还通过阅读材料进一步介绍这种思想(二)注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益.与《原大纲》比较,《新大纲》在“直线和圆的方程”这部分内容之前增加了简易逻辑、平面向量等新的教学内容,把原位于“直线和圆的方程”这部分内容之后的充要条件移入第一章“集合与简易逻辑”中,客观上使这部分内容有了更新处理方法的可能例如,在处理两条直线平行的条件时,为了更好地反映解析几何利用方程讨论曲线性质的基本思想,教科书直接给出了用斜截式的斜率和截距表达的充要条件.在给出曲线的方程、方程的曲线概念以后,直接指出,如果曲线C 的方程是(,)0f x y =,那么点000(,)P x y 在曲线C 上的充要条件是00(,)0f x y =.在讨论二元一次不等式表示平面区域时,应用集合观点来描述直线和被直线划分所得的平面区域,并用集合的语言来表达这些点的集合,比较准确和简明.在介绍圆的参数方程时,首先讨论圆心在原点的圆的参数方程,利用三角函数的定义,直接得到圆的参数方程,沟通了这一知识与三角函数之间的联系“平面向量”是《新大纲》中新增加的一个重要内容,而“直线和圆的方程”与“平面向量”有着较为密切的联系,本章比较注意应用向量这一有力的工具来处理有关的内容.例如,在推导经过两点的直线的斜率公式时,过原点作向量,而直线OP 的倾斜角和直线12P P 的倾斜角相等,从而比较简捷地利用正切函数定义求得斜率公式.在讨论两条直线垂直的条件时,利用方向向量和斜率的关系,得到用斜率表达的垂直充要条件.教科书还安排了一个阅读材料“向量与直线”来帮助学生了解向量在直线问题中的应用(三)重视理论联系实际,注意培养用数学的意识注意贯彻理论联系实际的教学原则,培养学生应用数学的意识.本章的引言就从当今时代广泛应用的计算机技术中所涉及数学知识出发引入问题,让学生了解数学在今天的信息时代的重要地位,以激发学生学习的兴趣,树立正确的学习目的.本章的引言指出,在科研、工程设计、工艺美术、印刷、广告设计乃至影视艺术等各种领域,都已广泛应用各种计算机软件进行文字、图象的处理和创作.用这些软件,可以画各种多边形和圆等图形,并对这些图形进行各种操作.然后提出了两个问题:为什么用计算机能对文字、图形等作各种处理呢?我们怎样用某种计算机语言编写绘制图形的程序呢?这样,从某种角度提出了学习直线和圆的方程知识的意义.当然,在具体教学中,也可以根据实际教学情况,从其他的问题来引入新课本章还安排了“简单的线性规划”的内容,这是《新大纲》中增加的一个新内容,反映了《新大纲》对于数学知识的应用的重视.本章在介绍了二元一次不等式表示平面区域以后,用一个具体的例子说明了线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等有关的几个基本概念,介绍了线性规划问题的图解方法,举例说明了线性规划在实际中的应用第7.5节还安排了以线性规划为内容的研究性课题和实习作业.研究性课题主要原因是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究.在研究性课题中要充分体现学生的自主活动和合作活动.研究性活动应以所学的数学知识为基础,并且密切结合生活和生产实际,让学生了解所学知识在实际中的应用,并培养他们分析问题、解决问题的能力三、教学中应注意的问题(一)把握好本章的教学要求在本章中,对于直线方程的斜截式和截距式,《新大纲》没有把它们作为一种独立的直线方程形式提出来,教科书只是把它们分别作为直线方程的点斜式和两点式的特殊形式给出,对于斜截式,教材只配备少量习题和练习,对于截距式则只是出现一下,让学生能初步了解,没有专门练习和习题再作巩固训练,教学中要掌握好教学要求的度.在讨论两条直线的交点的问题时,不再就直线的一般形式对系数作讨论而得出一系列判定直线相交、平行、重合的条件,而仅要求学生能根据具体的直线方程组的解的情况来判断直线是否相交,如相交,会求出交点坐标.教学时不要拓宽加深.对于二元一次不等式表示平面区域以及线性规划问题,教科书都没有形式化地给出有关概念的定义,不作一般性讨论,而仅以特殊例子加以说明,教学中也不必引入形式化的定义(二)注意面向全体学生面向全体学生就是要对每一个学生负责,既要为所有学生打好共同基础,也要注意发展学生的个性和特长,进行因材施教本章的内容是进一步学习圆锥曲线、导数、微分、积分等的基础.因而,要学好整个高中数学,就必须打好本章知识的基础,否则将会给后续内容的学习带来许多困难.所以在教学中要注意关心每一个学生的学习,及时发现教学中的问题,查漏补缺,打好一个共同的基础,完成教学大纲的教学要求.此外,本章内容又为发展学生的个性和特长提供了许多可能,教科书也为此提供素材.例如,在一些问题的解答以后,教科书提出问题,要求学生用其他的方法解题.在推导了点到直线的距离公式后,提出研究一下用其他方法推导上面的距离公式.教科书安排了两个阅读材料,对本章所涉及的一些基本问题和数学史实、数学思想方法作了简要的介绍,可以要求学有余力的学生认真阅读和体会,帮助他们加深对所学知识的理解.例如阅读材料“向量与直线”介绍了把平面向量的一些知识应用于直线方程,讨论直线与直线的位置关系,使学生能复习平面向量的有关知识,加深对直线方程问题的理解.阅读材料“笛卡儿和费马”介绍了解析几何学产生的历史背景,以及两位数学家笛卡儿和费马在创立这门学科中的主要贡献,并就解析几何的创立对数学的发展所产生的重大影响作了介绍.通过阅读材料的学习,学生能从中了解一些重要的数学思想方法,并进而培养浓厚的学习兴趣,正确的学习目的,实事求是的科学态度,以及独立思考、勇于探索创新的精神(三)注意复习相关的教学内容本章的教学内容属于平面解析几何学的基础,研究的对象是直线和圆,属于几何图形,研究方法是坐标法,要综合应用代数、三角函数、平面几何、平面向量等多方面的知识,这就要求在教学中结合教学内容复习相关的知识.尤其是本章中应用平面向量来处理直线的问题较多,如直线的斜率、圆心不在原点的圆的参数方程等问题中都涉及应用向量这一有力工具来处理,教学中要注意复习相关知识四、关于教学内容的取舍关于直线方程的形式,《新大纲》规定的教学内容有点斜式、两点式、参数式和一般式,原大纲则还有斜截式和截距式.现在以例题形式作为点斜式、两点式的特殊形式保留了斜截式和截距式,一般认为,直线方程的点斜式和两点式给出了根据一定条件求直线方程的途径,但在具体应用中,由于点斜式和两点式的形式比较原始和复杂,参数比较多,常把它们化为斜截式和一般式;斜截式与初中的一次函数有相同的形式易于互相沟通,形式比较简单,参数有简明的几何意义;截距式的形式比较简明对称,参数意义明显,能为画直线图形提供方便。
高中数学集体备课电子教案
课题:解析几何中的向量运算
课型:启发式教学
教学目标:
1. 理解向量的定义及性质,掌握向量的运算方法。
2. 能够运用向量进行解析几何中的相关问题求解。
3. 提高学生的创新思维和问题解决能力。
教学过程:
一、导入:
教师在课前准备一道与向量相关的问题,引导学生思考如何用向量解决问题,激发学生的求知欲。
二、概念讲解:
1. 向量的定义:向量是具有方向和大小的几何量,通常用有向线段表示。
2. 向量的性质:平行向量、共线向量、相等向量、零向量等。
3. 向量的运算:向量的加法、减法、数乘。
三、例题讲解:
教师结合课本上的例题,逐步讲解向量的运算方法,并带领学生进行相关练习。
四、综合应用:
教师设立一些综合性的问题,要求学生运用所学的向量知识解决问题,培养学生的综合运用能力。
五、课堂小结:
教师对本节课的重点内容进行总结,并强调学生在复习时需要重点掌握的知识点。
教学反思:
本节课采用启发式教学的方式,通过导入问题、概念讲解、例题讲解、综合应用等环节,让学生在实际问题中感受并应用向量知识。
同时,通过课堂小结,让学生对本节课的重点
内容进行梳理和总结,有助于学生的记忆和理解。
在教学过程中,也应注意引导学生发现问题、提出自己的解决思路,培养其创新意识和问题解决能力。
2.4用向量讨论垂直与平行高二数学 编写人 审核人 高二数学组 课时:2课时学习目标:1. 理解直线的方向向量与平面的法向量;2. 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;3. 能用向量方法证明有关直线和平面位置关系的立体几何问题。
学习重点:空间向量共线与垂直的充要条件;空间向量的运算与其坐标表示;用向量方法证明有关直线和平面位置关系的立体几何问题。
学习难点:空间直角坐标系的正确建立,空间向量的运算与其坐标表示;用向量语言证明立体几何中有关垂直、平行关系的问题。
学习过程: 一、课前准备:1.空间中平行关系的向量表示 (1)线线平行设直线l ,m 的方向向量分别为),,(111z y x a =,),,(222z y x b = 且0222≠z y x ,那么l ∥m ⇔⇔⇔21x x=(2)线面平行设直线l 的方向向量为),,(111z y x l = ,平面α的法向量为),,(222z y x n =,且α平面//l ,那么l α//l ⇔⇔⇔. (3)面面平行设平面α,β的法向量分别为),,(1111z y x n = ,),,(2222z y x n =且0222≠z y x , 那么α∥β⇔⇔⇔.2.空间中垂直关系的向量表示 (1)线线垂直设直线l 的方向向量为),,(111z y x a =,直线m 的方向向量为),,(222z y x b = , 那么l ⊥m ⇔⇔⇔. (2)线面垂直设直线l 的方向向量是),,(111z y x a = ,平面α的法向量是),,(222z y x n =且0222≠z y x , 那么l ⊥α⇔⇔⇔ (3)面面垂直假设平面α的法向量),,(1111z y x n = ,平面β的法向量),,(2222z y x n =,那么α⊥β⇔⇔⇔. 二、新课学习:问题探究一 用向量讨论垂直 例1:〔线面垂直的判定定理〕假设一条直线垂直于一个平面的两条交线,那么该直线与此平面垂直。
平面向量的坐标表示及运算(1)
教学目的:1.掌握向量的坐标表示法;
2.掌握向量的加法、减法、数与向量乘法等运算的坐标表示形式
教学重点:向量运算的坐标表示
教学难点:向量的坐标表示法的理解及运算的准确性 教学过程: 一、复习:
1.复习向量相等的概念,自由向量 OA =BC , 2.平面向量的基本定理(基) a
=λ11e +λ22e
其实质:同一平面内任一向量都可以表示为两个不平行向量的线性组合。
二、新课讲解
1.位置向量的坐标表示
定义:在直角坐标平面内,以原点为起点,以点(,)P x y 为终点的向量OP 叫做位置向量。
下面在直角坐标平面内取一组基。
取方向与x 轴、y 轴正方向相同的两个单位向量作为一组基,记为,i j ,称为基本单位向量。
点(,)P x y 在
x 轴上的投影为点1(,0)P x ,在
y 轴上的投影为点2(0,)P y ,那么有
12OP OP OP =+,且12,OP xi OP y j ==,∴OP xi y j =+ (正交分解)
通常把有序数对(,)x y 叫做位置向量OP 的坐标,记为(,)OP x y = (也就是位置向量的坐标就是该向量终点的坐标)
∵10i i j =⋅+⋅,∴(1,0)i = 同理有(0,1)j =,0(0,0)= 例1:在直角坐标系内作出下列各位置向量:
(1)34a i j =+, (2)22b i j =-- (3)3c j =- 例2:如图,写出向量,,a b c 的坐标
O
B
C A
x
y
a
2.直角坐标平面内任意向量的坐标表示
因为任意向量AB 都可通过平移得到与之相等的位置向量OP ,这就是说如果已知了AB 就可以惟一确定点(,)P x y ,使得(,)AB OP x y ==
即平面内任一向量的坐标就是与该向量相等的位置向量的坐标。
那么如果已知1122(,),(,)A x y B x y 是直角坐标系内任意两点,那么如何用,A B 的坐标来表示向量AB 呢?
22112121()()()()AB OB OA x i y j x i y j x x i y y j =-=+-+=-+-,把有序数对 2121(,)x x y y --叫做向量AB 的坐标,并记2121(,)AB x x y y =--。
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
本质上即为与该向量相等的位置向量的坐标。
3.向量坐标表示的运算:
已知1122(,),(,)a x y b x y ==,即1122,a x i y j b x i y j =+=+,则
11221212()()()()a b x i y j x i y j x x i y y j ±=+±+=±+±
1111()a x i y j x i y j λλλλ⋅=⋅+=+
即11221212(,)(,)(,)x y x y x x y y ±=±±,1111(,)(,)x y x y λλλ=
注:11(,)a x y =即表示11a x i y j =+,反之亦然,但1111(,)a x y x i y j ==+的表示方法是不正确的。
由两点的距离公式,可以定义向量的模的运算:
11(,)a x y =,则2a x y =+例2:已知点(3,2),(5,4)P Q -,求PQ 及PQ 的单位向量0a 。
(53,4(2))(2,6)PQ =---=,
22PQ =,∴
01(1010a PQ PQ
=
=
=
例3:已知三个力1(3,4)F =,2(2,5)F =-,3(,)F x y =的合力1230F F F ++=,求3F 的坐标。
解:据题1230F F F ++=,得(3,4)(2,5)(,)(0,0)x y +-+=
即320450x y ++=⎧⎨-+=⎩,得5
1
x y =-⎧⎨=⎩,即3(5,1)F =-
例4:已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D 的坐标使这四点构成
平行四边形四个顶点。
解:设(,)D x y 当平行四边形为ABCD 时,由AB DC =得
(3,4)(1,2)x y --=,得1(2,2)D
当平行四边形为ACDB 时,得D 2=(4, 6) 当平行四边形为DACB 时,得D 3=(-6, 0)
例5:已知2(4,3),2(3,4)a b a b +=--=,求,a b 的坐标。
解:2(4,3)a b +=- ①
2(3,4)a b -= ②
①×2+②得422(8,6)(3,4)(5,10)a b a b ++-=-+=-,(1,2)a =-
22(4,3)(2,4)(2,1)b a b a =+-=---=--
三、小结 1.向量的坐标概念 2.向量坐标的运算 四、课后反思。