初中奥数讲义_完美的正方形附答案
- 格式:doc
- 大小:1.06 MB
- 文档页数:10
OO G AB E HG ABHF A B 非常完美正方形【知识必备】1、正方形的相关性质,对角线把正方形分成四个全等的等腰直角三角形;2、“角平分线、平行线、等腰三角形”模型: “角平分线、垂线、等腰三角形”模型:4、“十字架”模型:即垂直必相等,但相等不一定垂直5、“半角”模型:正方形ABCD 中,∠EAF=450,则:(1)BE+DF=EF ;(2)222BG DH GH +=(3)∠AEB=∠AEF ;……【思想方法】1、 正方形具有轴对称、旋转不变性(绕顶点转或对角线交点转90度),一般总是与解直角三角形分不开;2、正方形的性质与轴对称(翻折)、旋转等图形变换结合;与线段垂直平分线、角平分线的结合;与三角形全等、相似的结合;【练习】1、如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,C E ⊥AE ,垂足为E ,EG ⊥CD ,垂足为G ,点H 在BC 边上,BH=DF ,连接AH 、FH ,FH 与AC 交于点M ,则以下结论:①FH=2BH ;②AC ⊥FH ;③S △ACF =1;④CE=12AF ;⑤EG 2=FG•DG, 其中正确结论的个数为( )A .2个B .3个C .4个D .5个2、正方形ABCD 中,对角线AC 、BD 交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到得到△ADE′,点F 是DE 的中点,连接AF ,BF ,E′F .若AE=√2.则四边形ABFE′的面积是_______3、如图,在正方形ABCD 中,AB=6,点E 在CD 边上,DE=13DC ,连接AE ,将△ADE 沿AE 翻折,点D 落在点F 处,点O 是对角线BD 的中点,连接OF 并延长OF 交CD 于点G ,连接BF ,BG ,则△BFG 的周长是________.4、如图,正方形ABCD的边长为AC,BD相交于点O,E是OC的中点,连接BE,过点A作A M⊥BE于点M,交BD于点F,则FM的长为_________5、如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的是_______6、如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕点D顺时针旋转45度得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①四边形AEGF是菱形②△AED≌△GED ③∠DFG=112.5°④BC+FG=1.5,其中正确的结论是__________7、如图,边长为1的正方形ABCD 的对角线AC ,BD 相交于点O ,有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM ,PN 分别与OA ,OB 重合,然后逆时针旋转∠MPN , 旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是___.8、如图,在边长为a 正方形ABCD中,把边BC 绕点B 逆时针旋转60°,得到线段BM ,连接AM 并延长交CD 于N ,连接MC ,则⊿MNC 的面积为 ( )A.2B.21a 2C.2aD.2a。
学科:数学教学内容:正方形【学习目标】1. 探索并掌握正方形的概念及特征,并学会识别正方形.2•能正确理解平行四边形、矩形、菱形、正方形的区别与联系.【基础知识概述】1. 正方形定义:(1) 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2) 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.(3) 既是矩形又是菱形的四边形是正方形.2. 正方形的特征:正方形具有四边形、平行四边形、矩形、菱形的一切特征.(1) 边一一四边相等、邻边垂直、对边平行.(2) 角——四角都是直角.(3) 对角线一一①相等;②互相垂直平分;③每条对角线平分一组对角.(4) 是轴对称图形,有4条对称轴.3. 正方形的识别方法:(1) 一组邻边相等的矩形是正方形.(2) —个角是直角的菱形是正方形.4. 正方形与矩形、菱形、平行四边形的关系:矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图图12-2-135. 正方形的面积:正方形的面积等于边长的平方或者等于两条对角线乘积的一半.【例题精讲】例1 如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE丄BC于E,作PF丄CD于F.试说明AP = EF.12-2-13 .分析:由PE 丄BC , PF 丄CD 知,四边形PECF 为矩形,故有 EF = PC ,这时只需证 AP =CP ,由正方形对角线互相垂直平分知AP = CP .解:连结AC 、PC ,•••四边形ABCD 为正方形, ••• BD 垂直平分AC , ••• AP = CP .•/ PE 丄 BC , PF 丄 CD ,/ BCD = 90°, •四边形PECF 为矩形,• PC = EF , • AP = EF .注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中. 思考:由上述条件是否可以得到 AP 丄EF .提示:可以,延长 AP 交EF 于N ,由PE // AB ,有/ NPE =Z BAN . 又/ BAN =Z BCP ,而/ BCP = Z PFE ,故/ NPE =Z PFE ,而/ PFE +Z PEF = 90°,所以/ NPE +Z PEF = 90°,贝U AP 丄 EF .例 2 如图 12-2-15 ,△ ABC 中,Z ABC = 90°, BD 平分Z ABC , DE 丄 BC , DF 丄 AB , 试说明四边形 BEDF 是正方形.解:T Z ABC = 90°, DE 丄 BC ,• DE // AB ,同理,DF // BC , • BEDF 是平行四边形.•/ BD 平分Z ABC , DE 丄 BC , DF 丄 AB ,• DE = DF .又•••/ ABC = 90°, BEDF 是平行四边形, •四边形BEDF 是正方形. 思考:还有没有其他方法?提示:(有一种方法可以证四边形 DFBE 为矩形,然后证 BE = DE ,可得.另一种方法, 可证四边形DFBE 为菱形,后证一个角为 90°可得)注意:灵活选择正方形的识别方法.甘 E.V■ 12-2U4例3 如图12-2-16所示,四边形ABCD是正方形,△ ADE是等边三角形,求/ BEC 的大小.(D (2)图12-2-16分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ ABE和厶DCE都是等腰三角形,顶角都是150°,可得底角/ AEB与/ DEC都是15°,则/ BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和厶DCE是等腰三角形,顶角是30°,可得底角/ AEB和/ DEC为75。
完美正方形完美正方形「完美正方形」是指在一正方形内切割出大小都相异的小正方形.而我们的研究,则放宽条件,允许同样大小的正方形不超过三个.我们先估算出正方形中可切割的最大正方形边长范围,再以方格纸手画的方式找出边长1至25的解,在过程中,我们发现可用放大的方式解决边长为合数的正方形.因此我们将重点放在边长为质数的正方形,我们将正方形分割成两个连续整数边长的正方形,则剩下少一单位的缺角正方形区域.我们探讨缺角正方形区域的解,再讨论分析回原来的正方形.最后解出了边长1至100中全部有解的正方形.对於更大边长的正方形,我们的方法也可行.所以我们以流程图来表示解决问题的过程,并用电脑试算边长1至1000的完美正方形.研究动机在暑假专书研读:名人趣题妙解书中,我们看到了塔尔塔利亚的巧分格纸,觉得很感兴趣,所以我们将完美正方形与巧分格纸两个融合,当作我们科展的题目.研究目的「完美正方形」是指,在一正方形内切割成不同大小,边长为整数的正方形,且这些切割出的正方形,均不能全等,这个主题在文献上有不错的研究成果.而我们的研究,则放宽条件,允许每一种同样大小的正方形不超过三个,希望可以探讨边长1~100中哪些正方形有解,哪些正方形无解如果有解如何切割文献探讨1926年,苏联数学家鲁金对"完美正方形"的存在提出了猜想.到1938年,他们终于找到了一个由63个大小不同的正方形组成的大正方形,人们称它为63阶的完美正方形.次年有人给出了一个39阶的完美正方形.1964年,塔特的学生,滑铁卢大学的威尔逊博士找到了一个25阶的完美正方形.1948年,威尔科克斯提出了一个24阶的完美正方形,在往后的30年中,人们一度以为24就是完美正方形的最小阶.1978年,荷兰特温特技术大学的杜依维斯蒂尤,用大型电子电脑算出了一个21阶的完美正方形.这是完美正方形的最终目标了.因为鲁金曾证明,小於21阶的完美正方形是不存在的.。
完美正方巧妙构造——例析一类形外正方形问题的解法谢文剑以三角形或梯形中的若干条边为边向外作正方形构成的图形中,证明线段、角或面积之间的关系,此类题目常见于竞赛和中考题中,根据已知条件,通过仔细的观察和分析,充分利用正方形边角的性质,通过旋转、平移等变换,找出全等三角形,巧妙构造基本图形,是解决这类问题的有效手段.一、利用旋转平移变换,构造全等三角形利用正方形的边长相等,角为90°进行旋转,找出全等三角形,从而找出解决的桥梁.例1 (2002年某某省竞赛试题)如图1,在△ABC中,∠ACB=90°,分别以AC、AB 为边,在△ABC外作正方形ACEF和正方形AGBH,过C作CK⊥AB,分别交AB和GH于D、K,则正方形ACEF的面积S1与矩形AGKD的面积S2的大小关系为()(A)S1=S2(B)S1>S2(C)S1<S2(D)不能确定分析:连结FB、GC,AF∥EB,AG∥CK,则有S正方形AFCE=2S△FAB,S矩形AGKD=2S△ACG,而△ACG可由△FAB绕A点顺时针旋转90°而得,它们是全等三角形,S△ACG=S△FAB,所以可得S1=S2,故选(A)。
例2 (2003年市竞赛题)如图2,以△ABC的三边为边,向形外分别作正方形ABDE、CAFG、BCHK,连接EF、GH、KD,求证:以EF、GH、KD为边可构成一个三角形,并且所构成的三角形面积等于△ABC的面积的3倍。
分析:可以利用正方形的对边平行而且相等,作出一个以EF、GH、KD为边的三角形,把△AEF沿AB平移,△HCG沿CB方向平移,使A、C重合于B,F、G重合于I,△DBI ≌△AEF,△BIK≌△HCG,且可得∠EAF+∠GCH+∠DBK=360°,因此可拼成一个三角形,然后再证明S△DIK=3S△ABC,把△GCH绕C点旋转90°,得到△BCG′,可得A,C,G ′在一条直线上,且C 为AG ′的中点。
第十六讲完美的正方形有一组邻边相等并且有一个角是直角的平行四边形是正方形,换句话说:正方形是各边都相等的矩形,正方形是各角都相等的菱形,正方形既是矩形又是菱形,它具有矩形和菱形的一切性质.矩形、菱形,正方形都是特殊的四边形,它们的概念交错,关系复杂,性质有许多相似之处,一些判定和性质定理又是可逆的,所以在学习中注重概念的理解,着眼于概念间的区别与联系.连正方形的对角线,能得到特殊三角形、全等三角形,由于正方形常常与直角三角形联系在一起,所以在解有关正方形问题时要用到直角三角形性质,具有代数风格,体现数形结合思想.熟悉以下基本图形,基本结论:例题求解【例1】如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.(2001年北京市竞赛题)思路点拨图中还有等腰三角形,利用等腰三角形性质计算.注可以证明,在所有用长相等的四边形中,正方形的面积最大.我们熟悉的“七巧板”,那是把一块正方形板切分成三角形、正方形、平行四边形的7块,用它可以拼出许多巧妙的图形,“七巧板”是我国古代人民智慧的结晶.【例2】如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OC⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为( )A.7 B.5 C.4 D.3. (2001年江苏省泰州市中考题)思路点拨AE、CF、EF不在同一个三角形中,运用全等三角形寻找相等的线段,使分散的条件集中到同一个三角形中.【例3】如图,正方形ABCD中,E、F是AB、BC边上两点,且EF=AC+FC,DG⊥EF于G,求证:DC=DA.(重庆市竞赛题)思路点拨构造AE+FC的线段是解本例的关键.【例4】已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM 且交∠CBZ的平分线于N(如图甲).(1)求证:MD=MN(2)若将上述条件中的“M是AB中点”改为“M是AB上的任意一点”,其余条件不变(如图乙),则结论“MD=MN”还成立吗?如果成立,请证明:如果不成立,请说明理由.(上海市闽行区中考题)思路点拨对于图甲,取AD中点F,通过构造全等三角形证明MD=MN;这种证法能否迁移到图乙情景中去?从而作出正确的判断.注探索是学习的生命线,深入探究、学会探索是时代提出的新要求.数学解题中的探索活动可从以下几个方面进行:(1)在题设条件不变情况下,发现挖掘更多的结论;(2)通过强化或弱化来改变条件,考查结论是否改变或寻求新的结论;(3)构造逆命题.对于例3,请读者思考,在不改变题设条件的前提下,(1)∠EDF等于多少度?(2)怎样证明明逆命题?例4改变点的位置,赋以运动,从特殊到一般,(1)的结果为(2)的猜想提供了借鉴的依据,又为猜想设置了障碍,前面的证明思路是后面的证明模式.【例5】操作:将一把三角尺放在边长为l的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.探究:设A,P两点间的距离为x(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(图1、图2、图3的形状大小相同,图1供操作、实验用,图2、图3备用).思路点拨 本例是探究式的操作型试题,第(1)问需抓住滑动中∠BPQ 是直角这一不变量,画出滑动中一般情形的图形,通过观察提出猜想,再给予论证,第(3)问需要在操作中观察出使△PCQ 是等腰三角形的两种情形.注 数学学习是一个生动活泼的过程,动手实践,自主探索是学习数学的重要形式,它说明了存在的事实是怎样被发现和被发现的现象又是怎样获得证实的,解这类问题,需边操作,边观察、边思考,综合运用相关知识方法探究结论.学历训练1.如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP ′重合,若PB=3,则PP ′= . (2002年河南省中考题)2.如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE=CF ,若∠BEC=60°,则∠EFD 的度数为 . (2000年苏州市中考题)(第1题) (第2题) (第3题) (第4题)3.如图,∠POQ=90°,边长为2㎝的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC=30°,则A 、D 到OP 的距离分别为 . (2003年南京市中考题)4.如图,正方形ABCD 中,CE ⊥MN ,若∠MCE =35°,则∠ANM 的度数是 .(第5题) (第6题) (第7题) (第8题)5.如图,E 是边长为l 的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值为( )(2003年河北省中考题)A .22B .21C .23D .32 6.如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于E ,8 ABCD S 四边形,则BC的长为( )A.2 B.3 C.3D.22(2003年武汉市选拔赛试题)7.如图,在正方形ABCD中,C为CD上的一点,延长月C至F,使CF=CE,连结DF,BE与DF相交于G,则下面结论错误的是( )A.BE=DF B.BG⊥DF C.∠F+∠CEB=90°D.∠FDC+∠ABG=90°(2001年山东省临沂市中考题)8.如图,已知正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的值是( )A.15 B.12 C .11 D.109.(1)如图甲,若点P为正方形ABCD边AB上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP交BE于点H,求证:DH⊥BF;(2)如图乙,若点P为正方形ABCD内任一点,其余条件不变,(1)的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(2002年泰州市中考题)10.如图,P为正方形ABCD的对角线BD上任一点,PF⊥CD,PE⊥BC,C、F分别为垂足,探索AP与EF的关系.11.如图,正方形ABCD中,AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,求△AEF的面积.(第1l届“希望杯”邀请赛试题)12.如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD相交于M、N,若∠EAF=50°,则∠CME+∠CNF= .(第12题) (第13题) (第14题)13.如图,在Rt △ABC 中,∠C =90°,AC=3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,OC=24,则BC 边的长为 .(第13 “希望杯”邀请赛试题)14.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为7㎝2和11㎝2,则 △CDE 的面积等于 cm 2.(武汉市选拔赛试题)15.如图,将边长为12cm 的正方形ABCD 折叠,使得A 点落在边CD 上的E 点,然后压平得折痕FG ,若GF 的长为13cm ,则线段CE 的长为 . (2002年北京市竞赛题)(第15题) (第17题) (第18题)16.将一个正方形分割成n 个小正方形(n>1),则n 不可能取( )A .4B .5C .8D .9. (第16届江苏省竞赛题)17.如图,正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,若∠PAQ=45°,∠BAP=20°,则∠AQP=( )A .65°B . 60°C .35°D .70°18.如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE=a ,AF=b ,若S EFGH =32,则a b 等于( ) A .22 B .32 C .23 D .33 (第12届“希望杯”邀请赛试题) 19.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE=AC ,CF ∥AC ,则∠BCF 等于( )A .150°B .135°C . 105°D .120°(第19题) (第20题)20.图甲中,正方形ABDE、CDFI、EFGH的面积分别为17,10,13,图乙中,DPQR为矩形,对照图乙,计算图甲中六边形ABCIGH的面积.(第15届江苏省竞赛题)21.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.22.如图,有4个动点P、Q、E、F分别从正方形ABCD的4个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动.(1)判定四边形PQEF的形状;(2)PE是否总是经过某一定点,井说明理由;(3)四边形PQEF的顶点位于何处时,其面积最小、最大?各是多少?23.如图a,D为线段AE上任一点,分别以AD、DE为边作正方形ABCD和正方形DEFG,连结BF、AG、CE、BG、BE、BG、BE分别交AD,DC于P、Q两点.(1)①找出图中三对相等的线段(正方形边长相等除外);②找出图中三对相等的钝角;③找出图中一对面积相等的钝角三角形,这两个三角形全等吗?(2)如图b,当正方形ABCD和正方形DEFG都变为菱形,且∠GDE=∠ADC时,(1)中的结论哪些成立,哪些不成立?请对不成立的情况说明理由.(3)如图“当正方形ABCD和正方形DEFG都变为矩形,且DA>DC,DE>DG,△ABD ∽△EFD时,(1)中的结论哪些不成立,哪些成立?.如果成立,请证明.(2003年郴州市中考题)24.如图,正方形ABCD被两条与边平行的线段EF、GH分割成4个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小,并证明你的结论.(北京市竞赛题)。
完美正方形「完美正方形」是指在一正方形内切割出大小都相异的小正方形.最早由莫伦提出.数学家们一度花了很大精力都无任何结果,以至于1930年苏联著名数学家鲁金猜想,不可能把一个正方形分割成有限个大小不同的正方形.莫伦对此猜想提出了挑战,并提供了一个解决思路:如果同一个矩形有两个不同的正方形剖分,且其中一个剖分的每个正方形都不同于另一个剖分的每个正方形,那么,这两个剖分再添上两个正方形(它异于两个剖分中的任何一个正方形),便可构造出一个完美正方形,而在此之前,完美矩形已经有了比较丰富的成果.1939年,斯普拉格按照莫伦的构想成功地构造出一个55阶的完美正方形,其边长为4205.几个月后,阶数更小(28阶)、边长更短(1015)的完美正方形由剑桥大学三一学院的四位大学生构造出来.1948年,威尔科克斯构造出24阶完美正方形,但其中含有一个完美矩形(此类正方形称为混完美正方形,完全由正方形构造成的正方形称为纯完美正方形),一直到1978年,这个纪录才被打破.1967年,威尔森构造成功25阶、26阶完美正方形.1962年,荷兰特温特技术大学的杜伊维斯廷证明:不存在20阶以下的完美正方形.1978年,杜伊维斯廷借助计算机技术,成功地构造出一个21阶的完美正方形,它是唯一的,且它不仅阶数最低,同时数字也更简单,此外构造上它也有许多优美的特点,比如2的某些次幂恰好位于一条对角线上,等等.杜伊维斯廷同时还证明了:低于21阶的完美正方形不存在.1982年,杜伊维斯廷又证明了:不存在低于24阶的混完美正方形.1992年,布卡姆和杜伊维斯廷给出了21~25阶全部207个纯完美正方形:阶数21 22 23 24 25个数 1 8 12 26 160至此,完美正方形的讨论暂时画上一个句号.但数学家的研究并没有停止,他们又研究了不同大小正方形是否可以填充整个平面的问题,此外他们还将完美剖分的问题推广到莫比乌斯带、圆柱面、环面和克莱茵瓶上,也取得了许多有趣的成果.但是立方体填充被证明是没有的.。
人教版八年级第24讲完美的正方形姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在正方形ABCD中,点E,F分别在CD,BC上,且AF=BE,BE与AF相交于点G,则下列结论中错误的是()A.BF=CE B.∠DAF=∠BECC.AF⊥BE D.∠AFB+∠BEC=90°2 . 已知四边形是平行四边形,下列结论中不正确的是()A.当时,它是菱形B.当时,它是菱形C.当时,它是矩形D.当时,它是正方形3 . △ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,则AB的长为()A.30B.40C.50D.604 . 如图,圆P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方ABCD(点D、P在直线AB的两侧),若AB边绕点P旋转一周,则CD边扫过的面积为().A.0B.36πC.D.6π5 . 一块竹条编织物,先将其按如图所示绕直线MN翻转旋转180°,再将它按照逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.二、填空题6 . 对角线长为的正方形的周长为________,面积为________.7 . 如图,已知正方形ABCD的边长为2,连接AC、BD,CE平分∠ACD交BD于点E,则DE=____.三、解答题8 . 综合与实践--------图形变换中的数学问题问题情境:如图1,已知矩形中,点是的中点,连接.将矩形沿剪开,得到四边形和四边形.(1)求证:四边形是矩形;操作探究:保持矩形位置不变,将矩形从图1的位置开始,绕点按逆时针方向旋转,设旋转角为().操作中,提出了如下向题,请你解答:(2)如图2,当矩形旋转到点落在线段上时,线段恰好经过点,设与相交于点.判断四边形的形状,并说明理由;(3)请从两题中任选一题作答.A.在矩形旋转过程中,连接线段和.当时,直接写出旋转角的度数.B.已知矩形中,.在矩形旋转过程中,连接线段和,当时,直接写出的长.9 . 在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE 为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.10 . 已知:如图,在中,,是的边的中点,,,垂足分别是、.求证:;只添加一个条件,使四边形是正方形,并给出证明.11 . 如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.12 . 如图,在正方形ABCD中,点E是AB边上一点,以DE为边作正方形DEFG,DF与BC交于点M,延长EM 交GF于点H,EF与CB交于点N,连接CG.(1)求证:CD⊥CG;(2)若tan∠MEN=,求的值;(3)已知正方形ABCD的边长为1,点E在运动过程中,EM的长能否为?请说明理由.13 . 如图所示的方角铁皮,要求用一条直线将其分成面积相等的两部分,请你设计两种不同的分割方案(用铅笔画图,不写画法,保留作图痕迹或简要的文字说明).参考答案一、单选题1、2、3、4、5、二、填空题1、2、三、解答题1、2、3、4、5、6、。
完美正方形
我们能不能将一个大正方形分割为一些彼此互不相同的小正方形?或者反过来说,我们能不能用一些大小各不相同的小正方形拼合成一个大正方形?答案是可以的。
这样的一个大正方形,叫做完美正方形(又称完全正方形)。
第一个完美正方形是由英国剑桥大学的四位数学家组成的研究小组于1938年发现的。
这个完美正方形可分为69个小正方形,因此称为69阶完美正方形。
此后,又有许多其他阶的完美正方形被发现。
于是,人们试图寻找一个由个数最少的小正方形拼合而成的(即最低阶的)完美正方形。
利用电子计算机已经证明:不存在20阶或20阶以下的完美正方形。
1978年,荷兰数学家杜伊杰斯廷发现了21阶的完美正
方形,边长为112,如图(图中数字为小正方形边长)。
更加奇妙的是,它还是一个简单完美正方形,即其中的小正方形不构成任何矩形。
杜伊杰斯廷的发现很可能是独一无二的,也就是说,很可能再也没有与此不同的21阶完美正方形了。
正方形性质及判定口诀
(1)
正方形,好应用,边相等,角相同.
菱形性质全具备,外加对角线相等.
各角均是九十度,矩形性质也适用.
(2)
怎么判定正方形,方法可以有多种.
实质不过有两条,你可千万要记清:
矩形还要等边长,菱形尚须四角同.。
完美的正方形正方形是四边形中最特殊的一种,它是中心对称图形也是轴对称图形,在分析有关条件与结论之间的关系时,可以利用这种性质进行分析,把图形(主要是三角形)进行旋转实现线段与角的位置的转化,在解题过程中综合中心对称、轴对称及等腰三角形、线段的垂直平分线、角的平分线的知识来解决问题。
例1:如图:四边形ABCD 为正方形,以AB 为边向正方形外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD= 度.AECDBF例2:如图:将边长为12cm 的正方形ABCD 折叠,使得A 点落在CD 上的E 点,然后压平得折痕FG ,若FG=13cm ,求线段CE 之长.例3:如图:已知E、F分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于点M 、N .若∠EAF=050,求∠CME +∠CNF 的度数.CMA NDF E例4:如图:正方形ABCD 中,E、F是AB 、BC 边上两点,且EF=AE+FC ,D G ⊥EF 于G . 说明:DG=DA例5:如图,操作:把正方形CGEF 的对角形CE 放在正方形ABCD 的边BC 的延长线上(C G ﹥BC ),取线段AE 的中点M .探索:线段MD 、MF 的关系,并加以说明.FA DB C GEEG上题中,若将正方形CGEF绕点C旋转任意角度(如图),其它条件不变.探究:线段MD、MF的关系,并加以证明.ADBFMCEG课后作业:1.如图,在四边形ABCD 中,AB=BC ,∠ABC =∠CDA=090,BE ⊥AD 于E ,四边形ABCD 的面积为8,则BE 的长为( )A .2 B.3 C.3 D.222.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,直角三角形CEF 的面积为200,则BE= . 3.如图,A在线段B G上,四边形ABCD 和DEFG 都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE 的面积等于 平方厘米.4.如图,正方形ABCD 的边长为a ,点E 、F 、G 、H 分别在正方形的四条边上,已知E F ∥GH ,EF=GH .(1)若AE=AH=a 31,求四边形EFGH 的周长和面积;(2)求四边形EFGH 的周长的最小值.BCDAEFADBCECD EB AFGADHBEGFC5.如图,已知正方形ABEF 和ACGH 在三角形BAC 的外侧,M 是BC 边的中点。
NM GEF D C B A 图1G E FD CB A 图2H O G E F DC B A 图3E P FD CB A ABCD EFM第三讲 完美的正方形上一讲我们探讨了如何区分各种不同的平行四边形,这一讲我们来研究最特殊的平行四边形——正方形的性质的应用。
之所以称之为完美的正方形,是因为正方形集中了各种平行四边形的所有特征,例如:四边相等、四个内角都是直角、两条对角线相等且互相垂直平分、每条对角线都平分其内角、有四条对称轴、一个对称中心等。
这都将是我们解决实际问题的依据和法宝,我们要会灵活应用。
在实际解题中,我们常对正方形进行割补或折叠,通过平移、旋转、对称等方法把正方形问题转化为特殊的三角形或全等三角形问题来解决。
【例题讲解】1.(1)如图,在正方形ABCD 中,点P ,1P 为正方形内的两点,且PB=PD,BP P CBP AB B P 11,∠=∠=,则P BP 1∠=___________。
(2)如图,P 为正方形ABCD 内一点,若PA ︰PB ︰PC=1︰2︰3,则APB ∠=___________。
(3)如图,正方形ABCD ,E 为BF 上一点,四边形AEFC 恰是一个菱形,AE 交BC 于点M ,则MCE ∠=_________。
(4)如图,在正方形ABCD 中,AB=8,Q 是CD 的中点,设,α=∠DAQ 在CD 上取一点P ,使α2=∠B A P ,则CP=___________。
2. 点F 为正方形ABCD 对角线AC 上任意一点,FE ⊥AB 于E ,FG ⊥AD 于G ,取CF 、BG 的中点M 、N,连结MN.试探求MN 与BG 之间的关系.引申1:若将原题中“点F 在对角线AC 上”改为“点F 在直线AC 上”时,上述结论是否依然成立.引申2:若将原题中的正方形AEFG 绕点A 顺时针旋转任意角度,其它条件不变,则上述结论是否依然成立.3.(1)如图,点F 是正方形ABCD 的边CD 的中点,AF 交BC 延长线于点G ,点E 是CD 延长线上一点,点H 是AE 的中点.∠EAF=45°.求BG DEFH-的值.(2)如图,点E 是正方形ABCD 的边AD 上一点,BE 的中垂线HF 交BC 的延长线于点F ,EF 交CD 于点G ,连接BG .①求∠EBG 的度数;②若正方形ABCD 的边长是3,求△DEG 的周长.【练习】1.如图1,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别是27cm 和211cm ,求△CDE 的面积。
正方形题型练题型一:正方形的性质1.边:四边相等,对边平行;2.角:四个角都是直角;3.对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;4.正方形是轴对称图形,有条对称轴.①利用正方形性质求角度例1.1如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【详解】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°-∠BAE)=90°-12x°,∠DAE=90°-x°,∠AED=∠ADE=12(180°-∠DAE)=12[180°-(90°-x°)]=45°+12x°,∴∠BEF=180°-∠AEB-∠AED=180°-(90°-12x°)-(45°+12x°)=45°.∴∠BEF=45°.故选:A.变式1.11.如图,在正方形ABCD 内部作等边三角形BCE,则∠AEB 的度数为()A.60°B.65°C.70°D.75°【答案】D【解析】【详解】∵△BEC 是等边三角形,∴∠EBC=60°,EB=BC ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=BC ,∴∠ABE=∠ABC-∠EBC=30°,AB=BE ,∴∠AEB=(180°-∠ABE )÷2=75°;故选D.点睛:本题主要考查等边三角形、正方形的性质以及等腰三角形的判定与性质,能熟练地运用是解题的关键.②利用正方形性质求边长例1.2如图,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且//IJ AB ,则正方形EFCH 的边长为_____.【详解】由题意可知1414196ABCD S =⨯=正方形,224IJKL S =⨯=正方形,图中的八个直角三角形均全等,故一个三角形的面积为()1964824-÷=.又因为4244100EFGH S =⨯+=正方形,所以正方形EFGH 的边长为10.变式1.22.如图,正方形ABCD的边长为1,对角线AC、BD交于点O,E是BC延长线上一点,且AC=EC,连接AE交BD于点P.(1)求∠DAE的度数;(2)求BP的长.【答案】(1)求∠DAE=22.5°;(2)BP=1【解析】AD BC,由AC=EC,根据等腰三角形【分析】(1)由正方形得到∠ACB=45°,//的等边对等角的性质,及三角形外角的性质得到∠E=22.5°,依据平行线的性质即可得到∠DAE的度数;(2)由正方形得到AB=1,∠DAB=90°,∠DBC=45°,依据三角形外角的性质得到∠APB=∠E+∠DBC=67.5°,而∠BAP=90°-22.5°=67.5°,故而∠BAP=∠APB,依据三角形等角对等边的性质即可求得BP的长.【详解】解:(1)∵四边形ABCD的正方形,AD BC,∴∠ACB=45°,//∵AC=EC,∴∠E=∠EAC,又∵∠ACB=∠E+∠EAC=45°,∴∠E=22.5°,AD BC,∵//∴∠DAE=∠E=22.5°;(2)∵四边形ABCD是正方形,正方形ABCD的边长是1,∴AB=1,∠DAB=90°,∠DBC=45°,∵∠DAE=22.5°,∴∠BAP=90°-22.5°=67.5°,∠APB=∠E+∠DBC=22.5°+45°=67.5°,∴∠BAP=∠APB,∴BP=AB=1.【点睛】本题考查了正方形的性质、平行线的性质、等腰三角形的等边对等角的性质、等角对等边的性质、三角形外角的性质,第(2)问求出∠BAP和∠APB的度数是解题的关键.③利用正方形性质求面积例1.3如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣cm2B.(4﹣cm2C.(16﹣)cm2D.(﹣cm2【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,4cm=cm,∴AB=4cm,BC=()cm,∴空白部分的面积=(+4)×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,变式1.33.正方形OGHK绕边长为10cm的正方形ABCD的对角线的交点O旋转到如图所示的位置,则阴影部分的面积为()A.100cm 2B.75cm 2C.50cm 2D.25cm 2【答案】D【解析】【分析】根据正方形的性质证明△AOE ≌△BOF ,得到阴影部分的面积=14S 正方形ABCD ,即可得出答案.【详解】解:∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF ,在△AOE 和△BOF 中,45AOE BOF OA OB OAE OBF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AOE ≌△BOF ,∴S △AOE =S △BOF ,∴阴影部分的面积=14S 正方形ABCD =14×10×10=25cm 2,故选D.【点睛】本题考查了正方形的性质和三角形全等的判定和性质,证明得出阴影部分的面积=14S 正方形ABCD 是解题关键.题型二:正方形的判定证明一个四边形是正方形的一般思路是:先证明它是矩形,再证明它也是菱形;或先判断它是菱形,再判断这个菱形也是矩形.例2.如图,在ABC ∆中,90ACB ︒∠=,CD 平分ACB ∠交AB 于点D ,DE BC ⊥于点E ,DF AC ⊥于点F .求证:四边形CEDF 是正方形.【详解】证明:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC=90°,又∵∠ACB=90°,∴四边形DECF是矩形,∵DE=DF,∴矩形DECF是正方形.变式24.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.【答案】(1)证明见解析;(2)3【解析】【分析】(1)由折叠的性质可得BE=B'E,BC=B'C,∠BCE=∠B'CE,然后根据等角对等边证出BC=BE=B'C=B'E,从而证出四边形BC B'E是菱形,然后根据正方形的判定即可证出结论;(2)利用勾股定理求出AC,然后根据折叠的性质可得B'C=BC=6,BE=B'E,然后利用勾股定理即可求出结论.【详解】证明:(1)∵ BCE沿CE折叠,∴BE=B'E,BC=B'C,∠BCE=∠B'CE∵四边形ABCD是矩形∴∠DCB=90°=∠B∴∠BCE=45°且∠B=90°∴∠BEC=∠BCE=45°∴BC=BE∵BE=B'E,BC=B'C∴BC=BE=B'C=B'E∴四边形BC B'E是菱形又∵∠B=90°∴四边形BC B'E是正方形(2)∵AB=8,BC=6∴根据勾股定理得:AC=10∵ BCE沿CE折叠∴B'C=BC=6,BE=B'E∴A B'=4,AE=AB﹣BE=8﹣B'E在Rt A B'E中,AE2=B'A2+B'E2∴(8﹣B'E)2=16+B'E2解得:B'E=3∴BE=B'E=3【点睛】此题考查的是矩形与折叠问题,掌握矩形的性质、折叠的性质、正方形的判定和勾股定理是解决此题的关键.题型三:折叠问题折叠问题需要注意折叠前后的两个图形是全等的,在正方形的折叠问题中尤其要注意直角三角形的存在,利用全等图形的性质与勾股定理进行求解是解题的关键.例3.如图,在正方形ABCD中,3AB=,点E,F分别在边AB,CD上,∠=︒.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长60EFD度为()A .1B C D .2【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD =∠FEB =60°,由折叠前后对应角相等可知:∠FEB =∠FEB ’=60°,∴∠AEB ’=180°-∠FEB -∠FEB ’=60°,∴∠AB’E =30°,设AE =x ,则BE=B’E =2x ,∴AB=AE+BE =3x =3,∴x =1,∴BE =2x =2,故选:D .变式35.如图,将正方形纸片ABCD 折叠,使点D 落在BC 边点E 处,点A 落在点F 处,折痕为MN ,若32NEC FMN ∠=︒∠=,_____︒.【答案】119【解析】【分析】根据正方形的性质得到∠A =∠C =∠D =90°,根据折叠的性质得到∠F=∠A=90°,∠FEN=∠C=90°,∠DNM=∠ENM,根据平角的定义得到∠ENM=1 2(180°-∠ENC)=12(180°-58°)=61°,根据四边形的内角和即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°,∵将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,∴∠F=∠A=90°,∠FEN=∠D=90°,∠DNM=∠ENM,∵∠NEC=32°,∴∠ENC=58°,∴∠ENM=12(180°-∠ENC)=12(180°-58°)=61°,∴∠FMN=360°-90°-90°-61°=119°,故答案为:119.【点睛】本题考查了角的计算,翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相等的角是解决本题的关键.题型四:中点四边形顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.例4.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形【分析】如图,连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=12 BD.同理FG=12BD,HG=12AC,EF=12AC.又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.∴四边形EFGH为菱形.故选C.变式46.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【答案】(1)相等;(2)垂直;(3)见解析.【解析】【分析】(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半,再根据矩形、菱形、正方形的判定方法进行判定即可(3)由(2)可知,中点四边形的形状是由原四边形的对角线的关系决定的.【详解】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=12BD,EH∥BD.同理得FG=12BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;故答案为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.【点睛】此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.题型五:线段最值正方形中求解线段的最值问题,主要依靠正方形的对称性进行求解,根据具体的图形找到图中相等的线段,或者利用作对称的方法将所求线段和转化为求出某一条线段的长度是解题关键.例5.如图,在矩形ABCD 中,点M 是CD 的中点,点P 是AB 上的一动点.若1AD =,2AB =,则PA PB PM ++的值可能是()A .3.2B .3.5C .3.6D .3.8【详解】解:∵AP PB AB +=,∴PM 最小时,PA PB PM ++的值最小,由垂线段最短可知当PM CD ⊥时,PA PB PM ++的值最小,最小值为123+=.当点P 在点B 时,2PA PB PM AB BM ++=+=+.∴PA PB PM ++的取值范围为32PA PB PM ≤++≤+,故选A .变式57.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=2,P 为AC 上的一个动点,则PF+PE 的最小值为______________【解析】【详解】试题分析:∵正方形ABCD 是轴对称图形,AC 是一条对称轴∴点F 关于AC 的对称点在线段AD 上,设为点G ,连结EG 与AC 交于点P ,则PF+PE 的最小值为EG 的长∵AB=4,AF=2,∴AG=AF=2∴=考点:轴对称图形题型六:特殊四边形中动点问题动点问题的考查重点在于1.根据已知信息表示出某一定点或某几个动点的路程关于时间的代数式,2.再根据具体的特殊四边形的边角性质进行等量关系式的确立,3.最后利用解方程的思想求解即可.例6.如图,在Rt ABC ∆中,90B ︒∠=,60cm AC =,60A ︒∠=,点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D E ,运动的时间是s(015)t t <….过点D 作DF BC ⊥于点F ,连接DE EF ,,若四边形AEFD 为菱形,则t 的值为()A .5B .10C .15D .20【详解】根据题意,4CD t =,60cmAC =∴604AD AC CD t=-=-又∵2AE t =,四边形AEFD 为菱形∴AD AE=即6042t t-=∴10t =故答案为B .变式68.如图,正方形ABCD 的边长为1,动点P 从A 出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为________;当点P 所在位置为D 时,点P 运动路程为________(用含自然数n 表示).【答案】(1).点B (2).43n +【解析】【分析】根据点P 的运动路程为4的倍数即回到点A 处,找出一般规律即可得;再根据点P 所在位置为D 时,点P 的运动路程为3,7,11, ,归纳类推出一般规律即可得.【详解】解:由题意得:当点P 的运动路程为4的倍数时,点P 所在位置为点A ,200950241=⨯+ ,∴当点P 的运动路程为2009时,点P 所在位置为点B ;由题意得:当点P 所在位置为点D 时,点P 的运动路程为3,7,11, ,因为3403=⨯+,7413=⨯+,11423=⨯+,所以归纳类推得:当点P 所在位置为点D 时,点P 运动路程为43n +(n 为自然数),故答案为:点B ,43n +.【点睛】本题考查了正方形的性质,正确归纳类推出一般规律是解题关键.实战练9.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形【答案】D【解析】【分析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.【点睛】此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.10.顺次连接矩形ABCD各边的中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形【答案】D【解析】【详解】试题解析:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=12AC,FG=EH=12BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故选D.考点:中点四边形.视频11.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. B.2 C.3 D.【答案】B【解析】【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为4,可求出AB的长,从而得出结果.【详解】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为4,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.∴所求最小值为2.故选B.【点睛】此题主要考查了轴对称——最短路线问题,难点主要是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P 的位置即可.要灵活运用对称性解决此类问题.12.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕∠的度数为()为AE,点B在MN上的对应点为H,则HBCA.30︒B.22.5︒C.15︒D.12.5︒【答案】C【解析】【分析】由翻折的性质得到AH=AB,MN垂直平分AD,证明△ADH是等边三角形,得到∠DAH,可得∠HAB,结合AB=AH计算出∠ABH,从而可得∠HBC.【详解】解:由翻折的性质可知:AH=AB ,MN 垂直平分AD ,∴DH=AH ,∴AH=AD=DH=AB ,∴△ADH 是等边三角形,∴∠DAH=60°.∴∠HAB=30°.∵AB=AH ,∴∠ABH=12×(180°-30°)=75°.∴∠HBC=15°.故选C .【点睛】本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的性质,证得三角形ADH 是一个等边三角形是解题的关键.13.如图,将边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AEFG 的位置,则图中阴影部分的面积为()A.3B.6C.9D.12【答案】D【解析】【详解】解:作MH ⊥DE 于H ,如图,∵四边形ABCD 为正方形,∴AB=AD=1,∠B=∠BAD=∠ADC=90°,∵正方形ABCD 绕点A 逆时针旋转30°到正方形AEFG 的位置,∴AE=AB=1,∠1=30°,∠AEF=∠B=90°,∴∠2=60°,∴△AED 为等边三角形,∴∠3=∠4=60°,DE=AD=1,∴∠5=∠6=30°,∴△MDE 为等腰三角形,∴DH=EH=12,在Rt △MDH 中,MH=3DH=3×12=6,∴S △MDE =12×1×6=12.故选D .14.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为()A.14cm 2B.14n cm 2C.4n cm 2D.(14)n cm 2【答案】B【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n-1阴影部分的和.【详解】由题意可得阴影部分面积等于正方形面积的14,即是14,5个这样的正方形重叠部分(阴影部分)的面积和为14×4,n 个这样的正方形重叠部分(阴影部分)的面积和为14×(n-1)=n 14-cm 2.故选B .【点睛】考查了正方形的性质,解决本题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.15.如图,四边形ABCD 是一个正方形,E 是BC 延长线上一点,且AC =EC ,则∠DAE 的度数为_________.【答案】22.5°【解析】【分析】由四边形ABCD 是一个正方形,根据正方形的性质,可得∠ACB=45°,又由AC=EC ,根据等边对等角,可得∠E=∠CAE ,继而根据等腰三角形的性质和三角形的内角和求得∠EAC 的度数,进一步即可求得∠DAE 的度数.【详解】解:∵四边形ABCD 是正方形,∴45ACB ∠=︒,∴18045135ACE ∠=-=︒︒︒,又∵AC CE =,∴()118013522.52CAE CEA ∠=∠=⨯︒-︒=︒,则4252.52.52DAE DAC CAE ∠=∠-∠=-︒=︒︒.故答案为:22.5°【点睛】此题考查了正方形的性质以及等腰三角形的性质.此题比较简单,注意掌握数形结合思想的应用.16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______【答案】15°【解析】【分析】由正方形的性质和等边三角形的性质可得BC=CD=AD=AB、∠ADC=∠BCD=∠CBA=∠BAD=90°,AE=DE=AD,∠ADE=∠DEA=∠EAD=60°;再说明△ABE是等腰三角形,最后根据等腰三角形的性质解答即可.【详解】解:∵正方形ABCD∴BC=CD=AD=AB,∠ADC=∠BCD=∠CBA=∠BAD=90°∵等边三角形ADE∴AE=DE=AD,∠ADE=∠DEA=∠EAD=60°∴AB=AE,∠BAE=∠BAD+∠EAD=150°∴∠AEB=1801801501522BAE-∠-==.故答案为15°.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质以及等量代换思想,掌握运用等量代换思想是解答本题的关键.17.如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点. a.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是矩形.b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.【答案】(1).AC⊥BD(2).AC=BD(3).AC⊥BD且AC=BD【解析】【分析】首先连接AC,BD,由三角形中位线的性质,可判定EH∥FG,GH∥EF,继而可证得四边形EFGH是平行四边形;a、由EFGH是平行四边形可得当原四边形ABCD的对角线AC、BD满足AC⊥BD 时,四边形EFGH是矩形;b、由EFGH是平行四边形可得原四边形ABCD的对角线AC、BD满足AC=BD时,四边形EFGH是菱形;c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.【详解】连接AC,BD,∵四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,∴EH∥BD,FG∥BD,∴EH∥FG,同理:GH∥EF,∴四边形EFGH是平行四边形.a、当AC⊥BD时,四边形EFGH是矩形.∵由①得:四边形MONH是平行四边形,∴当AC⊥BD时,四边形MONH是矩形,∴∠EHG=90°,∴四边形EFGH是矩形.b、当AC=BD时,四边形EFGH是菱形.∵HG=12AC,EH=12BD,∴EH=GH,∴四边形EFGH 是菱形;c 、由a 与b 可得:原四边形ABCD 的对角线AC 、BD 满足AC ⊥BD 且AC =BD 时,四边形EFGH 是正方形.故答案为a 、AC ⊥BD ,b 、AC =BD ,c 、AC ⊥BD 且AC =B D .【点睛】本题考查了中点四边形的性质,解题关键是注意掌握辅助线的作法,注意掌握数形结合思想的应用.18.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE BC =.P 为CE 上任意一点,PQ BC ⊥于点Q ,PR BE ⊥于点R ,则PQ PR +的值是_____.【答案】2【解析】【分析】如图(见解析),先利用三角形的面积公式可得PQ PR CF +=,再根据正方形的性质、直角三角形斜边上的中线可得122CF BD ==即可.【详解】解:如图,过点C 作CF BD ⊥于点F ,连接PB ,PBC PBE BCE S S S += ,111222BC PQ BE PR BE CF ∴⋅+⋅=⋅,BE BC = ,()11112222BE PQ BE PR BE PQ PR BE CF ∴⋅+⋅=+=⋅,即PQ PR CF +=, 四边形ABCD 是边长为1的正方形,1,90BC CD BCD ∴==∠=︒,BD ∴==又,BC CD CF BD =⊥ ,CF ∴是Rt BCD 斜边BD 上的中线(等腰三角形的三线合一),122CF BD ∴==,2PQ PR ∴+=,故答案为:2.【点睛】本题考查了正方形的性质、直角三角形斜边上的中线等知识点,利用三角形的面积公式得出PQ PR CF +=是解题关键.19.如图,在正方形ABCD 中,12AB =,点E 在边CD 上,3CD DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连接AG ,CF .有下列结论:①ABG AFG ≅ ;②BG GC =;③//AG CF ;④6FGC S =△.其中正确的结论是__________.(填序号)【答案】①②③【解析】【分析】由正方形的性质和折叠的性质得出AB =AF ,∠AFG =90°,由HL 证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =FG =x ,则CG =12-x .由勾股定理得出方程,解方程求出BG ,得出GC ,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∠AGB =∠AGF =∠GFC =∠GCF ,得出AG ∥CF ,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】解:①正确.理由如下:四边形ABCD 是正方形,12AB BC CD AD ∴====,90B GCE D ∠=∠=∠=︒,由折叠的性质得:AF AD =,90AFE D ∠=∠=︒,90AFG ∴∠=︒,AB AF =,在Rt ABG △和Rt AFG △中,AG AG AB AF =⎧⎨=⎩,Rt Rt (HL)ABG AFG ∴≅△△;②正确.理由如下:由题意得:143EF DE CD ===,设BG FG x ==,则12CG x =-.在直角ECG 中,根据勾股定理,得222(12)8(4)x x -+=+,解得:6x =,6BG ∴=,1266GC ∴=-=,BG GC ∴=;③正确.理由如下:CG BG = ,BG GF =,CG GF ∴=,FGC ∴△是等腰三角形,GFC GCF ∠=∠.又∵Rt Rt ABG AFG ≅△△,AGB AGF ∴∠=∠,218022+==︒-=+==∠∠∠∠∠∠∠∠AGB AGF AGB FGC GFC GCF GFC GCF ,AGB AGF GFC GCF ∴∠=∠=∠=∠,//AG CF ∴;④错误;理由如下:11682422GCE S GC CE =⋅=⨯⨯= △,6GF = ,4EF =,GFC 和FCE △等高,:3:2GFC FCE S S ∴=△△,37224655GFC S ∴=⨯=≠△.故④不正确.∴正确的个数有①②③.故答案为:①②③.【点睛】本题考查的是翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.20.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是_______.【答案】.【解析】【详解】试题分析:要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴=考点:1.轴对称-最短路线问题;2.正方形的性质.视频21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.【答案】(1)见解析;(2)45°;(3)BG=2.【解析】【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL 定理得出△ABG≌△AFG即可;(2)由(1)可得∠FAG=12∠BAF,由折叠的性质可得∠EAF=12∠DAF,继而可得∠EAG=12∠BAD=45°;(3)首先设BG=x,则可得CG=6﹣x,GE=EF+FG=x+3,然后利用勾股定理GE 2=CG 2+CE 2,得方程:(x +3)2=(6﹣x )2+32,解此方程即可求得答案.【详解】(1)证明;在正方形ABCD 中,AD =AB =BC =CD ,∠D =∠B =∠BCD =90°,∵将△ADE 沿AE 对折至△AFE ,∴AD =AF ,DE =EF ,∠D =∠AFE =90°,∴AB =AF ,∠B =∠AFG =90°,又∵AG =AG ,在Rt △ABG 和Rt △AFG 中,AG=AG AB=AF ⎧⎨⎩,∴△ABG ≌△AFG (HL );(2)∵△ABG ≌△AFG ,∴∠BAG =∠FAG ,∴∠FAG =12∠BAF ,由折叠的性质可得:∠EAF =∠DAE ,∴∠EAF =12∠DAF ,∴∠EAG =∠EAF +∠FAG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°;(3)∵E 是CD 的中点,∴DE =CE =12CD =12×6=3,设BG =x ,则CG =6﹣x ,GE =EF +FG =x +3,∵GE 2=CG 2+CE 2∴(x +3)2=(6﹣x )2+32,解得:x =2,∴BG =2.【点睛】此题属于四边形的综合题,考查了正方形的性质、折叠的性质、全等三角形的判定与性质以及勾股定理等知识,注意折叠中的对应关系、注意掌握方程思想的应用是解此题的关键.22.如图,在ABC 中,,,AB AC AD BC =⊥垂足为点,D AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .()1求证:四边形ADCE 为矩形;()2当ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.【答案】(1)证明见解析;(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,证明见解析.【解析】【分析】(1)先根据等腰三角形的三线合一可得BAD CAD ∠=∠,再根据角平分线的定义可得MAE CAE ∠=∠,从而可得90DAE ∠=︒,然后根据垂直的定义可得90ADC AEC ∠=∠=︒,最后根据矩形的判定即可得证;(2)先根据等腰直角三角形的性质可得45ACB B ∠=∠=︒,再根据直角三角形的性质可得45CAD ACD ∠=∠=︒,然后根据等腰三角形的定义可得CD AD =,最后根据正方形的判定即可得.【详解】(1) 在ABC 中,,=⊥AB AC AD BC ,12BAD CAD BAC ∴∠=∠=∠(等腰三角形的三线合一),AN 是ABC 外角CAM ∠的平分线,12MAE CA CA E M ∴∠∠=∠=,11118090222DAE CAD CAE BA CA C M ∴∠=∠+∠=∠+=⨯︒=∠︒,又,AD BC CE AN ⊥⊥ ,90ADC AEC ∴∠=∠=︒,∴四边形ADCE 为矩形;(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,证明如下:,90AB AC BAC ∠==︒ ,45ACB B ∴∠=∠=︒,AD BC ⊥ ,45CAD ACD ∴∠=∠=︒,CD AD ∴=,四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.【点睛】本题考查了正方形与矩形的判定、等腰三角形的三线合一、角平分线的定义等知识点,熟练掌握正方形与矩形的判定方法是解题关键.23.如图,已知正方形ABCD 的边长是1,E 为CD 的中点,P 为正方形边上的一个动点,动点P 从A 出发沿A B C E ⇒⇒⇒运动,最终到达点E ,若点P 经过的路程AP x =,APE 的面积记为y ,问当x 等于何值时,y 的值等于13?【答案】当23x =或53x =时,APE 的面积为13【解析】【分析】利用面积公式求解即可.【详解】解:由题意可知:当动点P 从A 运动到B 时,111122ABE S =⨯⨯= ,当动点P 从B 运动到C 时,1111224ACE S =⨯⨯= ,由于111432<<,因此满足题意的点P 的位置只有两种情况①当01x <<时,即点P 在AB 边上运动时,如图a ,此时AP x =,11122APE S y x x ==⨯⨯= ,当13y =时,解得:()263x =②当12x <<时,即点P 在BC 边上运动,如图b ,此时折线1BP x =-,2PC x =-,()()1111311112222444APE ABP PEC ADE ABCD S y S S S S x x x ==---=--⨯--⨯-=- 正方形当13y =时,解得:53x =综上所述,当23x =或53x =时,APE 的面积为13【点睛】找出临界点是解题的关键.24.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得OE OD OH OG -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形,∴OC =,OC =.∴OD OE +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形,由(1)得:OG OH +=,在CGD ∆和CHE ∆中,90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴OD OE +=.(3)OG OH +=,()CGD CHE ASA ∆≅∆,∴GD HE =.∵OD GD OG =-,OE OH EH =+,∴OE OD OH OG -=+=,∴OC =,∴CE =CE.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.培优练25.如图①,正方形ABCD 中,点O 是对角线AC 的中点,点P 是线段AO 上(不与点A ,O 重合)的一个动点,过点P 作PE PB ⊥且PE 交边CD 于点E .。
【文库独家】学科:数学教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系.3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有:(1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1( 正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____.(3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
第06讲正方形的判定模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测 1.掌握平行四边形、矩形、菱形与正方形的概念之间的从属关系及性质之间的区别;2.能熟练应用正方形的性质、判定等知识进行有关证明和计算。
一、正方形的判定1.定义法:有一组邻边相等,并且有一个角是直角的平行四边形;2.先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);3.先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).二、特殊平行四边形之间的关系或者可表示为:三、中点四边形:顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.考点一:正方形的判定定理理解例1.(23-24八年级下·北京·期中)下列命题中,能判断四边形是正方形的是()A.对角线互相垂直的矩形B.对角线相等的平行四边形C.对角线互相垂直的平行四边形D.对角线互相垂直平分的菱形【答案】A【分析】本题主要考查了正方形的判定,熟知正方形的判定定理是解题的关键.【详解】解:A、对角线互相垂直的矩形是正方形,符合题意;B、对角线相等的平行四边形不一定是正方形,例如矩形也满足条件,不符合题意;C、对角线互相垂直平分且相等的平行四边形是正方形,不符合题意;D、对角线相等的菱形是正方形,不符合题意;故选:A.【变式1-1】(23-24八年级下·海南省直辖县级单位·期中)在复习特殊的平行四边形时,某小组同学画出了如图关系图,组内一名同学在箭头处填写了它们之间转化的条件,其中填写错.误的是()A.①对角相等B.②对角线互相垂直C.③有一组邻边相等D.④对角线相等【答案】A【分析】本题考查矩形,菱形,正方形的判定,关键是熟练掌握矩形,菱形,正方形的判定方法.由矩形,菱形,正方形的判定,即可判断.【详解】解:A 、对角相等的平行四边形不一定是矩形,故A 符合题意;B 、对角线互相垂直的平行四边形是菱形,正确,故B 不符合题意;C 、有一组邻边相等的矩形是正方形,正确,故C 不符合题意;D 、对角线相等的菱形是正方形,正确,故D 不符合题意.故选:A .【变式1-2】(2024八年级下·安徽·专题练习)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()A .当AB BC =时,它是菱形B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形【答案】D 【分析】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A 、根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB BC =时,它是菱形,故A 选项正确,不符合题意;B 、 四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形,故B 选项正确,不符合题意;C 、有一个角是直角的平行四边形是矩形,故C 选项正确,不符合题意;D 、根据对角线相等的平行四边形是矩形可知当AC BD =时,它是矩形,不是正方形,故D 选项错误,符合题意.故选:D .【变式1-3】(23-24八年级下·云南昆明·期中)下列命题中,真命题的个数是()①平行四边形是轴对称图形,也是中心对称图形;②一组对边平行,一组对边相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线相等且互相平分的四边形是菱形;⑤四个内角都相等的四边形是矩形;⑥对角线互相垂直平分且相等的四边形是正方形.A .2B .3C .4D .5【答案】B【分析】本题考查了真假命题,平行四边形的性质与判断,矩形、菱形、正方形的判定等知识,利用平行四边形的性质判断①;利用平行四边形的判定判断②、③;利用矩形、菱形的判定判断③、④;利用正方形的判定判断⑤即可.【详解】解:①平行四边形不是轴对称图形,是中心对称图形,故原命题是假命题;②一组对边平行,一组对边相等的四边形不一定是平行四边形,故原命题是假命题;③两组对角分别相等的四边形是平行四边形,,故原命题是真命题;④对角线相等且互相平分的四边形是矩形,故原命题是假命题;⑤四个内角都相等的四边形是矩形,故原命题是真命题;⑥对角线互相垂直平分且相等的四边形是正方形,故原命题是真命题.故选:B .考点二:添一个条件使四边形是正方形例2.(2024·陕西榆林·三模)在矩形ABCD 中,对角线AC 与BD 交于点Q ,请添加一个条件:使得矩形ABCD 是正方形.(只写一个)【答案】AB BC =(答案不唯一)【分析】本题考查正方形的判定,根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【详解】解:根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB BC =或BC CD =或CD DA =或DA AB =或AC BD ⊥,故答案为:AB BC =(答案不唯一).【变式2-1】(21-22八年级下·黑龙江齐齐哈尔·期中)如图,在菱形ABCD 中,对角线AC BD 、相交于点O ,不添加任何辅助线,请你添加一个条件,使四边形ABCD 是正方形(填一个即可).【答案】90BAD ∠=︒(答案不唯一)【分析】本题考查了正方形的判定:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.根据有一个直角的菱形为正方形添加条件.【详解】解: 四边形ABCD 为菱形,∴当90BAD ∠=︒时,四边形ABCD 为正方形.故答案为:90BAD ∠=︒.【变式2-2】(22-23八年级下·山东济南·阶段练习)如图,在Rt ABC △中,90ACB D E F ∠=︒,,,分别是AB AC BC ,,的中点,连接DE DF EF ,,,要使四边形DECF 是正方形,只需增加一个条件为.【答案】AC BC=【分析】根据中位线定理,和一组邻边相等的矩形是正方形添加条件即可.【详解】∵90ACB D E F ∠=︒,,,分别是AB AC BC ,,的中点,∴1122DE BC DE BC DF AC DF AC ==,,,,P P ∴四边形DECF 是矩形,∵四边形DECF 是正方形,∴1122DF DE BC AC ===,故AC BC =,故添加的条件是:AC BC =.【点睛】本题考查了中位线定理,和一组邻边相等的矩形是正方形,熟练掌握中位线定理和正方形的判定定理是解题的关键.使四边形EFGH 是正方形,BD 、AC 应满足的条件是.【答案】AC BD =且AC BD⊥【分析】依据条件先判定四边形EFGH 为平行四边形,再根据又AC BD =,EF EH =,得出四边形EFGH 为菱形,再根据90FEH ∠=︒,即可得到菱形EFGH 是正方形.【详解】应满足的条件是:AC BD =且AC BD ⊥,理由:E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,∴在ADC △中,HG 是ADC △的中位线,HG AC ∴∥,12HG AC =,同理EF AC ∥,12EF AC =,同理,12EH BD =,则HG EF ∥且HG EF =,∴四边形EFGH 为平行四边形,又AC BD = ,EF EH ∴=,∴四边形EFGH 为菱形,AC BD ^ ,EF AC ∥,EF BD ∴⊥,EH BD ∥ ,EF EH ∴⊥,90FEH ∴∠=︒,∴菱形EFGH 为正方形,故答案为:AC BD =且AC BD ⊥.【点睛】此题考查了中点四边形的性质、三角形中位线定理以及正方形的判定,注意三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.考点三:证明四边形是正方形例3.(2024·陕西咸阳·三模)如图,在Rt ABC △中,90ABC ∠=︒,BP 平分ABC ∠交AC 于点P ,过点P 作PM AB ⊥于点M ,PN BC ⊥于点N ,求证:四边形BMPN 为正方形.【答案】详见解析【分析】本题主要考查了矩形的判定和性质,正方形的判定,等腰三角形的判定,角平分线的性质等知识点,由BP 平分ABC ∠交AC 于点P ,得出ABP CBP ∠=∠,由过点P 作PM AB ⊥于点M ,PN BC ⊥于点N 和90ABC ∠=︒得出四边形BMPN 为矩形,再由MP MB =即可得出结论,熟练掌握矩形的判定和性质是解决此题的关键.【详解】∵BP 平分ABC ∠交AC 于点P ,∴ABP CBP ∠=∠,∵过点P 作PM AB ⊥于点M ,PN BC ⊥于点N ,∴90BMP BNP ∠=∠=︒,∵90ABC ∠=︒,∴四边形BMPN 为矩形,∴PM BN ∥,∴CBP MPB ABP ∠=∠=∠,∴MP MB =,∴四边形BMPN 为正方形.【变式3-1】(23-24八年级下·山东济宁·期中)如图,在ABC 中,AB AC =,点D 是边BC 的中点,过点A ,D 分别作BC 与AB 的平行线,相交于点E ,连接EC ,AD ,DE 与AC 交于点O .(1)求证:四边形ADCE 是矩形;(2)当90BAC ∠=︒时,求证:四边形ADCE 是正方形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)先由AB AC =,点D 是边BC 的中点,根据等腰三角形三线合一的性质得出BD CD =,AD BC ⊥,,再由AE BD ∥,DE AB ∥得出四边形AEDB 为平行四边形,那么AE BD CD ==,又AE DC ∥,根据一组对边平行且相等的四边形是平行四边形得出四边形ADCE 是平行四边形,又90ADC ∠=︒,根据有一个角是直角的平行四边形即可证明四边形ADCE 是矩形;(2)由矩形的性质可得AC DE ⊥,又由(1)知四边形ADCE 是矩形,根据对角线互相垂直的矩形是正方形即可证明四边形ADCE 是正方形.【详解】(1)证明:∵AB AC =,点D 是边BC 的中点,∴BD CD =,AD BC ⊥,∴90ADC ∠=︒,∵AE BD ∥,DE AB ∥,∴四边形AEDB 为平行四边形,∴AE BD CD ==,又∵AE DC ∥,∴四边形ADCE 是平行四边形,∵90ADC ∠=︒,∴四边形ADCE 是矩形;(2)证明:∵DE AB ∥,90BAC ∠=︒,∴90DOC BAC ∠=∠=︒,即AC DE ⊥,由(1)知四边形ADCE 是矩形,∴四边形ADCE 是正方形.【点睛】本题考查了正方形的判定,矩形的判定,平行四边形的判定与性质,等腰三角形的性质,平行线的性质,熟练掌握知识点的应用是解题的关键.【变式3-2】(23-24八年级下·内蒙古赤峰·期中)如图,在ABC 中,90ACB ∠=︒,点D 是边AB 的中点,连接CD ,过点C 作AB 的平行线,并在此直线上截取CE AD =,连接BE .(1)判断四边形CDBE 的形状并请说明理由;(2)直接写出当ABC 满足什么条件时,四边形CDBE 是正方形.【答案】(1)四边形CDBE 是菱形,理由见解析(2)当ABC 是等腰直角三角形时,四边形CDBE 是正方形【分析】(1)说明CE DB =,证明四边形CDBE 是平行四边形,再根据直角三角形斜边上中线等于斜边的一半得到12CD BD AB ==,即可得证;(2)当ABC 是等腰直角三角形,由等腰三角形的性质得出CD AB ⊥,即可得证.【详解】(1)解:四边形CDBE 是菱形.理由:∵CE AB ∥,点D 是边AB 的中点,∴CE DB ∥,AD DB=∵CE AD =,∴CE DB =,∴四边形CDBE 是平行四边形,∵90ACB ∠=︒,点D 是边AB 的中点,∴12CD BD AB ==,∴平行四边形CDBE 是菱形;(2)当ABC 是等腰直角三角形时,四边形CDBE 是正方形.理由:∵90ACB ∠=︒,且ABC 是等腰直角三角形,∴CA CB =,∵点D 是边AB 的中点,∴CD AB ⊥,∴90CDB ∠=︒,由(1)知:四边形CDBE 是菱形,∴四边形CDBE 是正方形.【点睛】本题考查平行四边形的判定,正方形的判定,菱形的判定,直角三角形斜边上的中线性质,等腰直角三角形的性质,等腰三角形三线合一性质.熟练掌握平行四边形的判定及特殊平行四边形的判定,并能进行推理论证是解题的关键.【变式3-3】(2024八年级下·浙江·专题练习)在ABC 中,AB AC =,BAC ∠的平分线交BC 于点D ,过点B 作BE AD ∥交BAF ∠的平分线于点E .(1)求证:四边形ADBE 是矩形;(2)当BAC ∠满足什么条件时,四边形ADBE 是正方形.【答案】(1)见解析(2)90BAC ∠=︒,见解析【分析】(1)由AB AC =,AD 平分BAC ∠,可得12BAD BAC AD BC ∠=∠⊥,,由AE 是ABC 的外角平分线,可得12BAE BAF ∠=∠,则90BAD BAE ∠+∠=︒,即=90DAE ∠︒,AD AE ⊥,证明AE BC ∥,进而可证四边形ADBE 是矩形;(2)由AB AC =,AD 平分BAC ∠,90BAC ∠=︒,可得45ABC C BAD CAD ∠=∠=∠=∠=︒,则AD BD =,进而结论得证.【详解】(1)证明:∵AB AC =,AD 平分BAC ∠,∴12BAD BAC AD BC ∠=∠⊥,,∵AE 是ABC 的外角平分线,∴12BAE BAF ∠=∠,∵180BAC BAF ∠+∠=︒,∴90BAD BAE ∠+∠=︒,即=90DAE ∠︒,∴AD AE ⊥,∵AD BC ⊥,∴AE BC ∥,又∵BE AD ∥,=90DAE ∠︒,∴四边形ADBE 是矩形;(2)解:当90BAC ∠=︒时,四边形ADBE 是正方形.理由如下:∵AB AC =,AD 平分BAC ∠,90BAC ∠=︒,∴45ABC C BAD CAD ∠=∠=∠=∠=︒,∴AD BD =,∴矩形ADBE 为正方形.【点睛】本题考查了等腰三角形的判定与性质,角平分线,矩形的判定,正方形的判定等知识.熟练掌握等腰三角形的判定与性质,角平分线,矩形的判定,正方形的判定是解题的关键.考点四:与正方形有关的作图问题(含无刻度作图)例4.(23-24八年级下·江苏南京·期中)已知:如图,正方形ABCD 中,点E 、F 分别是边AB 和BC 上的点,且满足BE CF =.(1)不用圆规,请只用不带刻度的直尺作图:在边CD 和DA 上分别作出点G 和点H ,DG AH BE CF ===(保留作图痕迹,不写做法作法);(2)判断:四边形EFGH 的形状是.【答案】(1)见解析(2)正方形【分析】(1)根据正方形是中心对称图形作图即可;(2)证明()SAS AEH BFE CGF DHG ≌≌≌,推出EF FG GH HE ===,得到四边形EFGH 是菱形,再证明90AEH BEF BFE BEF ∠+∠=∠+∠=︒,即可得到四边形EFGH 是正方形.【详解】(1)解:如图所示:DG AH BE CF ===;;(2)解:四边形EFGH 是正方形,∵正方形ABCD 中,∴AB CD ∥,OB OD =,∴EBO GDO ∠=∠,∵EOB GOD ∠=∠,∴()ASA EOB GOD ≌,∴BE DG =,同理AH CF =,∵BE CF =,∴EF FG GH HE ===,∵正方形ABCD 中,BAD ABCBCD CDA ∠=∠=∠=∠,AB BC CD DA ===,∵DG AH BE CF ===,∴AE BF CG DH ===,∴()SAS AEH BFE CGF DHG ≌≌≌,∴EF FG GH HE ===,∴四边形EFGH 是菱形,∴AEH BFE ∠=∠,∵90AEH BEF BFE BEF ∠+∠=∠+∠=︒,∴四边形EFGH 是正方形.故答案为:正方形.【点睛】本题考查了中心对称图形作图,全等三角形的判定和性质,菱形的判定和性质,正方形的判定.掌握正方形是中心对称图形是解题的关键.【变式4-1】(23-24九年级下·山东淄博·期中)如图,点,E F 在正方形ABCD 的边,AB CD 上.(1)请用尺规作图法,在,AD BC 上分别取点,M N 使得MN EF ⊥且平分正方形ABCD 的面积.(保留作图痕迹,不写作法)(2)求证:MN EF=【答案】(1)见解析(2)见解析【分析】本题考查了正方形的性质,作线段的垂线,全等三角形的性质与判定.(1)平分正方形ABCD 的面积,会经过正方形的中心O ,过点O 作EF 的垂线即可;(2)过点E 作EG CD ⊥于点G ,过点N 作NH AD ⊥,设,EG MN 交于点P ,证明()AAS EFG NMH ≌,即可得证.【详解】(1)解:如图,MN 即为所作,(2)解:如图所示,过点E 作EG CD ⊥于点G ,过点N 作NH AD ⊥,设,EG MN 交于点P ,∴四边形,AEGD ABNH 是矩形,90NHM EGF ∠=∠=︒∴,EG AD AB HN ==,∵四边形ABCD 是正方形,∴AB AD =,AB AD ⊥,∴EG HN =,HN EG⊥∵AD EG∥∴EPN HMN∠=∠∵EF MN ⊥,HN EG⊥∴90,90PEF EPN HNM EPN ∠+∠=︒∠+∠=︒,∴PEF HNM ∠=∠即GEF HNM∠=∠在,EFG NMH 中,90NHM EGF HNM GEF EG HN ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AAS EFG NMH ≌∴MN EF=【变式4-2】(23-24九年级上·辽宁沈阳·期中)如图,在正方形ABCD 中,点E 在AD 上,点F 在BC 的延长线上,AE CF =,连接EF .(1)求证:45F ∠=︒;(2)如图,当点E 为AD 边中点时,请仅用无刻度的直尺作矩形CDOF (保留作图痕迹).【答案】(1)见详解(2)见详解【分析】(1)连接AC ,先证明四边形AEFC 是平行四边形,可得AC EF ,即有45F ACB ∠=∠=︒;(2)设EF 、CD 交于点T ,连接AC 、BD ,二者交于点P ,连接DF ,连接PT ,并延长交PT 于点G ,连接CG ,并延长交AD 的延长线于点O ,连接FO ,问题得解.【详解】(1)证明:连接AC ,如图,在正方形ABCD 中,有AD BC ∥,45ACB ACD ∠=∠=︒,∵AE CF =,AD BC ∥,∴四边形AEFC 是平行四边形,∴AC EF ,∴45F ACB ∠=∠=︒;(2)如图,矩形CDOF 即为所求.证明:根据点E 为AD 边中点,AE CF =,可得DE CF =,进而可证明DET CFT ≌,则有DT CT =,ET FT =,即点T 为EF 、CD 的中点;根据正方形的性质可得点P 为BD 、AC 的中点;即有:PT AD ∥,PT BC ∥,结合点P 为BD 、AC 的中点,可得点G 为CO 、DF 的中点,即可证明四边形CDOF 是平行四边形,结合90DCF DCB ∠=∠=︒,则平行四边形CDOF 是矩形.【点睛】本题考查了正方形的性质,平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质等知识,掌握平行四边形的判定与性质,是解答本题的关键.【变式4-3】(22-23八年级下·江苏扬州·期末)如图,已知正方形,ABCD E 为BC 上任意一点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)在边AD 上找点F ,使得直线EF 将正方形ABCD 的面积平均分成相等的两部分;(在图1中完成)(2)在边AB 上找点G ,使得BG BE =;(在图2中完成)(3)连接AE ,将ABE 绕点A 逆时针旋转90 ,作出旋转后的三角形.(在图3中完成)【答案】(1)见解析(2)见解析(3)见解析【分析】(1)利用经过对角线的交点的直线平分平行四边形的面积,与对角线的交点进行连线即可求解;(2)利用正方形关于任意一条对角线对称即可作出所作图形;==,利用全等三角形的判定与性质、平行四边形的判定(3)在第(2)问所作图的基础上构造DH BE BG=,即可作出所作图形.与性质,得到DM BG【详解】(1)如图所示:(2)如图所示:(3)旋转后的三角形为ADM△,如图所示:【点睛】本题考查了用无刻度的直尺作图,解题关键是掌握正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、轴对称等知识.考点五:正方形的性质与判定的综合问题例5.(23-24八年级下·江苏无锡·期中)实践操作:第一步:如图1,将矩形纸片ABCD 沿过D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后在把纸片展平;第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,得到折痕EF ,B C ''交AB 于点M ,再把纸片展平.问题解决:(1)如图1,求证:四边形AEA D '是正方形;(2)如图2,若2AC '=,4DC '=,,求AC M '△的面积.【答案】(1)见解析(2)AC M '△的面积是83【分析】(1)由折叠性质得AD AD =',AE A E '=,45ADE A DE '∠=∠=︒,再根据平行线的性质和等腰三角形的判定得到四边形AEA D '是菱形,进而结合内角为直角条件得四边形AEA D '为正方形;(2)连接C E ',证明Rt Rt EAC C BE ''' ≌,得C EA EC B '''∠=∠,从而有MC ME '=,设AM x =,则6C M BM x '==-,在Rt MC A ' 中,利用勾股定理列方程求出x ,得到AM ,即可求出AC M '△的面积.【详解】(1)解:∵四边形ABCD 是矩形,∴90A ADC ∠=∠=︒,∵将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,∴AD AD =',AE A E '=,45ADE A DE '∠=∠=︒,∵AB CD ∥,∴AED A DE '∠=∠,∴AED ADE ∠=∠,∴AE AD =,∴AD AE A E A D ''===,∴四边形AEA D '是菱形,∵90A ∠=︒,∴四边形AEA D '是正方形;(2)解:如图,连接C E ',由(1)知,AD AE =,∵四边形ABCD 是矩形,∴AD BC =,90EAC B '∠=∠=︒,由折叠知,B C BC ''=,B B '∠=∠,∴AE BC '=,EAC B ''∠=∠,在Rt EAC ' 和Rt C BE '' 中,EC C E AE BC '''=⎧⎨=⎩∴()Rt Rt EAC C BE HL ''' ≌,∴C EA EC B '''∠=∠,∴MC ME '=,设AM x =,∵2AC '=,4DC '=,∴2+46AE AD ===,∴6C M BM x '==-,在Rt MC A ' 中,由勾股定理,得222+AC AM MC ''=,即2222+(6)x x =-,2243612x x x +=-+,1232x =,解得83x =,即83AM =,∴AC M '△的面积1188=22233AC AM '=⨯⨯=g .【点睛】本题考查了矩形的性质,折叠,正方形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,平行线的性质,解题的关键是理解题意,掌握这些知识点,添加辅助线.线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)EAF ∠=________°(直接写出结果不写解答过程)(2)①求证:四边形ABCD 是正方形.②若3BE EC ==,求AEF △的面积.(3)如图(2),在PQR 中,45QPR ∠=︒,高7PH =,3QH =,则HR 的长度是________(直接写出结果不写解答过程).【答案】(1)45;(2)①证明见解析;②15;(3)2.8.【分析】(1)由90C ∠=︒可得90CEF CFE ∠+∠=︒,进而得270BEF DFE ∠+∠=︒,再根据角平分线的定义可得()11352AEF AFE BEF DFE ∠+∠=∠+∠=︒,最后根据三角形内角和定理即可求解;(2)①过点A 作AG EF ⊥于G ,由角平分线的性质可得AB AD =,再证明四边形ABCD 是矩形即可求证;②证明()Rt Rt HL ABE AGE ≌得3BE GE ==,同理得DF GF =,设DF GF x ==,得3EF x =+,又由3BE EC ==可得6CD AB CG ===,得到6CF x =-,在Rt CEF △中,利用勾股定理得()()222363x x +-=+,得到2x =,即得5EF =,再根据三角形面积公式即可求解;(3)如图2所示,把PQH 沿PQ 翻折得PQD △,把PRH △沿PR 翻折得PRM △,延长DQ MR 、交于点G ,同理(2)即可求解;本题考查了正方形的判定和性质,角平分线的性质,三角形内角和定理,全等三角形的判定和性质,折叠的性质,勾股定理,正确作出辅助线是解题的关键.【详解】(1)解:∵90C ∠=︒,∴90CEF CFE ∠+∠=︒,∴180********BEF DFE ∠+∠=︒+︒-︒=︒,∵AE 平分BEF ∠,AF 平分DFE ∠,∴12AEF BEF ∠=∠,12AFE DFE ∠=∠,∴()11112701352222AEF AFE BEF DFE BEF DFE ∠+∠=∠+∠=∠+∠=⨯︒=︒,∴18013545EAF ∠=︒-︒=︒,故答案为:45;(2)①证明:过点A 作AG EF ⊥于G ,∵AE 平分BEF ∠,AB EB ⊥,AG EF ⊥,∴AB AG =,同理可得AD AG =,∴AB AD =,∵AB BC ⊥,AD CD ⊥,∴90B D ∠=∠=︒,∴90B C D ∠=∠=∠=︒,∴四边形ABCD 是矩形,∵AB AD =,∴四边形ABCD 是正方形;②∵AG EF ⊥,∴90AGE AGF ∠=∠=︒,在Rt ABE △和Rt AGE 中,AB AG AE AE =⎧⎨=⎩,∴()Rt Rt HL ABE AGE ≌,∴3BE GE ==,同理可得DF GF =,设DF GF x ==,∴3EF x =+,∵3BE EC ==,∴336BC =+=,∴6CD AB AG ===,∴6CF x =-,在Rt CEF △中,222CE CF EF +=,∴()()222363x x +-=+,解得2x =,∴325EF =+=,∴11·561522AEF S EF AG ==⨯⨯= ;(3)解:如图2所示,把PQH 沿PQ 翻折得PQD △,把PRH △沿PR 翻折得PRM △,延长DQ MR 、交于点G ,由折叠可得7PD PH PM ===,3QD QH ==,MR HR =,DPQ HPQ ∠=∠,MPR HPR ∠=∠,90D PHQ ∠=∠=︒,90M PHR ∠=∠=︒,∴()222290DPM HPQ HPR HPQ HPR QPR ∠=∠+∠=∠+∠=∠=︒,∴90D DPM M ∠=∠=∠=︒,∴四边形PMGD 是矩形,∵PD PM =,∴四边形PMGD 是正方形,∴7DG MG PD ===,∴734GQ DG QD =-=-=,设MR HR a ==,则3QR a =+,7GR a =-,在Rt GQR △中,222GQ GR QR +=,∴()()222473a a +-=+,解得 2.8a =,∴ 2.8HR =,故答案为:2.8.上的一个动点,延长CD 到点E ,使DE BP =,连接AE AP ,,以AE AP ,为边作平行四边形APFE ,直线PF 和直线CD 相交于点M .(1)如图1,点P 在边BC 上,判断四边形APFE 的形状,并说明理由;(2)在(1)的条件下,若点P 为BC 的中点,求点F 到边CD 的距离;(3)若2CP =,求CM 的长.【答案】(1)正方形,理由见解析(2)2(3)1或3【分析】本题主要考查了正方形的性质与判定,勾股定理,全等三角形的性质与判定:(1)先证明()SAS ABP ADE ≌得到AP AE BAP DAE =∠=∠,,进而证明90PAE ∠=︒,即可证明四边形APFE 是正方形;(2)如图所示,作FH CD ⊥,垂足为H ,证明()AAS ADE EHF ≌,得到ED FH BP ==,求出122PB BC ==,则2FH =,即点F 到CD 距离为2;(3)分点P 在BC 上和点P 在BC 得延长线上两种情况讨论求解即可.【详解】(1)解:四边形APFE 是正方形,理由如下:解:在正方形ABCD 中,90AB AD B ADC ∠∠===︒,,∴90B ADE BAD ∠=∠=∠=︒,∵DE BP =,∴()SAS ABP ADE ≌,∴AP AE BAP DAE =∠=∠,,∵90BAD BAP PAD ∠=∠+∠=︒,∴90PAE DAE PAD ∠=∠+∠=︒,又∵四边形APFE 是平行四边形,∴四边形APFE 是正方形;(2)解:如图所示,作FH CD ⊥,垂足为H ,∵四边形APFE 是正方形,∴90AE EF AEF =∠=︒,,∵9090AED MEF EFH MEF ∠+∠=︒∠+∠=︒,,∴AED EFH ∠=∠,∵90ADE EHF ∠=∠=︒,∴()AAS ADE EHF ≌,∴ED FH BP ==,又DE BP =,∴FH BP =,∵点P 是BC 中点,∴122PB BC ==,∴2FH =,∴点F 到CD 距离为2;(3)解:①点P 在线段BC 上,∵2CP =,∴2BP =,∴22220AP AB BP =+=,由(2)可得2FH DE ==,ADE EHF ≌,∴4EH AD ==,设MH x =,则4EM x =+,由勾股定理得22222MF HM HF ME EF =+=-,∴()22222420x x +=+-,解得1x =,∴24411CM CD DE EH HM =+--=+--=;②点P 在BC 延长线上,如图所示,作FH DE ⊥,垂足为H ,同理可得22252AP AB BP =+=,同理可证明ADE EHF ≌,∴4264HF DE BP EH AD ===+===,,设MH m =,则4EM m =+,由勾股定理得22222MF HM HF ME EF =+=-,∴()2226452m m +=+-,解得9m =,∴3CM HM CD DE =--=;综上所述,CM 得长为1或3.【变式5-3】(23-24八年级下·四川广安·期中)问题情境:如图①,点E 为正方形ABCD 内一点,90,∠=︒⊥AEB BF BE ,且BF BE =,延长AE 交CF 于点G ,连接DE .猜想证明:(1)如图①,试判断四边形BEGF 的形状,并说明理由.(2)如图②,若DA DE =,请猜想线段CG 与GF 的数量关系,并加以证明.解决问题:(3)如图①,若159,==AB GF ,请直接写出DE 的长.【答案】(1)四边形BEGF 是正方形.理由见解析;(2)CG GF =,证明见解析;(3)317【分析】本题考查了正方形的判定和性质,三角形全等的判定和性质,等腰三角形三线合一的性质,勾股定理,熟练掌握正方形的性质,勾股定理是解题的关键.(1)证明90∠=∠=∠=︒BEG EBF GFB 即可;(2)过点D 作DH AE ⊥于点H ,证明AEB DHA △≌△,结合ABE CBF △≌△,得到12GF CF =,得证;(3)过点D 作DM AE ⊥,垂足为M ,证明DAM ABE ≌,结合ABE CBF △≌△,得到===+DM AE CF FG CG ,设CG x =,则9===+DM AE CF x ,根据勾股定理,求得x 的值,再利用DE 222=+DM ME 计算即可.【详解】解:(1)四边形BEGF 是正方形.理由是:∵四边形ABCD 是正方形,∴90,ABC AB BC ∠=︒=,∴90BEG ∠=︒.∵BF BE ⊥,∴90EBF ∠=︒.∴ABE CBF ∠=∠,∵BE BF =,∴(SAS)ABE CBF △≌△,∴AEB CFB ∠=∠,90∠=∠=∠=︒BEG EBF GFB ,∴四边形BE FE '是矩形,又∵BE BF =,∴四边形BEGF 是正方形.(2)CG GF =.证明:如图,过点D 作DH AE ⊥于点H ,则90,1390∠=︒∠+∠=︒DHA .DA DE = ,12AH AE ∴=,∵四边形ABCD 是正方形,,90∴=∠=︒AB DA DAB ,2190∴∠+∠=︒,23∴∠=∠,90AEB DHA ∠=∠=︒ ,AEB DHA ∴△≌△,AH BE ∴=,由(1)知四边形BEGF 是正方形,BE GF ∴=,∴=AH GF ,ABE CBF △≌△,AE CF ∴=,12∴=GF CF ,CG GF ∴=.(3)过点D 作DM AE ⊥,垂足为M ,如图:∵四边形ABCD 是正方形,90,∴∠=︒=DAB DA AB ,90BAE DAM ∴∠+∠=︒,90ADM DAM ∠+∠=︒ ,BAE ADM ∴∠=∠,90DMA AEB ∠=∠=︒ .()ADM BAE AAS ∴ ≌,,AM BE DM AE ∴==,根据(2),得到CBF ABE ≌,∴===+DM AE CF FG CF ,设CG x =,∵四边形BFGE 是正方形,9GF =,9∴===+DM AE CF x ,222AB AE BE =+ ,222(9)915∴++=x ,解得3,21==-x x (舍去),93912,1293∴===+=+==-=-=DM CF AE x ME AE AM ,22222123∴=+=+DE DM ME ,解得317DE =.考点六:中点四边形例6.(23-24八年级下·广西玉林·期中)已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG GH HE 、、,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是__________,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足__________条件时,四边形EFGH 是正方形,证明你的结论.【答案】(1)平行四边形,证明见解析(2)互相垂直且相等(AC BD ⊥且AC BD =),证明见解析【分析】本题考查了中位线,平行四边形的判定,正方形的判定.熟练掌握中位线,平行四边形的判定,正方形的判定是解题的关键.(1)如图1,连接BD ,由点E 、H 分别是AB AD 、中点,可得EH BD ∥,12EH BD =,同理,FG BD ∥,12FG BD =,则EH FG ∥,EH FG =,进而可证四边形EFGH 是平行四边形;(2)如图2,连结AC BD 、,同理(1)可知,四边形EFGH 是平行四边形,由AC BD ⊥,可得EH HG ⊥,证明平行四边形EFGH 是矩形,由AC BD =,可得EH HG =,进而可证四边形EFGH 是正方形.【详解】(1)证明:四边形EFGH 是平行四边形,证明如下;如图1,连接BD ,点E 、H 分别是AB AD 、中点,∴EH BD ∥,12EH BD =,同理,FG BD ∥,12FG BD =,∴EH FG ∥,EH FG =,∴四边形EFGH 是平行四边形;(2)解:互相垂直且相等(AC BD ⊥且AC BD =),证明如下;如图2,连结AC BD 、,同理(1)可知,四边形EFGH 是平行四边形,∵AC BD ⊥,∴EH HG ⊥,∴平行四边形EFGH 是矩形,∵AC BD =,∴EH HG =,∴四边形EFGH 是正方形.垂足为O ,顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ;再顺次连接四边形1111D C B A 各边的中点,得到四边形2222A B C D ,…如此下去得到四边形n n n n A B C D .(1)判断四边形1111D C B A 的形状,并说明理由.(2)求四边形1111D C B A 的面积.(3)直接写出四边形n n n n A B C D 的面积(用含n 的式子表示).【答案】(1)四边形1111D C B A 是矩形,理由见解析(2)12(3)1242n⎛⎫⨯ ⎪⎝⎭【分析】(1)根据中位线的性质可得11A D BD ∥,1112D A D B =,11B C BD ∥,1112B C BD =,11C D AC ∥,1112C D AC =,11A B AC ∥,1112A B AC =;即有1111A D B C ∥,1111A B C D ∥,证得四边形1111D C B A 是平行四边形,结合AC BD ⊥,问题得解;(2)由(1)得四边形1111D C B A 是矩形,1112A B AC =,11B C 是BCD △的中位线,可得1112B C BD =,从而得到113A B =,114B C =,再由矩形的面积公式计算,即可.(3)由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,即可求解.【详解】(1)解:四边形1111D C B A 是矩形,理由如下:在四边形ABCD 中,顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,∴1A 、1D 分别为AB AD 、的中点,∴11A D 是ABD △的中位线,∴11A D BD ∥,1112D A D B =,同理可得:11B C BD ∥,1112B C BD =,11C D AC ∥,1112C D AC =,11A B AC ∥,1112A B AC =;∴1111A D B C ∥,1111A B C D ∥,∴四边形1111D C B A 是平行四边形,∵AC BD ⊥,∴1111A B A D ⊥,∴平行多边形1111D C B A 是矩形,(2)解:由(1)得四边形1111D C B A 是矩形,1112A B AC =,11B C 是BCD △的中位线,∴1112B C BD =.又∵6AC =,8BD =,∴113A B =,114B C =,。
初中奥数题目解题解析奥数(奥林匹克数学竞赛)作为一项智力竞赛活动,旨在培养学生的逻辑思维和问题解决能力。
在初中阶段,奥数题目的解题过程对于学生来说是一个挑战,但也是一个很好的锻炼机会。
本文将以解题解析的方式,为大家提供初中奥数题目的参考答案和解题思路,帮助学生更好地理解和掌握奥数题目。
一、题目一题目描述:如图所示,正方形ABCD内切于半圆,半圆的直径CD边长等于正方形ABCD的边长的一半,记正方形ABCD的面积为S,求半圆的面积与正方形的面积之比。
解题思路:首先,我们可以设正方形ABCD的边长为2x,半圆的半径为x。
根据题目描述,我们可以知道正方形ABCD的面积为S=4x²,半圆的面积为πr²=πx²。
下面我们来计算半圆的面积与正方形的面积之比。
πx²/S = πx²/(4x²) = π/4所以,半圆的面积与正方形的面积之比为π/4。
二、题目二题目描述:小明与小红在进行某项实验,实验的目的是测量自然界中一些物理量之间的关系。
以下是小明和小红记录的数据,请根据数据回答问题。
小明的数据:a = 2, b = 4, c = 6小红的数据:a = 3, b = 6, c = 9问题:如果a、b、c分别代表速度、质量和力,请问速度、质量和力之间是否存在某种关系?解题思路:根据小明和小红记录的数据,我们可以观察到对应的速度、质量和力之间的数值存在相关性。
首先,我们可以比较小明和小红记录的数据,发现小红的数据是小明数据的1.5倍。
这意味着小明和小红记录的数据之间存在某种比例关系。
速度:小红的速度是小明的1.5倍质量:小红的质量是小明的1.5倍力:小红的力是小明的1.5倍综上所述,根据小明和小红记录的数据,我们可以得出结论:速度、质量和力之间存在某种比例关系,即质量和力都是速度的1.5倍。
三、题目三题目描述:某班级一共有60名学生,其中男生占总人数的五分之三,女生占总人数的四分之二。
人教版八年级第24讲完美的正方形学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,正方形ABCD 的对角线BD 长为2,若直线l 满足:(1)点D 到直线l 的距离为,(2)A 、C 两点到直线l 的距离相等,则符合题意的直线l 的条数为( )A .1B .2C .3D .42.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG GF的值是( )A .43B .54C .65D .763.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④ 4.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-5.如图,在正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE ∆沿AE 对折至AFE ∆,延长EF 交边BC 于点G ,连接AG ,CF .则下列结论:①ABG AFG ∆∆≌;②BG CG =;③AG CF ;④EGC AFE S S ∆∆=;⑤145AGB AED ∠+∠=︒.其中正确的个数是( )A .2B .3C .4D .5二、填空题 6.如图,正方形ABCD 的边长为3cm ,点E 为CD 边上一点,30DAE ∠=︒,点M 为AE 的中点,过点M 作直线分别与AD ,BC 相交于点P ,Q .若PQ AE =,则AP 长为______cm .7.如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQ AEFG S S 正方形正方形的值等于_____.三、解答题8.如图,已知Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线平移至△FEG ,DF 、FG 相交于点H .(1)判断线段DE 、FG 的位置关系,并说明理由;(2)连结CG ,求证:四边形CBEG 是正方形.9.如图,在ABC 中,,,AB AC AD BC =⊥垂足为点,D AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .()1求证:四边形ADCE 为矩形;()2当ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.10.如图①,在边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B ,C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,点F 落在正方形上时,记为点H ; 依此操作下去……(1)图②中的三角形EFD 是经过两次操作后得到的,其形状为______,求此时线段EF 的长.(2)若经过三次操作可得到四边形EFGH .①请判断四边形EFGH 的形状为______,此时AE 与BF 的数量关系是______.②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.11.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②12.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为()4,4-,点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点P 停止运动,点Q 也停止运动.连接BP ,过点P 作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D ,BD 与y 轴交于点E ,连接PE ,设点P 运动的时间为()s t .(1)求PBD ∠的度数及点D 的坐标(用t 表示).(2)当t 为何值时,PBE ∆为等腰三角形?(3)探索POE ∆周长是否随时间t 的变化而变化.若变化,说明理由;若不变,试求出这个定值.13.如图,在正方形ABCD 中,点E 是BC 边上一点,点F 是BC 延长线上一点,AE EG ⊥交DCF ∠的平分线CG 于点G .求证:AE EG =.参考答案1.B【解析】试题分析:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为3,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.考点:正方形的性质.2.C【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52 a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.3.B【解析】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.4.C【分析】先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】四边形OABC是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D 落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D 的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D 的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.5.C【解析】【分析】根据翻折变换的性质和正方形的性质可证Rt △ABG ≌Rt △AFG ;在直角△ECG 中,根据勾股定理可证BG=GC ;通过证明∠AGB=∠AGF=∠GFC=∠GCF ,由平行线的判定可得AG ∥CF ;分别求出S △EGC 与S △AFE 的面积比较即可;求得∠GAF=45°,∠AGB+∠AED=180°-∠GAF=135°.【详解】AB AD AF ==,AG AG =,90B AFG ∠=∠=︒,()Rt ABG Rt AFG HL ∴∆≅∆,故①正确;123EF DE CD ===,设BG FG x ==,则6CG x =-. 在Rt ECG ∆中,根据勾股定理,得()()222642x x -+=+,解得3x =,363BG GC ∴==-=,故②正确 ,CG BG BG GF ==,CG GF ∴=,FGC ∴∆是等腰三角形,GFC GCF ∠=∠.又Rt ABG Rt AFG ∴∆≅∆,AGB AGF ∴∠=∠2180AGB AGF AGB FGC ∠+∠=∠=︒-∠22AGF GCF GFC GCF =∠+∠=∠=∠AGB GCF ∴∠=∠,//AG CF ∴故③正确;1134622GCE S GC CE ∆=⋅=⨯⨯=, 1162622AFE S AF EF ∆=⋅=⨯⨯=, BGC AFE S S ∆∆∴=,故④正确;BAG FAG ∠=∠,DAE FAE ∠=∠,又90BAD ∠=︒,45GAE ∴∠=︒180135AGB AED AGE AEG GAE ∴∠+∠=∠+∠=︒-∠=︒,故⑤错误.故选C.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.。
完美的正方形有一组邻边相等并且有一个角是直角的平行四边形是正方形,换句话说:正方形是各边都相等的矩形,正方形是各角都相等的菱形,正方形既是矩形又是菱形,它具有矩形和菱形的一切性质.矩形、菱形,正方形都是特殊的四边形,它们的概念交错,关系复杂,性质有许多相似之处,一些判定和性质定理又是可逆的,所以在学习中注重概念的理解,着眼于概念间的区别与联系.连正方形的对角线,能得到特殊三角形、全等三角形,由于正方形常常与直角三角形联系在一起,所以在解有关正方形问题时要用到直角三角形性质,具有代数风格,体现数形结合思想.熟悉以下基本图形,基本结论:例题求解【例1】如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EA B的度数为.(北京市竞赛题)思路点拨图中还有等腰三角形,利用等腰三角形性质计算.注可以证明,在所有用长相等的四边形中,正方形的面积最大.我们熟悉的“七巧板”,那是把一块正方形板切分成三角形、正方形、平行四边形的7块,用它可以拼出许多巧妙的图形,“七巧板”是我国古代人民智慧的结晶.【例2】如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OC⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为( )A.7 B.5 C.4 D.3(江苏省泰州市中考题)思路点拨 AE、CF、EF不在同一个三角形中,运用全等三角形寻找相等的线段,使分散的条件集中到同一个三角形中.【例3】如图,正方形ABCD中,E、F是AB、BC边上两点,且EF=AC+FC,DG⊥EF于G,求证:DC=DA.(重庆市竞赛题)思路点拨构造AE+FC的线段是解本例的关键.【例4】已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBZ的平分线于N(如图甲).(1)求证:MD=MN(2)若将上述条件中的“M是AB中点”改为“M是AB上的任意一点”,其余条件不变(如图乙),则结论“MD=MN”还成立吗?如果成立,请证明:如果不成立,请说明理由.(上海市闽行区中考题)思路点拨对于图甲,取AD中点F,通过构造全等三角形证明MD=MN;这种证法能否迁移到图乙情景中去?从而作出正确的判断.注探索是学习的生命线,深入探究、学会探索是时代提出的新要求.数学解题中的探索活动可从以下几个方面进行:(1)在题设条件不变情况下,发现挖掘更多的结论;(2)通过强化或弱化来改变条件,考查结论是否改变或寻求新的结论;(3)构造逆命题.对于例3,请读者思考,在不改变题设条件的前提下,(1)∠EDF等于多少度?(2)怎样证明明逆命题?例4改变点的位置,赋以运动,从特殊到一般,(1)的结果为(2)的猜想提供了借鉴的依据,又为猜想设置了障碍,前面的证明思路是后面的证明模式.【例5】操作:将一把三角尺放在边长为l的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.探究:设A,P两点间的距离为x(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(图1、图2、图3的形状大小相同,图1供操作、实验用,图2、图3备用).思路点拨本例是探究式的操作型试题,第(1)问需抓住滑动中∠BPQ是直角这一不变量,画出滑动中一般情形的图形,通过观察提出猜想,再给予论证,第(3)问需要在操作中观察出使△PCQ是等腰三角形的两种情形.注数学学习是一个生动活泼的过程,动手实践,自主探索是学习数学的重要形式,它说明了存在的事实是怎样被发现和被发现的现象又是怎样获得证实的,解这类问题,需边操作,边观察、边思考,综合运用相关知识方法探究结论.学力训练1.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′= .河南省中考题)2.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF,若∠BEC=60°,则∠EFD的度数为. (苏州市中考题)3.如图,∠POQ=90°,边长为2㎝的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC=30°,则A 、D 到OP 的距离分别为 . (南京市中考题)4.如图,正方形ABCD 中,CE ⊥MN ,若∠MCE =35°,则∠ANM 的度数是 .5.如图,E 是边长为l 的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值为( ) (河北省中考题) A .22 B .21 C .23 D .326.如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于E ,8 ABCD S 四边形,则BC 的长为( ) A .2 B .3 C .3 D .22 (武汉市选拔赛试题)7.如图,在正方形ABCD 中,C 为CD 上的一点,延长月C 至F ,使CF=CE ,连结DF ,BE 与DF 相交于G ,则下面结论错误的是( )A .BE=DFB .BG ⊥DFC .∠F+∠CEB=90°D .∠FDC+∠ABG =90°(山东省临沂市中考题)8.如图,已知正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的值是( )A.15 B.12 C .11 D.109.(1)如图甲,若点P为正方形ABCD边AB上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP 交BE于点H,求证:DH⊥BF;(2)如图乙,若点P为正方形ABCD内任一点,其余条件不变,(1)的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(泰州市中考题)10.如图,P为正方形ABCD的对角线BD上任一点,PF⊥CD,PE⊥BC,C、F分别为垂足,探索AP与EF的关系.11.如图,正方形ABCD中,AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,求△AEF的面积.( “希望杯”邀请赛试题)12.如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD相交于M、N,若∠EAF=50°,则∠CME+∠CNF= .13.如图,在Rt △ABC 中,∠C =90°,AC=3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,OC=24,则BC 边的长为 . ( “希望杯”邀请赛试题)14.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为7㎝2和11㎝2,则△CDE 的面积等于 cm 2.(武汉市选拔赛试题)15.如图,将边长为12cm 的正方形ABCD 折叠,使得A 点落在边CD 上的E 点,然后压平得折痕FG ,若GF 的长为13cm ,则线段CE 的长为 . (北京市竞赛题) 16.将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ) A .4 B .5 C .8 D .9 (江苏省竞赛题)17.如图,正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,若∠PAQ=45°,∠BAP=20°,则∠AQP=( )A .65°B . 60°C .35°D .70°18.如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE=a ,AF=b ,若S EFGH =32,则a b 等于( ) A .22 B .32 C .23 D .33 ( “希望杯”邀请赛试题) 19.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE=AC ,CF ∥AC ,则∠BCF 等于( ) A .150° B .135° C . 105° D .120°20.图甲中,正方形ABDE、CDFI、EFGH的面积分别为17,10,13,图乙中,DPQR为矩形,对照图乙,计算图甲中六边形ABCIGH的面积.(江苏省竞赛题)21.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.22.如图,有4个动点P、Q、E、F分别从正方形ABCD的4个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动.(1)判定四边形PQEF的形状;(2)PE是否总是经过某一定点,井说明理由;(3)四边形PQEF的顶点位于何处时,其面积最小、最大?各是多少?23.如图a,D为线段AE上任一点,分别以AD、DE为边作正方形ABCD和正方形DEFG,连结BF、AG、CE、BG、BE、BG、BE分别交AD,DC于P、Q两点.(1)①找出图中三对相等的线段(正方形边长相等除外);②找出图中三对相等的钝角;③找出图中一对面积相等的钝角三角形,这两个三角形全等吗?(2)如图b,当正方形ABCD和正方形DEFG都变为菱形,且∠GDE=∠ADC时,(1)中的结论哪些成立,哪些不成立?请对不成立的情况说明理由.(3)如图“当正方形ABCD和正方形DEFG都变为矩形,且DA>DC,DE>DG,△ABD∽△EFD时,(1)中的结论哪些不成立,哪些成立?.如果成立,请证明.(郴州市中考题)24.如图,正方形ABCD被两条与边平行的线段EF、GH分割成4个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小,并证明你的结论.(北京市竞赛题)。