内高压成形
- 格式:pptx
- 大小:2.59 MB
- 文档页数:25
时期学习总结来总公司工作已有3个多月,自我感觉学习不够刻苦、认真,但也有了一些是在长春所学不到的收成。
除能力方面熟悉了很多学到了一些,针对内高压项目的基础性学习在各方面也有了必然进步,现总结如下:一内高压知识学习1 大体原理:内高压成形工艺是通过轴向补料与内部加压的复合作用,将管材压入型腔以取得所需要的工件形状。
2 要紧结构:内高压成形设备由6部份组成:1)合模压力机,提供合模力,在加压成形期间将上下模具闭合锁死;2)水平缸,提供轴向进给补料和管端密封;3)高压源,即增压器,提供高压液体;4)液压动力系统,提供水平缸,增压器或合模压力机驱动;5)水压系统,实现工件乳化液快速充填、增压器高压腔补液、乳化液循环过滤;6)运算机操纵系统,水平缸与增压器联合,保证轴向进给与内压的精准匹配关系。
3 技术参数:最大合模力1000-5000吨,最高内压400MPa-600 MPa,最大轴向力150吨,内压操纵精度,位移操纵精度,工零件最大长度1000mm。
4 内高压件分类:第一类为变径管件,轴线为直线或弯曲度很小的二维曲线,截面形状多为圆形或矩形,因管件或截面周长差较大,成形时轴向需要补料;第二类,零件的轴线为二维或三维曲线零件,截面形状为矩形、多边形或异形,成形时轴向不需要补料;第三类为三通管、四通管或多通管件,其中难度较大是非对称的Y型三通管件。
5 典型件工艺分析——副车架(1)零件材料和设备轿车副车架零件是一个轴线为空间曲线的空心变截面结构件,截面沿轴线转变大,具有18个不同形状和尺寸的截面形状,典型截面有矩形、梯形等不同形状。
管材规格:直径为63,壁厚为,材料为20号钢。
实际测量最大外径为,最小外径为,最大壁厚为,最小壁厚为,误差最大值为。
材料的屈服强度为360Mpa,抗拉强度为500Mpa,延伸率25%,K=637Mpa,n=。
(2)设备和模具管材弯曲是在数控弯管机上进行的。
内高压成型实验室在50000kN合模机上进行,该压力机上配有400Mpa高压源。
基于DYNAFORM的内高压成形中预成形工艺改进I. 引言A. 研究背景B. 研究目的C. 研究意义II. DYNAFORM的内高压成形技术A. DYNAFORM内高压成形的理论基础B. DYNAFORM内高压成形工艺流程C. DYNAFORM内高压成形工艺缺陷分析III. 预成形工艺在内高压成形中的应用A. 预成形工艺概述B. 预成形工艺在内高压成形中的应用优势C. 实验验证IV. DYNAFORM内高压成形中预成形工艺改进A. 现有工艺存在的问题B. 针对问题的改进方案设计C. 改进方案的实验验证V. 结论与展望A. 实验结果分析B. 成形件性能分析C. 研究开展的意义和价值VI. 参考文献第一章:引言A. 研究背景随着工业技术的不断发展,各种先进的成形工艺被广泛应用于制造业中,其中内高压成形是一种高效、高精度的成形工艺。
内高压成形过程中,通过在管道内注入高压流体,使成形的金属件受到内部的均匀压力,从而获得高精度的成形效果。
然而,内高压成形过程中也存在一些缺陷,如管道膨胀、成形件的壁厚变化不均等问题。
因此,预成形工艺成为解决这些问题的一种有效方法。
B. 研究目的本论文旨在研究预成形工艺在DYNAFORM内高压成形中的应用和改进。
首先,回顾DYNAFORM内高压成形技术的理论基础和工艺流程,分析其中存在的问题与缺陷。
其次,探讨预成形工艺在内高压成形中的应用优势,并进行实验验证。
最后,针对现有工艺存在的问题,提出改进方案,并进行实验验证,为进一步推广DYNAFORM内高压成形工艺提供技术支持和参考。
C. 研究意义本论文的研究对于深入了解DYNAFORM内高压成形技术和预成形工艺的应用和改进具有重要意义。
内高压成形作为一种高效、高精度的成形技术,在制造业中具有广泛的应用前景。
通过本论文对预成形工艺的研究和应用,不仅可以充分发挥其在内高压成形中的优势,同时为进一步推广内高压成形技术提供了有效的技术支持和参考。
汽车后桥壳内高压成形工艺及胀型模具设计汽车后桥壳是几何形状较为复杂的零件,目前汽车桥壳的主要生产方式是铸造和冲压焊接。
铸造工艺对材料和能源太过浪费,零件的力学性能较差;冲压焊接工艺的焊缝质量难保证,材料利用率较低。
利用液压胀形工艺成形整体桥壳能克服以上缺陷,节约材料和能源,同时工序少、材料利用率高。
本文研究汽车后桥壳鼓包部分的液压胀型工艺。
針对汽车后桥壳特点,采用半滑动式液压胀形工艺,能够有效降低合模压力的整体式的滑动模块,同时固定模块可防止飞边的出现,也考虑了取件问题。
本设计的亮点是整体式的滑动模块具备分担大部分的管坯胀形力,降低设备吨位的作用;设计的预胀形模具和终胀形模具滑动模块部分能够共用,减少模具开发制造费用。
标签:汽车桥壳;半滑动式;液压胀形;模具设计汽车桥壳属于大型复杂异型截面零件,它保护着内部的主减速器,差速器,半轴等零件,并承受着车身重量与车轮传来的力矩。
其作用及性能,要求既有足够的强度和刚度,又要尽量减轻质量;而且在保证桥壳使用要求的前提下,力求结构简单,制造方便,以利于降低成本。
车桥主要有两种生产方式:铸造和冲压焊接。
铸造可以制造出形状较为复杂的车桥,但铸造件重量大,消耗材料和能源多,较为浪费。
冲压-焊接成形工艺较好,废品率低,重量轻,强度高,并且成本较低[1]。
但冲压焊接工艺工序多,费材耗能,焊缝长,对焊缝质量要求较高。
而利用液压胀形工艺生产桥壳则材料利用率高,节省能源和材料,加工工序较少,且加工效率高,易实现机械化、自动化[2]。
壁厚合理,应力分布较好,刚度高,重量轻。
本设计就是要依据图1-1所给的后桥壳相关尺寸,材料为20号碳钢无缝管。
图1-1为设计中桥壳为轻型车后桥壳,鼓包部分的最大直径为440mm,最小直径68mm,长度为1953mm,桥壳壁厚为10mm,均匀管径为127mm。
为了减少变形过程中变形量过大导致径缩胀形失败,选取了直径为127mm,厚度为10mm的管胚,这样可以保证大部分材料不流动就可以满足桥壳设计要求。
目录第一章绪论 (1)1.1研究背景 (1)1.2管材内高压成形基本原理 (1)1.3管材内高压成形的适用领域 (3)第二章管材内高压成形的影响因素 (4)2.1轴向应力的影响 (4)2.2内压力大小的影响 (4)2.3摩擦系数的影响 (5)2.4起皱的影响 (6)第三章管材内高压成形的设备关键技术 (7)第五章管材内高压成形的工程研发案例 (9)第六章管材内高压成形的展望 (11)第一章绪论1.1研究背景近年来,汽车轻量化是汽车制造业的重要发展趋势。
由于世界能源的紧张和环保问题的日趋严重,汽车工业面临着严峻的挑战:减轻汽车自身重量,提高行驶速度,降低能耗。
除了采用轻体材料以外,汽车轻量化的另一个主要途径是以“空代实”。
这就求促使人们不得不改进传统工艺,创造出适应新经济时代要求的新工艺。
通过合理的结构设计,许多零部件都能采用标准的管材,通过液压成形技术成形结构很复杂的单一整体结构件,代替承受弯曲和扭转载荷的构件,既节省了材料,又发挥了材料的最大效能。
在汽车工业中管材液压成形作为一个非常重要的成形技术已得到了广泛应用,主要用于生产汽车动力系统、排气系统、汽车底盘以及一些结构件。
汽车用排气管件大多为形状比较复杂、轴线有很大变化的零件。
传统成形工艺除铸造成形外,主要采用冲压两个半壳而后组焊成形,或采用管坯进行数控弯曲、扩管、缩管加工而后组焊成形。
这样制造的零件模具费用高、生产周期长、成本高,不适应当前汽车行业在减轻自重、降低成本、提高市场竞争力等方面的要求。
而采用内高压技术制造排气管件可以较精确地控制零件的尺寸精度,便于在后续工序中与其他零件进行装配,且能够进一步减轻系统重量,减少焊缝数量,内表面光滑,排气阻力小,使成形后的产品质量和寿命得到进一步提高。
1.2管材内高压成形基本原理内高压成形(Internal High Pressure Forming)是以管材作坯料,通过管材内部施加超高压液体和轴向进给补料把管坯压入到模具型腔使其成形为所需工件。
内高压成型工艺内高压成型工艺是一种常见的塑料成型工艺,通过将高温高压的流体塑料注入模具中,使其在模具内形成所需的形状,然后冷却固化,最后取出成品。
内高压成型工艺具有成型速度快、成型精度高、产品表面光滑等优点,被广泛应用于汽车、家电、电子、建筑等领域。
内高压成型工艺的核心是模具的设计和制造。
模具是内高压成型的关键工具,在成型过程中起到承载和塑形的作用。
模具的设计需要考虑产品的形状、尺寸、材料特性等因素,以确保成型后的产品符合要求。
同时,模具的制造需要采用高精度加工设备和工艺,以保证模具的精度和寿命。
在内高压成型过程中,首先需要将塑料料粒加热至熔融状态,形成熔体。
然后,将熔体注入模具中,通过模具的形状和结构使熔体充满整个模腔。
在注入过程中,需要控制注射速度和压力,以确保熔体填充充分且均匀。
注入完成后,需要保持一定的压力,使熔体在模具内冷却和固化。
最后,打开模具,取出成品。
内高压成型工艺可以实现复杂形状和细节的成型,因此被广泛应用于汽车行业。
例如,汽车车身的内饰件、仪表盘、门板等都可以通过内高压成型工艺来制造。
内高压成型可以保证产品的精度和强度,同时具有良好的外观质量,满足汽车对外观和功能的要求。
除了汽车行业,内高压成型工艺还在其他领域有着广泛的应用。
在家电行业,空调壳体、洗衣机外壳等产品都可以使用内高压成型工艺来制造。
在电子领域,电视机外壳、电脑外壳等产品也可以通过内高压成型来实现。
在建筑领域,一些装饰材料、管道等也可以采用内高压成型工艺来生产。
内高压成型工艺相对于其他成型工艺具有一定的优势。
首先,成型速度快,可以大大提高生产效率。
其次,成型精度高,可以生产出尺寸精确的产品。
此外,内高压成型工艺还可以生产出表面光滑、质量稳定的产品,满足市场对产品质量的要求。
内高压成型工艺是一种重要的塑料成型工艺,具有广泛的应用前景。
通过不断改进工艺和技术,可以进一步提高成型效率和产品质量,满足市场对高品质产品的需求。
内高压成型模具结构
内高压成型模具结构主要包括以下几个部分:
1. 上下模:上下模是内高压成型模具的主要组成部分,用于固定管材并承受高压液体和轴向力的作用。
2. 密封冲头:密封冲头用于密封管材的两端,防止高压液体外泄。
3. 水平冲头:水平冲头用于在成形阶段向管材内推进补料,使管材外壁充分贴覆到模具型腔。
4. 过度区圆角:过度区圆角是指模具型腔内与管材截面形状相匹配的圆角区域。
在整形阶段,提高压力使过度区圆角完全贴靠模具而成形为所需的工件。
通过上述模具结构的合理设计,可以确保内高压成型工艺的顺利实施,制造出截面更加复杂的管状部件,并提高零件的强度、刚度和尺寸精确性。
特种塑性成形一内高压成形(塑性成形工艺大作业)1内高压成形工艺简介及应用实例 (1)1.1内高压成形技术 (1)1.2应用实例........................................................2.1.2.1汽车工业 (2)1.2.2航空航天 (3)2应力、应变特点及变形规律分析 (3)2.1内高压成形工艺流程 (3)2.2应力、应变特点.................................................. 4.2.2.1充形阶段 (5)2.2.2成形阶段 (5)2.2.3整形阶段 (6)2.3成形区间及加载路线 (6)3成形设备 (8)4常见缺陷形式及预防措施 (9)4.1 屈曲.......................................................... .9..4.2起皱............................................................ 9.4.3开裂 (10)4.3.1弯曲管壁厚分布规律 (10)4.3.2过渡区开裂的应力分析 (11)5内高压成形的特点 (12)6.研究现状、发展趋势及主要研究机构 (13)6.1研究现状....................................................... 1.36.2发展趋势 (14)6.3国内主要研究机构 (14)参考文献 (15)1内高压成形工艺简介及应用实例在节能减排的大形势下,汽车和飞机等运输工具结构轻量化设计的概念应运而生。
实现结构轻量化有两条主要途径,即材料和结构途径。
材料途径:采用铝合金、镁合金、钛合金和复合材料等轻质材料;结构途径:采用空心变截面、变厚度薄壁壳体、整体等结构。
根据统计,对于一定的减重目标,在航天航空领域,米用轻质材料减重的贡献大约为2/3,结构减重的贡献大约为1/3;而在汽车领域,则主要采用结构减重的途径。