导学案不等式与不等关系
- 格式:doc
- 大小:128.50 KB
- 文档页数:7
第1课时不等关系与不等式1.不等式的定义所含的两个要点(1)□01<,≤,>,≥或□02≠.(2)□03不等关系.2.比较实数a,b大小的依据(1)文字叙述如果a-b是□04正数,那么a>b;如果a-b是□05零,那么a=b;如果a-b是□06负数,那么a<b,反之也成立.(2)符号表示a-b>0⇔a□07>b;a-b=0⇔a□08=b;a-b<0⇔a□09<b.(3)结论确定任意两个实数a、b的大小关系,只需确定□10它们的差a-b与0的大小关系.3.比较大小的方法(1)作差:比较数(式)的大小常用作差与□110比较.(2)作商:两数(式)为同号时,作商与□121比较.1.判一判(正确的打“√”,错误的打“×”) (1)实数a 不大于-2,用不等式表示为a ≥-2.( )(2)某隧道入口竖立着“限高4.0米”的警示牌,则经过该隧道的物体的高度h 应满足h <4.0.( )(3)若x 2>0,则x >0.( )(4)若x >1,则x 3+2x 与x 2+2的大小关系为x 3+2x >x 2+2.( ) 答案 (1)× (2)× (3)× (4)√ 2.做一做(1)(教材改编P 74T 1(2))一桥头竖立的“限重40 t ”的警示牌,是提示司机要安全通过该桥,应使货车总重量T 不超过40 t ,用不等式表示为________.(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于3%,蛋白质的含量p 应不少于2.5%,写成不等式组就是________.(3)若x ≠1,则M =x 2+y 2-2x +2y 的值与-2的大小关系为________. (4)x 2+3与2x 的大小关系为________. 答案 (1)T ≤40 (2)⎩⎨⎧f ≥3%,p ≥2.5% (3)M >-2(4)x 2+3>2x探究1 用不等式(组)表示不等关系例1 某中学为加强现代信息技术教学,拟投资建一个初级计算机房和一个高级计算机房,每个计算机房只配置1台教师用机,若干台学生用机.其中初级机房教师用机每台8000元,学生用机每台3500元;高级机房教师用机每台11500元,学生用机每台7000元.已知两机房购买计算机的总钱数相同,且每个机房购买计算机的总钱数不少于20万元也不超过21万元.则该校拟建的初级机房、高级机房各应有多少台计算机?解 设该校拟建的初级机房有x 台计算机、高级机房有y 台计算机,则 ⎩⎪⎨⎪⎧0.8+0.35(x -1)=1.15+0.7(y -1),20≤0.8+0.35(x -1)≤21,20≤1.15+0.7(y -1)≤21.解得⎩⎪⎨⎪⎧x =2y ,5567≤x ≤5857,271314≤y ≤29514.∵x ,y 均为整数,∴⎩⎪⎨⎪⎧ x =56,y =28或⎩⎪⎨⎪⎧x =58,y =29,即该校拟建的初级机房、高级机房各应有56,28或58,29台计算机. 拓展提升将不等关系表示成不等式(组)的思路(1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接,应特别注意能否取等号. (3)多个不等关系用不等式组表示.【跟踪训练1】 已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56000单位维生素A 和63000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z ,又x +y +z =100,∴c =400+7x +5y .由⎩⎪⎨⎪⎧600x +700y +400z ≥56000,800x +400y +500z ≥63000 及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.探究2 作差法比较大小例2 (1)设m ≠n ,x =m 4-m 3n ,y =n 3m -n 4,比较x 与y 的大小. (2)已知a >0且a ≠1,p =log a (a 3+1),q =log a (a 2+1),比较p 与q 的大小. 解 (1)x -y =(m 4-m 3n )-(n 3m -n 4) =(m -n )m 3-n 3(m -n ) =(m -n )(m 3-n 3) =(m -n )2(m 2+mn +n 2), ∵m ≠n ,∴(m -n )2>0.又∵m 2+mn +n 2=⎝ ⎛⎭⎪⎫m +n 22+3n 24>0,∴(m -n )2(m 2+mn +n 2)>0. ∴x -y >0,∴x >y .(2)p -q =log a (a 3+1)-log a (a 2+1)=log a a 3+1a 2+1.当a >1时,a 3+1>a 2+1, ∴a 3+1a 2+1>1,∴log a a 3+1a 2+1>0; 当0<a <1时,a 3+1<a 2+1, ∴a 3+1a 2+1<1,∴log a a 3+1a 2+1>0. 综上,p -q >0,∴p >q . 拓展提升1.第(1)题通过分解因式和配方判断差的符号,第(2)题通过分类讨论判断差的符号.可以看到,用作差比较法时,判断所作差的符号常用配方法、分解因式法、分类讨论法.2.作差法比较两个实数(代数式)大小的步骤第一步:作差并变形,其目标应是容易判断差的符号.变形有两种情形: (1)将差式进行因式分解转化为几个因式相乘. (2)将差式通过配方转化为几个非负数之和,然后判断. 第二步:判断差值与零的大小关系. 第三步:得出结论.【跟踪训练2】 (1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.解 (1)∵x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0,∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a ,当a =±1时,a =1a ;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a . 探究3 作商法比较大小例3 已知a >0,b >0且a ≠b ,试比较a a b b 与a b b a 的大小. 解 a a b b a b b a =a a -b b b -a =⎝ ⎛⎭⎪⎫a b a -b , ①当a >b >0时,a b >1,a -b >0,∴⎝ ⎛⎭⎪⎫a b a -b >1;②当0<a <b 时,0<a b <1,a -b <0,∴⎝ ⎛⎭⎪⎫a b a -b >1.综上可得⎝ ⎛⎭⎪⎫a b a -b >1,∴a a b b >a b b a .拓展提升作商法比较大小应注意的问题作商法:即通过判断商与1的关系,得出结论,要特别注意当商与1的大小确定后必须对商式分子分母的正负做出判断,这是用作商法比较大小时最容易漏掉的关键步骤.解[规律小结]1.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.2.关于a≤b或a≥b的含义(1)不等式a≤b应读作“a小于或者等于b”,其含义是指“或者a<b或者a=b”,等价于“a不大于b”,即,若a<b或a=b之中有一个正确,则a≤b 正确.(2)不等式a≥b应读作“a大于或者等于b”,其含义是指“或者a>b或者a=b”,等价于“a不小于b”,即,若a>b或a=b之中有一个正确,则a≥b 正确.3.作差法比较两个实数大小的基本步骤(1)作差.(2)变形.将两个实数作差后变形为:①常数;②几个平方和的形式;③几个因式积的形式.(3)定号.即判定所得差是大于0,小于0,还是等于0.(4)结论.利用实数大小之间的关系得出结论.注意:变形中,可采用配方、因式分解、通分、有理化等手段进行恒等变形.4.作商法比较两个实数大小的基本步骤 (1)作商; (2)变形;(3)比较商与1的关系.注意:只有同号的两数才适用于作商法比较大小.[走出误区] 易错点⊳用不等式组表示实际问题时理解错误 [典例] 两种药片有效成分见下表:若要求至少提供12 mg 阿司匹林、70 mg 小苏打、28 mg 可待因,则两种药片的数量应满足怎样的不等关系?用不等式的形式表示出来.[错解档案] 设提供A 药片x 片,B 药片y 片,则由题意,得 ⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x +6y ≥28.[误区警示] 以上不等式对药品成分的限定额度是完全正确的,但是考虑到问题的实际应用性,还应保证两种药片的数量均为非负整数,这一隐含条件往往是容易被忽视的.[规范解答] 设提供A 药片x 片,B 药片y 片(x 、y ∈N ),则由题意,得⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x +6y ≥28,x ≥0(x ∈N ),y ≥0(y ∈N ).[名师点津] 用不等式(组)表示实际问题中不等关系的步骤: (1)审题.通读题目,分清楚已知量和待求量,设出待求量. (2)列不等关系.列出待求量具备哪些不等关系(即满足什么条件). (3)列不等式(组).挖掘题意,建立已知量和待求量之间的关系式,并分析某些变量的约束条件(包含隐含条件).1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴M >N .2.高速公路对行驶的各种车辆的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,用不等式(组)表示为( )A .v ≤120 km/h 或d ≥10 m B.⎩⎨⎧v ≤120 km/h ,d ≥10 m C .v ≤120 km/h D .d ≥10 m 答案 B解析 依据题意直接将不等关系转化为不等式,即v ≤120 km/h ,d ≥10 m ,注意两个不等关系必须同时成立.3.用“>、<、≥、≤”符号填空(1)(2a +1)(a -3)________(a -6)(2a +7)+45; (2)a 2+b 2________2(a -b -1). 答案 (1)< (2)≥解析 (1)因为(2a +1)(a -3)-[(a -6)(2a +7)+45]=-6<0,所以(2a +1)(a -3)<(a -6)(2a +7)+45.(2)因为a 2+b 2-2(a -b -1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1).4.当m >2时,m m 与2m 的大小关系是________. 答案 m m >2m解析 由于m m >0,2m >0,故可采用作商法, ∴m m 2m =⎝ ⎛⎭⎪⎫m 2m . ∵m >2,∴m 2>1,∴⎝ ⎛⎭⎪⎫m 2m >1.即m m >2m .5.(1)当x >1时,比较x 3与x 2-x +1的大小; (2)已知:a <b ,1a <1b ,判定a ,b 的符号.解 (1)x 3-(x 2-x +1)=x 3-x 2+x -1 =x 2(x -1)+(x -1)=(x -1)(x 2+1), 因为x >1,所以(x -1)(x 2+1)>0, 所以x 3>x 2-x +1.(2)因为1a <1b ,所以1a -1b =b -aab <0,① 因为a <b ,所以b -a >0,②综合①②知ab <0,又因为a <b ,所以a <0<b .A 级:基础巩固练一、选择题1.某校对高一划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式组表示为( )A.⎩⎨⎧ x ≥95,y ≥380,z >45B.⎩⎨⎧ x ≥95,y >380,z ≥45C.⎩⎨⎧x >95,y >380,z ≥45D.⎩⎨⎧x ≥95,y >380,z >45答案 D解析 x 不低于95分,是x ≥95;y 高于380分,是y >380;z 超过45分,是z >45.2.若a <b <0,则下列不等式不能成立的是( ) A.1a >1b B .2a >2b C .|a |>|b | D.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b 答案 B解析 ∵a <b ,y =2x 单调递增,∴2a <2b .故选B.3.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2 D .ac (a -c )<0 答案 C解析 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A ,B ,D 均正确. ∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立. 故选C.4.某品牌彩电厂家为了打开市场,促进销售,准备对生产的某种型号的彩电降价销售,现有4种降价方案:(1)先降价a %,再降价b %; (2)先降价b %,再降价a %; (3)先降价a +b 2%;再降价a +b2%;(4)一次性降价(a +b )%,其中a >0,b >0,a ≠b . 上述方案中,降价幅度最小的是( )A .方案(1)B .方案(2)C .方案(3)D .方案(4)答案 C解析 设该品牌彩电的原价为“1”,降价后的彩电价格依次为x 1,x 2,x 3,x 4, 则x 1=(1-a %)(1-b %),x 2=(1-b %)(1-a %), ∴x 1=x 2否定A ,B.x 3=⎝ ⎛⎭⎪⎫1-a +b 2%2,x 4=1-(a +b )%,x 3-x 4=14[(a +b )%]2>0.故降价幅度最小的是C.二、填空题5.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.答案 ⎩⎪⎨⎪⎧0<x ≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥216解析 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,∴0<x ≤18, 这时菜园的另一条边长为30-x 2=15-x2. ∴菜园面积S =x ⎝ ⎛⎭⎪⎫15-x 2,依题意S ≥216,即x ⎝ ⎛⎭⎪⎫15-x 2≥216,∴题中的不等关系用不等式组表示为⎩⎨⎧0<x ≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥216.6.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:________.答案a +mb +m >ab解析 ∵a +m b +m -a b =(a +m )b -a (b +m )(b +m )b =(b -a )m (b +m )b >0,∴a +m b +m >ab.答案>解析三、解答题8.已知a>0,b>0,a≠b,n∈N且n≥2,比较a n+b n与a n-1b+ab n-1的大小.解(a n+b n)-(a n-1b+ab n-1)=a n-1(a-b)+b n-1(b-a)=(a-b)(a n-1-b n-1),①∵当a>b>0时,a n-1>b n-1,∴(a-b)(a n-1-b n-1)>0;②∵当0<a<b时,a n-1<b n-1,∴(a-b)(a n-1-b n-1)>0;∴对任意a>0,b>0,a≠b,总有(a-b)(a n-1-b n-1)>0.∴a n+b n>a n-1b+ab n-1.9.若x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.解(x2+y2)(x-y)-(x2-y2)(x+y)=(x2+y2)(x-y)-(x-y)(x+y)2=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x<y<0,∴x-y<0,xy>0,∴-2xy <0,-2xy (x -y )>0, 即(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).10.某单位组织职工去某地参观学习,需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元(x >0),坐甲车队的车需花y 1元,坐乙车队的车需花y 2元,则y 1=x +34x ·(n -1)=14x +34nx ,y 2=45nx . 因为y 1-y 2=14x +34nx -45nx =14x -120nx =14x ⎝ ⎛⎭⎪⎫1-n 5,当n =5时,y 1=y 2;当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.B 级:能力提升练1.若a ,b ,c ,d 均为实数,使不等式a b >cd >0和ad <bc 都成立的一组值(a ,b ,c ,d )是________(只要举出适合条件的一组值即可).答案 (2,1,-1,-2)解析 由a b >c d >0知,a ,b 同号,c ,d 同号,且a b -c d =ad -bcbd >0. 由ad <bc ,得ad -bc <0,所以bd <0.所以在取(a ,b ,c ,d )时只需满足以下条件即可: ①a ,b 同号,c ,d 同号,b ,d 异号;②ad <bc . 令a >0,b >0,c <0,d <0, 不妨取a =2,b =1,c =-1, 则d <bc a =-12,取d =-2,则(2,1,-1,-2)满足要求.2.设a >0,a ≠1,t >0,比较12log a t 与log a t +12的大小. 解 ∵12log a t =log a t ,t +12-t =t -2t +12=(t -1)22,∴当t =1时,t +12=t ;当t >0且t ≠1时,t +12>t . ∵当a >1时,y =log a x 是增函数,∴当t >0且t ≠1时,log a t +12>log a t =12log a t ; 当t =1时,log a t +12=12log a t .∵当0<a <1时,y =log a x 是减函数,∴当t >0且t ≠1时,log a t +12<log a t =12log a t ; 当t =1时,log a t +12=12log a t .综上可知,当t =1时,log a t +12=12log a t .当t >0且t ≠1时,若a >1,则log a t +12>12log a t ;若0<a <1,则log a t +12<12log a t .。
高中数学必修5 1.1.2《不等式与不等关系》导学案姓名: 班级: 组别: 组名: 【学习目标】1﹑感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的背景. 2﹑知道不等式的一些基本性质.3、二次函数、一元二次方程与一元二次不等式解集的关系. 【重点难点】▲重点:1、不等式的基本性质.2、一元二次不等式的解法.▲难点:1、一元二次不等式的解法.2、理解二次函数、一元二次方程与一元二次不等式解集的关系.【知识链接】20XX 年经济危机风暴继续在世界各国漫延,我国的房地产业受到很大的冲击,20XX 年8月深圳房价20570元/2m ,而到了10月房价低于19680元/2m ,这三个月内平均降价的百分比是多少?你能列出不等式求解吗? 【学习过程】阅读课本第72页至第73页的内容,去刻画客观事物的基本数量关系,尝试回答以下问题: 知识点1:不等关系与不等式基本性质问题1﹑完成课本第74页练习1、2,并举出几个现实生活中与不等式有关的例子.问题2﹑不等式的基本性质: 性质1:对称性a bba性质2:传递性 ,a b bcac性质3:可加性a bac bc性质4:可乘性,0a b cacbc性质5:加法法则,a b c d a c b d 性质6:乘法法则0,0a b c d acbd性质7:乘方法则0(,2)nn a b a b nN n 性质8:开方法则0(,2)nnaba b nN n练习: 1、比较22xax 与2223a a 的大小(,)a x R点拨:可用作差法比较大小,解题步骤:作差分解因式或作差确定符号判断大小阅读课本第76页至第77页的内容,尝试回答以下问题: 知识点2: 一元二次不等式的解法问题1、从课本第77页的图3.2-2可知,一元二次方程的根就是二次函数的零点. 问题2﹑观察图3.2-2知: ①当x ,函数位于x 轴上方,此时y 0,即25xx 0. ②当x,函数位于y 轴下方,此时y 0,即25xx 0.问题3、从以上问题1、2中可知观察函数图像可获得不等式解集问题4、如何确定一元二次不等式20(0)ax bx c a或20(0)ax bx c a 的解集.练习:解不等式①28150xx ②223x x点拨:首先判断其所对应的一元二次方程判别式的符号,求根,然后根据不等号的方向及二次项函数的符号写出解集,这是解一元二次不等式的基本方法.知识点3: 一元二次不等式与二次函数及一元二次方程之间的联系.24b ac2(0)y ax bx c a的图像20(0)ax bx c a 的根20(0)ax bx c a 的解集20(0)ax bxca解集知识点4:一元二次不等式及可转化为一元二次不等式的指、对、分数不等式的解法 例1、求不等式24410xx 的解集问题1、先求方程24410x x 的根,再根据二次函数2441yx x 的图像写出解集问题2、你能归纳求解一般一元二次不等式的过程吗?请试一试例2、解不等式201x x问题1、若0ab,则只需a 与b 同号,即00ab b,则分式不等式201x x 可转化为:问题2、尝试写出本题的完整过程例3、求解不等式2lg()lg(3)xx x点拨:利用对数函数单调性脱去对数符号时,必须使原不等式中的所有真数均大于零,而不仅仅是变形后的最简不等式中的真数大于零【基础达标】 A1、解不等式①22150x x ②221x x ③222x xB2、解不等式222312513()3x x x x . C3、解不等式222306x x x xC4﹑定义在(1,1)上的奇函数()f x 在定义域上式减函数,且2(1)(1)0f a f a ,求a 的取值范围. D5、若不等式20x px q 的解集为|12x x,求不等式22056x px q xx 的解集【小结】 【当堂检测】若已知二次函数()yf x 的图像过原点,且有1(1)2f ,3(1)4f ,求(2)f 的范围.【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。
第三章不等式§3.1 不等关系与不等式一、学习目标1.了解不等式的意义,会列不等式表示数量关系.2.掌握常用不等式的基本性质.3会用不等式的性质证明简单的不等式.【重点、难点】教学重点:不等式的意义及不等式的基本性质。
教学难点:不等式的意义及不等式基本性质的应用。
二、学习过程【情景创设】咖啡馆配制两种饮料,甲种饮料每杯分别用奶粉9 g,咖啡4 g,糖3 g;乙种饮料每杯分别用奶粉4 g,咖啡5 g,糖10 g.已知每天使用原料限额为奶粉3600 g,咖啡2000 g,糖3000 g,设每天应配制甲种饮料x杯,乙种饮料y 杯,你能写出满足上述条件的所有不等式吗?【导入新课】1 .上述情景中的x,y满足的不等式分别为. . .x≥0,y≥02.作差法比较大小的依据是什么?(1)a>b⇔;(2)a=b⇔;(3)a<b⇔.要确定任意两个正实数a,b的大小关系,只需确定它们的与的大小关系即可.3.作商法比较大小的依据是什么?设a,b∈R,且a>0,b>0(1)a>b⇔;(2)a=b⇔;(3)a<b⇔.要确定任意两个正实数a,b的大小关系,只需确定它们的与的大小关系即可.4.不等式的基本性质(1)对称性:a>b⇔b a;(2)传递性:a>b,b>c⇒a c;(3)可加性:a>b⇒a+c b+c;(4)a>b,c>d⇒a+c b+d;(5)可乘性:a>b,c>0⇒ac bc;(6)a>b>0,c>d>0⇒ac bd;(7)a>b,c<0⇒ac bc;(8)乘方性:a>b>0⇒a n b n(n∈N,n≥2);(9)开方性:a>b>0⇒错误!未找到引用源。
错误!未找到引用源。
(n∈N,n≥2);(10)a>b,ab>0⇒错误!未找到引用源。
错误!未找到引用源。
第三章不等式§3.1不等式与不等关系第1课时【授课类型】新授课【教学目标】1.理解不等式(组)的实际背景,掌握不等式的基本性质;2.能用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
3.能用不等式(组)正确表示出不等关系。
【教学重点】同目标2【教学难点】同目标3【教学过程】1、情境导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
2、展示目标下面我们首先来看在本课时应掌握哪些东西,掌握到什么程度(1)理解不等式(组)的实际背景,掌握不等式的基本性质;(2)能用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
(3)能用不等式(组)正确表示出不等关系。
3、检查预习(1)用不等式表示不等关系限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:v404、合作探究(2)用不等式表示不等关系某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩5、交流展示引例:b 克糖水中有a 克糖(b >a >0),若再加入m 克糖(m >0),则糖水更甜了,试根据这个事实写出一个不等式 。
6、精讲精练例题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
例题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
第三章 不等式3.1不等式与不等关系班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批:一.:自主学习,明确目标 1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 批注教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式;教学难点:利用不等式的性质证明简单的不等式。
教学用具:投影仪教学方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;二.研讨互动,问题生成在初中,我们已经学习过不等式的一些基本性质。
请同学们回忆初中不等式的的基本性质。
(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若a b a c b c >⇒±>±(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变;即若,0a b c ac bc >>⇒>(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
即若,0a b c ac bc ><⇒<三.合作探究,问题解决1、不等式的基本性质证明:(1),a b b c a c >>⇒>(2)a b a c b c >⇒+>+(3),0a b c ac bc >>⇒>(4),0a b c ac bc ><⇒<2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质:(1),a b c d a c b d >>⇒+>+;(2)0,0a b c d ac bd >>>>⇒>;(3)0,,1n n a b n N n a b >>∈>⇒>>例1、已知0,0,a b c >><求证 : c c a b >。
不等关系与不等式(1)教学目标:知识目标:了解不等式的意义•能力目标:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力• 情感目标:1、感受生活中存在着大量的不等关系•2、初步体会不等式是研究量与量之间关系的重要模型之一教学重、难点:1、重点:不等式的意义•2、难点:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力o 教学准备:教学设计过程:一、创设情境:1、下列问题中的数量关系能用等式表示吗?若不能,应该用怎样的式子来表示?(1)公路上对汽车的限速标志,表示汽车在该路段行驶的速度不得超过40km/h.用v(km/h) 表示汽车的速度,怎样表示V与40之间的关系?b5E2RGbCAP(2)据科学家测定,太阳表面的温度不低于6000C o设太阳表面的温度为t「C)怎样表示t与6000之间的关系?p1EanqFDPw(3)天平左盘放3个乒乓球,右盘放5g砝码,天平倾斜。
设每个乒乓球的质量为x (g),怎样表示x与5之间的关系?DXDiTa9E3d(4)小聪与小明玩跷跷板。
大家都不用力时,跷跷板左低、右高,小聪的身体质量为p (kg),书包的质量为2 kg,小明的身体质量为q (kg),怎样表示p,q之间的关系?RTCrpUDGiT(5)要使代数式有意义,x的值与3之间有什么关系?二、探究新知:2、议一议:观察由上述问题得到的关系式,它们有什么共同的特点?像v<40, t >6000, 3x>5, q<p+2, x工3 这样,用符号“v” (或“w”),“〉” (或“》”),“工”连成的数学式子,叫不等式(inequality )。
这些用来连接的符号统称不等号(inequality symbol ) 5PCZVD7H XA3、讲解例题例1根据下列数量关系列不等式:(1)a是正数;(2)y的2倍与6的和比1 小;(3)x2减去10不大于10;(4设)a, b, c为一个三角形的三条边长,两边之和大于第三边.3、做一做:(1)已知X1=1, X2=2,请在数轴上表示出X1, X2的位置;(2)x< 1表示怎样的数的全体?4、归纳:x<a表示小于a的全体实数,在数轴上表示a左边的所有点,不包括a在内(如图5—4);x>a表示大于或等于a的全体实数,在数轴上表示a右边的所有点,包括a在内(如图5一5); b v x v a (b v&=表示大干b而小于a的全体实数,在数轴上表示如图5一 6.你能在数轴上分别类似地表示X > a, X< a和b< X V a ( b V a=吗?jLBHrnAlLg5、讲解例2一座小水电站的水库水位在12〜20m (包括12m 20m)时,发电机能正常工作。
一、有关复习1.设点 A 与平面之间的距离为 d,B 为平面上随意一点,则点 A 与平面的距离小于或等于 A、B 两点间的距离,请将上述不等关系写成不等式 .二、新课导学◆ 学习研究1.同向不等式:两个不等号方向同样的不等式,比如:a>b,c>d,是同向不等式异向不等式:两个不等号方向相反的不等式比如:a>b,c<d,是异向不等式2.不等式的性质:性质 1:假如a>b,那么b<a,假如b<a,那么a>b.(对称性)性质 2:假如a>b,且b>c,那么a>c.(传达性)即 a>b, b>c a>c性质 3:假如a>b,那么a+c>b+c.即 a>b a+c>b+c性质 4:假如a>b,且c>0,那么ac>bc;假如 a>b,且 c<0,那么 ac<bc.性质 5:假如a>b,且c>d,那么a+c>b+d.(相加法例)即a>b,c>d a+c>b+d.已知 a>b, c<d,求证: a-c>b-d.(相减法例 )性质 6假如a>b >0,且c>d>0,那么ac>bd.(相乘法例)性质 7若a b 0,则 a n b n (n N 且 n1)性质 8 若a b 0,则n a n b (n N 且 n1)◆ 典型例题例 1已知a b 0 且 0 c d ,求证:a b(相除法例 ) c d例 2已知a>b>0,c<0,求证:c ca b例 3已知 a, b, x, y 是正数,且11,x>y.求证:x y a b x a y b例 4已知函数 f ( x)ax2 c , -4≤ f (1) ≤-1, -1≤ f (2)≤5,求 f (3) 的取值范围.变式:已知 4 a b1, 1 4a b 5 ,求9a b 的取值范围.◆ 着手试一试练 1.用不等号“ >”或“ <”填空:( 1)a b, c d a c ____ b d ;( 2)a b0,c d0ac ____ bd ;( 3)a b03 a ____ 3 b ;( 4)a b0112 ___ 2 .a b练 2.已知 x>0,求证 1 x 1x .2练 3.若 f (x)3x2x1 , g (x) 2 x2x 1 ,则 f (x) 与 g (x) 的大小关系为(). A.f ( x) g ( x)B.f ( x) g ( x)C.f ( x)g (x)D.随 x 值变化而变化练 4.已知x a0 ,则必定建立的不等式是().A.x2a20B.x2ax a2C.x2ax 0D.x2a2ax练5.已知2,则的范围是() . 22A.(,0)B.[,0] 22 C.(,0]D.[,0) 22练 6.假如a b ,有以下不等式:①a2b2,②1a b,④ lg a lgb ,其1,③33.a b中建立的是练 7.设a0 ,1 b 0 ,则a, ab, ab2三者的大小关系为.练 8.已知x≠0,比较(x2+1)2与x4+x2+1的大小.三、学习小结1、实数的运算性质与大小次序的关系:数轴上右侧的点表示的数总大于左侧的点所表示的数,从实数的减法在数轴上的表示可知:a b a b0a b a b0a b a b0得出结论:要比较两个实数的大小,只需观察它们的差的符号即可。
不等关系与不等式导学案文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]不等关系与不等式导学案命制学校:沙市五中命制教师:王旭俐学习目标:1了解不等式的实际应用及不等式的重要地位和作用;2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.学习重点:比较两实数大小.学习难点:差值比较法:作差→变形→判断差值的符号学法指导:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系知识链接:在日常生活中,我们经常看到下列标志:问题1:你知道各图中的标志有何作用?其含义是什么吗?提示:①最低限速:限制行驶时速v不得低于50公里;②限制质量:装载总质量G不得超过10 t;③限制高度:装载高度h不得超过3.5米;④限制宽度:装载宽度a不得超过3米;⑤时间范围:t∈.问题2:你能用一个数学式子表示上述关系吗?如何表示?提示:①v≥50;②G≤10;③h≤3.5;④a≤3;⑤7.5≤t≤10.自主学习:不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.1.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a<b”“a≠b”“a≥b”“a≤b”等式子表示,不等关系是可以通过不等式来体现的。
2.不等式中文字语言与符号语言之间的转换文字语言大于,高于,超过小于,低于,少于大于等于,至少,不低于小于等于,至多,不多于,不超过符号语言><≥≤边的点表示的实数总比左边的点表示的实数大.问题1:怎样判断两个实数a、b的大小?提示:若a-b是正数,则a>b;若a-b是负数,则a<b;若a-b 是零,则a=b.问题2:你能否由问题1得出两个实数比较大小的方法?提示:能.通过两个实数作差,判断差的正负比较大小.比较两个实数a、b大小的依据文字语言符号表示如果a >b ,那么a -b 是正数; 如果a <b ,那么a -b 是负数; 如果a =b ,那么a -b 等于0,反之亦然a >b ?a -b >0 a <b ?a -b <0 a =b ?a -b =01.上面的“?”表示“等价于”,即可以互相推出.2.“?”右边的式子反映了实数的运算性质,左边的式子反映的是实数的大小顺序,二者结合起来即是实数的运算性质与大小顺序之间的关系.不等式的基本性质问题1:若a 提示:正确.∵a >b ,b >c ,∴a -b >0,b -c >0. ∴(a -b )+(b -c )>0.即a -c >0.∴a >c .问题2:若a >b ,则a +c >b +c ,对吗?为什么? 提示:正确.∵a >b ,∴a -b >0,∴a +c -b -c >0 即a +c >b +c .问题3:若a >b ,则ac >bc ,对吗?试举例说明.提示:不一定正确,若a =2,b =1,c =2正确.c =-2时不正确.不等式的性质(1)对称性:a >b ?b <a ; (2)传递性:a >b ,b >c ?a >c ; (3)可加性:a >b ?a +c >b +c . 推论(同向可加性):⎭⎬⎫a >bc >d ?a +c >b +d ; (4)可乘性:⎭⎬⎫a >bc >0?ac >bc ;⎭⎬⎫a >bc <0?ac <bc ;推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0?ac >bd ;(5)正数乘方性:a >b >0?a n>b n(n ∈N *,n ≥1); (6)正数开方性:a >b >0?n a >nb (n ∈N *,n ≥2).1.在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性. 合作探究:某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.设每天派出甲型卡车x 辆,乙型卡车y 辆.由题意得⎩⎪⎨⎪⎧x +y ≤9,10×6x +6×8y ≥360,0≤x ≤4,0≤y ≤7,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧x +y ≤9,5x +4y ≥30,0≤x ≤4,0≤y ≤7,x ∈N ,y ∈N .用不等式表示不等关系的方法(1)认真审题,设出所求量,并确认所求量满足的不等关系.(2)找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.用代数式表示相应各量,并用关键词连接.特别需要考虑的是“≤”“≥”中的“=”能否取到.1.用不等式(组)表示下列问题中的不等关系: (1)限速80 km/h 的路标; (2)桥头上限重10 吨的标志;(3)某酸奶的质量检查规定,酸奶中脂肪的含量f 应不多于2.5%,蛋白质的含量p 不少于2.3%.解:(1)设汽车行驶的速度为v km/h , 则v ≤80.(2)设汽车的重量为ω吨,则ω≤10.(3)⎩⎨⎧f ≤2.5%,p ≥2.3%.(1)x 2+3与2x ;(2)已知a ,b 为正数,且a ≠b ,比较a 3+b 3与a 2b +ab 2的大小. (1)(x 2+3)-2x =x 2-2x +3 =()x -12+2≥2>0, ∴x 2+3>2x .(2)(a 3+b 3)-(a 2b +ab 2)=a 3+b 3-a 2b -ab 2 =a 2(a -b )-b 2(a -b )=(a -b )(a 2-b 2) =(a -b )2(a +b ), ∵a >0,b >0,且a ≠b , ∴(a -b )2>0,a +b >0. ∴(a 3+b 3)-(a 2b +ab 2)>0, 即a 3+b 3>a 2b +ab 2.比较两个代数式大小的步骤(1)作差:对要比较大小的两个数(或式子)作差;(2)变形:对差进行变形;(3)判断差的符号:结合变形的结果及题设条件判断差的符号;(4)作出结论.这种比较大小的方法通常称为作差比较法.其思维过程:作差→变形→判断符号→结论,其中变形是判断符号的前提.2.比较x3+6x与x2+6的大小.解:(x3+6x)-(x2+6)=x3-x2+6x-6=x2(x-1)+6(x-1)=(x-1)(x2+6)∵x2+6>0.∴当x>1时,(x-1)(x2+6)>0,即x3+6x>x2+6.当x=1时,(x-1)(x2+6)=0,即x3+6x=x2+6.当x<1时,(x-1)(x2+6)<0,即x3+6x<x2+6.已知a>b>0,c<d<0,e<0,求证:a-c >b-d.∵c<d<0,∴-c>-d>0,又∵a>b>0,∴a+(-c)>b+(-d)>0,即a-c>b-d>0,∴0<1a-c<1b-d,又∵e<0,∴ea-c >eb-d.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.3.已知a>b,m>n,p>0,求证:n-ap<m-bp.证明:∵a>b,又p>0,∴ap>bp.∴-ap<-bp,又m>n,即n<m.∴n-ap<m-bp.已知1<a<4,2<b<8.试求2a+3b与a-b的取值范围.∵1<a<4,2<b<8,∴2<2a<8,6<3b<24∴8<2a+3b<32.∵2<b<8,∴-8<-b<-2.又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2),即-7<a-b<2.故2a+3b的取值范围是(8,32),a-b的取值范围是(-7,2).【探究一】利用几个不等式的范围来确定某个不等式的范围要注意:同向不等式的两边可以相加(相乘),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.【探究二】同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.在本例条件下,求ab的取值范围.∵2<b<8,∴18<1b<12,而1<a<4,∴1×18<a·1b<4×12,即18<ab<2.故ab 的取值范围是(18,2).不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.例:已知-6<a<8,2<b<3,求ab的取值范围.解:因-6<a<8,2<b<3.∴13<1b<12,(1)当0≤a<8时,0≤ab<4;(2)当-6<a<0时,-3<ab<0.由(1)(2)得:-3<ab<4.利用不等式性质求范围,应注意减少不等式使用次数.已知-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值范围.设a+3b=λ1(a+b)+λ2(a-2b)=(λ1+λ2)a+(λ1-2λ2)b,解得λ1=53,λ2=-23.又-53≤53(a+b)≤53,-2≤-23(a-2b)≤-23,所以-113≤a+3b≤1.(注:本题可以利用本章第三节内容求解)1.完成一项装修工程,请木工共需付工资每人500无,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x人,瓦工y 人,则工人满足的关系式是( )A.5x+4y<200 B.5x+4y≥200C.5x+4y=200 D.5x+4y≤200解析:选 D 据题意知,500x+400y≤20 000,即5x+4y≤200,故选D.2.若x≠-2且y≠1,则M=x2+y2+4x-2y的值与-5的大小关系是( )A.M>-5 B.M<-5C.M≥-5 D.M≤-5解析:选A M-(-5)=x2+y2+4x-2y+5=(x+2)2+(y-1)2,∵x≠-2,y≠1,∴(x+2)2>0,(y-1)2>0,因此(x+2)2+(y-1)2>0.故M>-5.3.如果a>b,那么c-2a与c-2b中较大的是________.解析:c-2a-(c-2b)=2b-2a=2(b-a)<0.答案:c-2b4.若-10<a<b<8,则|a|+b的取值范围是________.解析:∵-10<a<8,∴0≤|a|<10,又-10<b<8,∴-10<|a|+b<18.答案:(-10,18)5.(1)已知x≤1,比较3x3与3x2-x+1的大小;(2)若-1<a<b<0,试比较1a,1b,a2,b2的大小.解:(1)3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(x-1)(3x2+1).∵x≤1,∴x-1≤0.又3x2+1>0,∴(x-1)(3x2+1)≤0,∴3x3≤3x2-x+1.(2)∵-1<a<b<0,∴-a>-b>0,∴a2>b2>0.∵a<b<0,∴a·1ab<b·1ab<0,即0>1a>1b,∴a2>b2>1a>1b.一、选择题1.设M=x2,N=-x-1,则M与N的大小关系是( ) A.M>N B.M=NC.M<N D.与x有关解析:选A M-N=x2+x+1=(x+12)2+34>0.∴M>N.2.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是( )A.⎩⎪⎨⎪⎧ x ≥95y ≥380z >45B.⎩⎪⎨⎪⎧ x ≥95y >380z ≥45C.⎩⎪⎨⎪⎧x >95y >380z >45D .⎩⎪⎨⎪⎧x ≥95y >380z >45解析:选D 由题中x 不低于95即x ≥95,y 高于380即y >380, z 超过45即z >45.3.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.4.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎣⎢⎡⎦⎥⎤0,π2,则2α-β3的范围是( )A.⎝⎛⎭⎪⎫0,56πB .⎝ ⎛⎭⎪⎫-π6,56πC.()0,πD .⎝⎛⎭⎪⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π. 5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +bC.若a>b,c<d,则ac>bdD.若a2>b2,则-a<-b解析:选B 选项A,若a=4,b=2,c=5,显然不成立,选项C不满足倒数不等式的条件,如a>b>0,c<0<d时,不成立;选项D只有a>b>0时才可以.否则如a=-1,b=0时不成立,故选B.二、填空题6.比较大小:a2+b2+c2________2(a+b+c)-4.解析:a2+b2+c2-=a2+b2+c2-2a-2b-2c+4=(a-1)2+(b-1)2+(c-1)2+1≥1>0,故a2+b2+c2>2(a+b+c)-4.答案:>7.已知|a|<1,则11+a与1-a的大小关系为________.解析:由|a|<1,得-1<a<1.∴1+a>0,1-a>0.即11+a 1-a =1 1-a2∵0<1-a2≤1,∴11-a2≥1,∴11+a≥1-a.答案:11+a≥1-a8.某公司有20名技术人员,计划开发A、B两类共50件电子器件,每类每件所需人员和预计产值如下:件,最高产值为________万元.解析:设应开发A 类电子器件x 件,则开发B 类电子器件(50-x )件,则x 2+50-x3≤20,解得x ≤20.由题意,得总产值y =7.5x +6×(50-x )=300+1.5x ≤330, 当且仅当x =20时,y 取最大值330.所以应开发A 类电子器件20件,能使产值最高,为330万元. 答案:20 330 三、解答题9.某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人不超过200人;每个工人的年工作时间约为2 100 h ;预计此产品明年的销售量至少为80 000袋;生产每袋需用4 h ;生产每袋需用原料20 kg ;年底库存原料600 t ,明年可补充1 200 t .试根据这些数据预测明年的产量.解:设明年的产量为x 袋,则⎩⎪⎨⎪⎧4x ≤200×2 100x ≥80 0000.02x ≤600+1 200,解得80 000≤x ≤90 000.预计明年的产量在80 000到90 000袋之间. 10.(1)a <b <0,求证:b a <a b; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于ba-ab=b2-a2ab=?b+a??b-a?ab,∵a<b<0,∴b+a<0,b-a>0,ab>0,∴?b+a??b-a?ab<0,故ba<ab.(2)∵1a<1b,∴1a -1b<0,即b-aab<0,而a>b,∴b-a<0,∴ab>0.。
数学:不等关系与不等式导学案3.1 《不等关系与不等式》(1)导学案姓名班级组别组名【学习目标】1、通过问题情境,感受现实世界和日常生活中存在着大量的不等关系;2、会用不等式(组)表示实际问题中的不等关系;3、理解不等式(组)对于刻画不等关系的意义和价值。
【重点】用不等式(组)表示实际问题中的不等关系;【难点】用不等式(组)正确表示不等关系。
【知识链接】大于用表示,小于用表示,不大于用表示,不小于用表示,正数用表示,负数用表示,非负数用表示,非正数用表示知识点1:现实世界和日常生活中常见的不等关系问题1:用不等式表示下列不等关系:(1)a与b的和是非正数;(2)某公路立交桥对通过车辆的高度h“限高4m”;(3)右图是限速为40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度不超过40km/h,表示为40(4)设点A与平面α的距离为d,B为平面α上的任意一点,表示为问题2: 某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,若单价每提高0。
1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?(1)根据题意,提价前杂志的定价为元,提价后杂志的定价为元,因此提高了元;(2)由(1)可知,价格提高了0。
1元的倍,即个0.1元;(3)由(2)可知,销售量减少了2000本的倍,即本,因此,提价后的销售量为本;(4)提价后的销售总收入=销售量⨯单价,因此可表示为,不低于用表示,所以可得到不等式为知识点2:现实世界和日常生活中常见的不等式组关系问题3:用不等式组表示下列不等关系:(1)中国“神州七号”宇宙飞船的飞行速度v不小于第一宇宙速度7.9km/s,且小于第二宇宙速度11。
2km/s。
表示为(2)某品牌酸奶的质量检查规定,酸奶中脂肪f的含量应不少于2。
5﹪,蛋白质p的含量应不少于2。
3﹪。
表示为(3)铁路旅行常识规定:旅客每人免费携带物品——杆状物长度w 不超过200cm,重量m不超过20kg. 表示为问题4:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm 的两种。
《不等式与不等关系》第一时导学案【教学目标】.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2讲授新)用不等式表示不等关系引例1:限速40/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40/h,写成不等式就是:引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2%,蛋白质的含量p应不少于23%,写成不等式组就是——用不等式组来表示问题1:设点A与平面的距离为d,B为平面上的任意一点,则。
问题2:某种杂志原以每本2元的价格销售,可以售出8万本。
据市场调查,若单价每提高01元,销售量就可能相应减少XX本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x元,则销售的总收入为万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式问题3:某钢铁厂要把长度为4000的钢管截成00和600两种。
按照生产的要求,600的数量不能超过00钢管的3倍。
怎样写出满足所有上述不等关系的不等式呢?解:假设截得00的钢管x根,截得600的钢管根。
第三章 不等式3.1 不等关系与不等式(1)【学习目标】1. 用实数的基本理论来比较两个代数式的大小;2. 掌握作差比较大小的基本步骤,并且能灵活的应用来解决一些实际生活问题。
【重点难点】重点:用实数的基本理论来比较两个代数式的大小难点:能灵活的应用不等式来解决一些实际生活问题。
. 【学习过程】一、自主学习:任务1: 不等式的的知识回顾设,,0a b R ∈⇔则a-b > .. ;0⇔a-b=....0⇔a-b <....根据上式推出下式大小关系:(1),a b b c ⇒>>..;..(2)a b a c ⇒+>..b c +;(3),0a b c ac ⇒>>..bc :(4),0a b c ac ⇒><..bc :(5),a b c d a c ⇒+>>..b d +;(6)0,0a b c d ac ⇒>>>>..bd ;(7)0,,1n a b n N n a ∈⇒>>>..,n n b a ..n b 。
任务2:(1)比较大小的基本步骤:(2)一般地,设b ,a 为正实数,且0><m ,b a ,则有请同学们在实际生活中举几个满足上述结论的例子?二、合作探究归纳展示 探究1:文字语言 数学符号文字语言 数学符号 大于至多 小于至少 大于等于不少于 小于等于 不多于探究2:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是_______________某品牌酸奶的质量检查规定,酸奶中脂肪的含量p 应不少于2.5%,蛋白质的含量q 应不少于2.3%,写成不等式组就是_________________三、讨论交流点拨提升例 1 设点A 与平面的距离为d ,B 为平面α上的任意一点,则其中不等关系有______________例2 某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本. 若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?例3某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?四、学能展示课堂闯关知识拓展“等量关系”和“不等量关系”是“数学王国”的两根最为重要的“支柱”,相比较其它一些科学王国来说,“证明精神”可以说是“数学王国”的“血液和灵魂”.1. 下列不等式中不成立的是( ).A .12-≤B .12-<C .11-≤-D . 2. 用不等式表示,某厂最低月生活费a 不低于300元 ( ).A .300a ≤B .300a ≥C .300a >D .300a <3. 已知0a b +>,0b <,那么,,,a b a b --的大小关系是( ).A .a b b a >>->-B .a b a b >->->C .a b b a >->>-D .a b a b >>->-4. 用不等式表示:a与b的积是非正数___________5. 用不等式表示:某学校规定学生离校时间t在16点到18点之间_______________________五、学后反思1.会用不等式(组)表示实际问题的不等关系;2.会用不等式(组)研究含有不等关系的问题.【课后作业】1. 某夏令营有48人,出发前要从A、B两种型号的帐篷中选择一种.A型号的帐篷比B型号的少5顶.若只选A型号的,每顶帐篷住4人,则帐篷不够;每顶帐篷住5人,则有一顶帐篷没有住满.若只选B型号的,每顶帐篷住3人,则帐篷不够;每顶帐篷住4人,则有帐篷多余.设A型号的帐篷有x顶,用不等式将题目中的不等关系表示出来.2. 某正版光碟,若售价20元/本,可以发行10张,售价每体高2元,发行量就减少5000张,如何定价可使销售总收入不低于224万元?。
3.1.1 不等关系与不等式导学案一、不等式的定义及分类 1、定义:2、分类:二、比较两代数式大小的理论依据000<-⇔<=-⇔=>-⇔>b a b a b a b a b a b a注:任意两实数a, b ,在三个关系中有且仅有一种关系成立。
▲:作差法二、典例解析例1、比较x 2-x 和x-2的大小。
练:比较322--+x x x 与的大小。
例2、比较122-+x x x 与的大小。
练:已知a>b, 试比较a 3与b 3的大小。
三、当堂练习1、请用不等号表示下列关系:(1)a 是非负实数;(2)实数a 小于3,但不小于-2;(3)a 和b 的差的绝对值大于2,且小于等于9。
2、试比较244a a +和1的大小。
3、已知求证,b a ≠:)(2422b a b b a +>+4、已知,,+∈R b a 且b a ≠,试比较a 5+b 5和a 2b 3+a 3b 2的大小。
5、列出下题中未知数x 所满足的不等式(或不等式组):一辆汽车原来每天行驶x 公里,如果它每天多行驶19公里,那么在8天内它的行程s 就超过2200公里;如果它每天比原来少行驶12公里,那么行驶同样的路程s 就需超过9天时间。
四、课后作业1、下列不等式①)(232R x x x ∈≥+ ②),(323355R b a b a b a b a ∈+≥+ ③)1(222--≥+b a b a ,其中正确的个数为( )个A 、0个B 、1个C 、2个D 、3个 2、已知,11,1,1,0122aC a B a A a +=-=+=<<-把A 、B 、C 由小到大排为 3现在要在一天内运输2000t 粮食和1500t 石油,写出安排轮船艘救和飞机架数所满足的所有不等关系的不等式。
4、若x<y<0,试比较))(())((2222y x y x y x y x +--+与的大小。
5、证明:对任意实数x ,f(x)=3x 2-x+1总大于g(x)=2x 2+x -1。
不等式与不等关系
考纲要求
1.了解现实世界和日常生活中的不等关系.
2.了解不等式(组)的实际背景. 考情分析
1.从高考内容上来看,不等关系、不等式的性质及应用 是命题的热点.
2.着重突出考查对不等式性质的灵活运用,有时与充要性的判断交汇命题,体现了化归转化思想,难度中、 低档.
3.考查题型多为选择、填空题. 教学过程
基础梳理
一、实数大小顺序与运算性质之间的关系
a -
b >0⇔ ;a -b =0⇔ ; a -b <0⇔ . 二、不等式的基本性质
1.对称性a >b ⇔
2.传递性a >b ,b >c ⇒
3.可加性a >b ⇒
4.可乘性 a >b c >0⇒ ,
⎭
⎬⎫
a >
b
c <0⇒
5.同向可加性
⎭
⎬⎫
a >
b
c >
d ⇒
6.同向同正可乘性
⎭
⎬⎫
a >
b >0
c >
d >0⇒
7.可乘方性a >b >0⇒ (n ∈N ,n ≥2)
8.可开方性a >b >0⇒ (n ∈N ,n ≥2)
两条常用性质
① a >b ,ab >0⇒1a <1
b
② 若a >b >0,m >0,则b a <b +m
a +m
;
双基自测
1.若x +y >0,a <0,ay >0,x -y 的值为 ( ) A .大于0 B .等于0 C .小于0 D .不确定
2.(教材习题改编)已知a ,b ,c 满足c <b <a ,且ac <0.那么下列选项中一定成立的是 ( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2 D .ac (a -c )>0
3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
4.(教材习题改编)3+7与25的大小关系是________.
5.已知a ,b ,c ∈R ,有以下命题:
①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c
以上命题中正确的是____________(请把正确命题的序号都填上).
1.不等式性质使用时注意的问题:
在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;可乘性中的“c 的符号”等都需要注意.
2.作差法是比较两数(式)大小的常用方法,也是证明不
等式的基本方法.要注意强化化归意识,同时注意函数性质在大小比较中的作用.
典例分析
考点一、比较大小
[例1] (2012·珠海模拟)已知b >a >0,x >y >0,求证:x x +a >y
y +b .
[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012·杭州模拟)已知a >b ≥2.现有下列不等式: ①b 2>3b -a ;②ab >a +b .其中正确的是 ( ) A .① B .② C .①② D .都不正确
2.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、
b 、
c 的大小关系是( )
[冲关锦囊] 比较大小的方法 1.作差法:
其一般步骤是:(1)作差;(2)变形;(3)定号;(4)结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,也可以先平方再作差. 2.作商法:
其一般步骤是:(1)作商;(2)变形;(3)判断商与1的大小;(4)结论. 3.特例法:
若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.
考点二、不等式的性质
[例2] (2011·全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是 ( )
A .a >b +1
B .a >b -1
C .a 2>b 2
D .a 3>b 3
[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2012·义乌模拟)设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是
( )
A .a -b >0
B .a +b >0
C .a 2-b 2>0
D .a 3+b 3<0
4.(2012·天津调研)已知三个不等式:①ab >0;②c a >d
b ;③b
c >a
d .以其中两个作条件,余下一
个作结论,则可组成________个正确命题.
[冲关锦囊]
(1)判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的 性质.
(2)特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立, 则该命题为假命题.
考点三、不等式性质的应用
[例3](2011·浙江高考)若a,b为实数,则“0<ab<1”是“b<1
a”的
()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012·金华质检)已知a∈R,则“a>2”是“a2>2a”成立的
( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
一、选择题
1.(2011·长沙一模)若a,b∈R,则下列命题正确的是()
A.若a>b,则a2>b2B.若|a|>b,则a2>b2
C.若a>|b|,则a2>b2D.若a≠|b|,则a2≠b2
2.(2011·泉州质检)已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()
A.M<N B.M>N
C.M=N D.不确定
3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1
a 2b
D.b a <a b
4.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .12
log b <12
log a <0
C .2b <2a <2
D .a 2<ab <1
5.(2012·厦门模拟)设命题p :若a >b ,则1a <1b ,q :若1
ab <0,则ab <0.给出以下3个复合
命题,①p ∧q ;②p ∨q ;③綈p ∧綈q .其中真命题的个数为( )
A .0个
B .1个
C .2个
D .3个
二、填空题
6.若1<α<3,-4<β<2,则α-|β|的取值范围是________.
7.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤
a
y >b
x
这五个式子中,恒成立的所有不等式的序号是________.
三、解答题
8.已知a >0,b >0,试比较M =a +b 与N =a +b 的大小.
9.已知奇函数f (x )在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试说明f (α)+f (β)+f (γ)的值的与0的关系.
10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?
解:设从寝室到教室的路程为s ,甲、乙两人的步行速度为v 1,跑步速度为v 2,且v 1<v 2. 甲所用的时间t 甲=s 2v 1+s 2v 2=s (v 1+v 2)2v 1v 2,
乙所用的时间t 乙=2s
v 1+v 2
,
∴t 甲t 乙
=s (v 1+v 2)2v 1v 2×v 1+v 22s =(v 1+v 2)24v 1v 2
=v 21+v 2
2+2v 1v 24v 1v 2
>4v 1v 24v 1v 2
=1. ∵t 甲>0,t 乙>0,∴t 甲>t 乙,即乙先到教室.。