数值分析分章复习(第七章非线性方程求根)
- 格式:docx
- 大小:18.03 KB
- 文档页数:6
数值分析第7章答案第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程()0f x = (7.1)的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数()f x 的零点.若()f x 可以分解为()(*)()mf x x xg x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内仅有一个根.令00,a a b b ==,计算0001()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若00()()0f a f x <,则令10,10a ab x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ⊂,11001()2b a b a -=-.再令1111()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区间套1100...[,][,]...[,]n n n n a b a b a b --⊂⊂⊂⊂且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1lim()0,lim lim ()*2n n n n n n n n b a x a b x →∞→∞→∞-==+= 因此,1()2n n n x a b =+可作为()0f x =的近似根,且有误差估计11|*|()2n n x x b a +-≤- (7.2)2.迭代法将方程式(7.1)等价变形为 ()x x ϕ= (7.3)若要求*x 满足(*)0f x =则*(*)x x ϕ=;反之亦然.称*x 为函数()x ϕ的一个不动点.求方程(7.1)的根等价于求()x ϕ的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为1(),0,1,2...k k x x k ϕ+== (7.4)函数()x ϕ称为迭代函数.如果对任意1(),0,1,2...k k x x k ϕ+==,由式(7.4)产生的序列{}k x 有极限 lim *k k x x →∞= 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设()[,]x C a b ϕ∈满足以下两个条件: 1.对任意[,]x a b ∈有();a x b ϕ≤≤2.存在正常数1L <,使对任意,[,]x y a b ∈,都有|()()|||x y x y ϕϕ-≤- (7.5) 则()x ϕ在[,]a b 上存在惟一的不动点*x .定理7.2(不动点迭代法的全局收敛性定理)设()[,]x C a b ϕ∈满足定理7.1中的两个条件,则对任意0[,]x a b ∈,由(7.4)式得到的迭代序列{}k x 收敛.到()x ϕ的不动点,并有误差估计式1|*|||1k k k Lx x x x L --≤-- (7.6)和 1|*|||1kk k k L x x x x L --≤-- (7.7)定理7.3(不动点迭代法的局部收敛性定理)设*x 为()x ϕ的不动点,'()x ϕ在*x 的某个邻域连续,且|'()|1x ϕ<,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程()x x ϕ=的根*x ,如果迭代误差*k k e x x =-当k →∞时成产下列渐近关系式1(0)k k e C C e +→≠常数 (7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果()()K x ϕ在所求根*x 的邻近连续,并且(1)()'(*)''(*)...(*)0(*)0p p x x x x ϕϕϕϕ-====≠ (7.9)则该迭代过程在点*x 的邻近是收敛的,并有()11lim(*)!p k p k ke x e p ϕ+→∞= (7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为21(),()()20,1,2,...k k k k k k k k k k ky x z y y x x x z y x k ϕϕ+==-=--+= (7.11)此法也可写成如下不动点迭代式12(),0,1,2,...(())()(())2()k k x x k x x x x x x x ψϕψϕϕϕ+==-=--+ (7.12) 定理7.5(斯蒂芬森迭代收敛定理) 设*x 为式(7.12)中()x ψ的不动点,则*x 是()x ϕ的不动点;设''()x ϕ存在,'(*)1x ϕ≠,则*x 是()x ψ的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为其迭代函数为1(),0,1,2,...'()k k k k f x x x k f x +=-= (7.13)()()'()f x x x f x ϕ=-牛顿迭代法的收敛速度 当(*)0,'(*)0,''(*)0f x f x f x =≠≠时,容易证明,'(*)0f x ≠,''(*)''(*)0'(*)f x x f x ϕ=≠,由定理7.4知,牛顿迭代法是平方收敛的,且12''(*)lim2'(*)k k k e f x e f x +→∞=(7.14) 重根情形的牛顿迭代法 当*x 是()0f x =的m 重根(2)m ≥时,迭代函数()()'()f x x x f x ϕ=-在*x 处的导数1'(*)10x m ϕ=-≠,且|'(*)|1x ϕ<.所以牛顿迭代法求重根只是线性收敛.若*x 的重数m 知道,则迭代式1(),0,1,2,...'()k k k k f x x x mk f x +==-= (7.15)求重根二阶收敛.当m 未知时,*x 一定是函数()()'()f x x f x μ=的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法10(),0,1,2,...'()k k k f x x x k f x +=-=称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的'()k f x 用()f x 在1k x -,k x处的一阶差商来代替,即可得弦截法111()()()()k k k k k k k f x x x x x f x f x ++-=--- (7.17)定理7.6假设()f x 在其零点*x 的邻域:|*|x x δ∆-≤内具有二阶连续导数,且对任意x ∈∆有'()0f x ≠,又初值01,x x ∈∆,,则当邻域∆充分小时,弦截法(7.17)将按阶1.618p =≈收敛到*x .这里p 是方程210λλ--=的正根.5.抛物线法弦截法可以理解为用过11(,()),(())k k k k x f x x f x ---两点的直线方程的根近似替()0f x =的根.若已知()0f x =的三个近似根k x ,1k x -,2k x -用过1122(,()),(,()),(,())k k k k k k x f x x f x x f x ----的抛物线方程的根近似代替()0f x =的根,所得的迭代法称为抛物线法,也称密勒(Muller)法. 当()f x 在*x 的邻近有三阶连续导数,'(*)0f x ≠,则抛物线法局部收敛,且收敛阶为 1.839 1.84p =≈.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.表7-1k ka kb kx ()k f x 的符号0 1 2 31 1 1.25 1.252 1.5 1.51.3751.51.25 1.375 1.3125+ - + -610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1 若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.表7-24 2.120094976.73cos 3120cos c k x x x x ϕ≈=--+=∈≤4k+10-30k+1k+1k 此时x 已满足误差要求,即x*例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.表7-3此时5x 已满足误差要求,即5* 3.347529903x x ≈=(3)由于'(*)0.1363231290x ϕ≈≠,故根据定理7 .4知方法是线性收敛的,并且有1lim'(*)k k k e x e ϕ+→∞=。
第7章 非线性方程求根本章主要内容:1.区间二分法. 2切线法. 3.弦位法. 4.一般迭代法.重点、难点一、区间二分法区间二分法是求方程f(x)=0根的近似值的常用方法。
基本思想:利用有根区间的判别方法确定方程根的区间[a,b] ,将有根区间平分为二;再利用有根区间的判别方法判断那一个区间是有根区间;重复上述步骤,直到小区间端点差的绝对值小于等于精度要求的数值,则用将上一区间的分半值作为方程的根的近似值。
区间二分法的计算步骤如下: 1.计算区间端点的函数值f(a) , f(b)(不妨设f(a)<0,f(b)>0);确定初始有根区间[a,b]. 2.二分有根区间[a,b],并计算)2(ba f + 取21b a x +=3.判断: 若0)(1=x f ,则方程的根为1x x =*;若 0)(1>x f ,则有根区间为[]1,x a x ∈*;令[]],[,111b a x a =若 0)(1<x f ,则有根区间为[]b x x ,1∈*;令 []],[,111b a b x =4. 如果│b-a │<ε(ε为误差限),则方程的根为2ba x +=*;否则转向步骤2,继续二分有根区间[a 1,b 1],并计算中点值,继续有根区间的判断,直到满足精度要求为止,即│b n -a n │<ε二分次数的确定:如果给定误差限ε,则需要二分的次数可由公式12ln ln )ln(---≥εa b n 确定应二分的次数。
例1 用区间二分法求方程0353=+-x x 在某区间内实根的近似值(精确到0.001)【思路】参见上述区间二分法的计算步骤解 ∵f(1.8)=-0.168<0, f(1.9)=0.359>0 ∴f(x)在区间[1.8 ,1.9]内有一个根。
由公式 644.512ln 001.0ln 1.0ln 12ln ln )ln(=--=---≥εa b n取n=6, 计算结果列表如下:则方程在区间[1.8,1.9]内所求近似值为x *≈ x = 1.8328125区间二分法的优点是计算程序简单,只要f (x )在区间[a,b]上连续,区间二分法就可使用,但区间二分法不能用来求偶次重根,由于区间二分法收敛比较慢,在实际计算中,区间二分法常用来求比较好的含根区间和初始近似值,以便进一步使用收敛更快的迭代法求出更精确的近似值。
数值分析第七章非线性方程的数值解法在数值分析中,非线性方程和非线性方程组的求解是非常重要的问题。
线性方程是指变量之间的关系是线性的,而非线性方程则指变量之间的关
系是非线性的。
非线性方程的数值解法是通过迭代的方式逼近方程的解。
非线性方程的求解可以分为两类:一元非线性方程和多元非线性方程组。
接下来,我们将对这两类方程的数值解法进行介绍。
对于一元非线性方程的数值解法,最常用的方法是二分法、牛顿法和
割线法。
二分法是一种直观易懂的方法,其基本思想是通过迭代将方程的解所
在的区间逐渐缩小,最终找到方程的解。
二分法的缺点是收敛速度较慢。
牛顿法是一种迭代法,其基本思想是通过选择适当的初始值,构造出
一个切线方程,然后将切线方程与x轴的交点作为新的近似解,并不断迭代,直到满足精度要求。
牛顿法的优点是收敛速度较快,但其缺点是初始
值的选择对结果影响很大,容易陷入局部极值。
割线法是对牛顿法的改进,其基本思想是通过选择两个初始值,构造
出一条割线,然后将割线与x轴的交点作为新的近似解,并不断迭代,直
到满足精度要求。
割线法的收敛速度介于二分法和牛顿法之间。
对于多元非线性方程组的数值解法,最常用的方法是牛顿法和拟牛顿法。
牛顿法的思想同样是通过构造切线方程来进行迭代,但在多元方程组中,切线方程变为雅可比矩阵。
牛顿法的优点是收敛速度快,但同样受初
始值的选择影响较大。
拟牛顿法是对牛顿法的改进,其基本思想是通过逼近Hessian矩阵来进行迭代,从而避免了计算雅可比矩阵的繁琐过程。
拟牛顿法的收敛性和稳定性较好,但算法复杂度相对较高。
第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程(7.1) 的根是指求(实数或复数),使得.称为方程(7.1)的根,也称为函数的零点.若可以分解为其中m 为正整数,满足,则是方程(7.1)的根.当m=1时,称为单根;当m>1时,称为m 重根.若充分光滑,是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若在[a,b]上连续且,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设在[a,b]上连续,,则在(a,b)内有根.再设在(a,b)内仅有一个根.令,计算和.若则,结束计算;若,则令,得新的有根区间;若,则令,得新的有根区间.,.再令计算,同上法得出新的有根区间,如此反复进行,可得一有根区间套且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-.故因此,可作为的近似根,且有误差估计 (7.2) 2.迭代法将方程式(7.1)等价变形为 (7.3)若要求满足则;反之亦然.称为函数的一个不动点.求方程(7.1)的根等价于求的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为 (7.4)函数称为迭代函数.如果对任意,由式(7.4)产生的序列有极限 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设满足以下两个条件: 1.对任意有2.存在正常数,使对任意,都有 (7.5) 则在上存在惟一的不动点.定理7.2(不动点迭代法的全局收敛性定理)设满足定理7.1中的两个条件,则对任意,由(7.4)式得到的迭代序列收敛.到的不动点,并有误差估计式 (7.6) 和 (7.7)定理7.3(不动点迭代法的局部收敛性定理)设为的不动点,在的某个邻域连续,且,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程的根,如果迭代误差当时成产下列渐近关系式(7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果在所求根的邻近连续,并且 (7.9)则该迭代过程在点的邻近是收敛的,并有(7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为 (7.11) 此法也可写成如下不动点迭代式(7.12)定理7.5(斯蒂芬森迭代收敛定理) 设为式(7.12)中的不动点,则是的不动点;设存在,,则是的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为 其迭代函数为 (7.13)牛顿迭代法的收敛速度 当时,容易证明,,,由定理7.4知,牛顿迭代法是平方收敛的,且(7.14)重根情形的牛顿迭代法 当是的m 重根时,迭代函数在处的导数,且.所以牛顿迭代法求重根只是线性收敛.若的重数m 知道,则迭代式 (7.15)求重根二阶收敛.当m 未知时,一定是函数的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法 称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的用在,处的一阶差商来代替,即可得弦截法 (7.17)定理7.6假设在其零点的邻域内具有二阶连续导数,且对任意有,又初值,,则当邻域充分小时,弦截法(7.17)将按阶收敛到.这里p 是方程的正根. 5.抛物线法弦截法可以理解为用过两点的直线方程的根近似替的根.若已知的三个近似根,,用过的抛物线方程的根近似代替的根,所得的迭代法称为抛物线法,也称密勒(Muller)法.当在的邻近有三阶连续导数,,则抛物线法局部收敛,且收敛阶为.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.k 0 1 2 3 4 5 6 7 8 9 1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3204 1.3243 1.3243 2 1.5 1.5 1.375 1.375 1.13438 1.3282 1.3282 1.3282 1.32631.5 1.25 1.375 1.3125 1.3438 1.3282 1.3204 1.3243 1.3263 1.3253+ - + - + + - - + +610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.473cos 3120cos c k x x x ϕ--+=∈≤4k+10-30k+1k+1k 例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.此时已满足误差要求,即(3)由于,故根据定理7 .4知方法是线性收敛的,并且有。
数值分析实验报告——非线性方程求根一、实验目的:1.掌握求解非线性方程的常用方法;2.了解非线性方程求根问题的数值解法;3.熟悉使用数值分析软件进行非线性方程求根的实现。
二、实验原理:非线性方程指的是形如f(x)=0的方程,其中f(x)是一个非线性函数。
非线性方程求根的常用方法包括二分法、割线法和牛顿法等。
其中,二分法是通过不断缩小区间范围来逼近方程的解;割线法是通过使用割线来逼近方程的解;牛顿法则是通过使用切线来逼近方程的解。
对于给定的非线性方程,可以根据实际情况选择合适的方法进行求根。
三、实验内容:1.编写求解非线性方程的函数,包括二分法、割线法和牛顿法;2.使用编写的函数求解给定的非线性方程,比较各个方法的收敛速度和精确程度;3.根据实际情况分析和选择合适的方法进行求根。
四、实验步骤:1.针对给定的非线性方程,编写二分法的函数实现:(1)首先确定方程的解存在的区间;(2)根据方程的解存在的区间,使用二分法逐步缩小区间范围;(3)根据设定的精度要求,不断循环迭代,直至满足要求或达到迭代次数限制;2.针对给定的非线性方程,编写割线法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据割线的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;3.针对给定的非线性方程,编写牛顿法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据牛顿法的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;4.根据给定的非线性方程,分别使用二分法、割线法和牛顿法进行求解,并比较各个方法的收敛速度和精确程度;5.分析实际情况,选择合适的方法进行求解。
五、实验结果:4.通过比较,发现割线法和牛顿法的收敛速度较快,精确程度较高,因此选择割线法进行求解。
六、实验总结:通过本次实验,我掌握了求解非线性方程的常用方法,并使用数值分析软件实现了二分法、割线法和牛顿法。
第7章 非线性方程求根本章主要内容:1.区间二分法. 2切线法. 3.弦位法. 4.一般迭代法.重点、难点一、区间二分法区间二分法是求方程f(x)=0根的近似值的常用方法。
基本思想:利用有根区间的判别方法确定方程根的区间[a,b] ,将有根区间平分为二;再利用有根区间的判别方法判断那一个区间是有根区间;重复上述步骤,直到小区间端点差的绝对值小于等于精度要求的数值,则用将上一区间的分半值作为方程的根的近似值。
区间二分法的计算步骤如下: 1.计算区间端点的函数值f(a) , f(b)(不妨设f(a)<0,f(b)>0);确定初始有根区间[a,b]. 2.二分有根区间[a,b],并计算)2(ba f + 取21b a x +=3.判断: 若0)(1=x f ,则方程的根为1x x =*;若 0)(1>x f ,则有根区间为[]1,x a x ∈*;令[]],[,111b a x a =若 0)(1<x f ,则有根区间为[]b x x ,1∈*;令 []],[,111b a b x =4. 如果│b-a │<ε(ε为误差限),则方程的根为2ba x +=*;否则转向步骤2,继续二分有根区间[a 1,b 1],并计算中点值,继续有根区间的判断,直到满足精度要求为止,即│b n -a n │<ε二分次数的确定:如果给定误差限ε,则需要二分的次数可由公式12ln ln )ln(---≥εa b n 确定应二分的次数。
例1 用区间二分法求方程0353=+-x x 在某区间内实根的近似值(精确到0.001)【思路】参见上述区间二分法的计算步骤解 ∵f(1.8)=-0.168<0, f(1.9)=0.359>0 ∴f(x)在区间[1.8 ,1.9]内有一个根。
由公式 644.512ln 001.0ln 1.0ln 12ln ln )ln(=--=---≥εa b n取n=6, 计算结果列表如下:则方程在区间[1.8,1.9]内所求近似值为x *≈ x = 1.8328125区间二分法的优点是计算程序简单,只要f (x )在区间[a,b]上连续,区间二分法就可使用,但区间二分法不能用来求偶次重根,由于区间二分法收敛比较慢,在实际计算中,区间二分法常用来求比较好的含根区间和初始近似值,以便进一步使用收敛更快的迭代法求出更精确的近似值。
第七章非线性方程求根
要点:(1)迭代公式局部收敛性及收敛性判断
(2) 迭代公式收敛阶概念
(3) Newton 迭代公式及收敛性左理
复习题:
1、建立一个迭代公式il •算数G = j5 + 7?+辰二,要求分析所建迭代公式的收敛性 解:迭代式为:「卄产
l/o = 5
数d 应是函数卩(x ) = jrr§的不动点(即满足0(a ) = a )
注意到(1)当xeI0,5]时,恒有0(人)€[0•习
(2)当xe[(X5]时,恒有0Cr) = — <-< 1
2\J X + 5 2
依据不动点迭代法收敛定理,知该迭代公式收敛到“
2、对于方程—x = 2 »
解:(1)记/(X )= 8’ — / 一 2
显然 /(_1.9) = 0.0496 >0, /(一1) =-0.6321 <0
当Jce[-L9,-1]时.恒有/V) = e'-l<0
可见/(X )在区间[-1.9,-I ]内有且仅有一个零点 即方程在区间内有且仅有一个实根
(2)取<p{x} = e^-2 容易验证:(I )当xe [-L9,-ll 时,恒有卩(力€[-19-1],
(II)当 X €[T9-1]时,恒有 0Cr) = 0"<S<l
依据不动点迭代法收敛定理,知该迭代公式收敛
(3)记/(x) = 0 J-2
牛顿迭代法形式:和“”-错;
(1) 证明在区间[」・9, .1]内有唯一实根
(2) (3) 无+1-0*-2的收敛性如何? 扯 e (-L9,-l )
写出求解该实根的牛顿迭代公式
讨论迭代格式
严-X-2
兀屛=兀------ 汗七―
e" -1
.心=一1・9
3、为求x^-x--\=0/£ L5附近的一个根,现将方程改写成等价形式,且建立相应的
迭代公式:(1) x = l + A: (2) x = (l + x-)h试分析每一种迭代的收敛性
X-
解:记
⑴ 迭代式为£. = 1+2,这里记9?U)= I+4
注意到/(1・3)/(1・5)<1・并且f\x) = 3x--2x = x(3x-2)>Q.
xe[L3J.5]
所以区间[1.3J.5]为有根区间
2 0([l・3J・5])c[l・3J•习,井且当xe[L3J.5]时,恒有I<p\x} 1< —
<I
依据不动点迭代法收敛世理,知该迭代公式收敛
⑵ 迭代式为兀4=(l + x;)・这里0(0 = (1 + /)了同(1)中讨论,得结
论:该迭代公式收敛
4、对于方程人0'-1 = 0在0.5附近的根。
(1)选取一个不动点迭代公式,判别其收敛性,并指出收敛阶。
(2)给出求解该实根的牛顿迭代公式
解:(1)加一1=0《9 A =—
e'
I X ・=£
构造迭代式:{ 2 ,即取迭代函数0(羽=严
I/O
首先,容易验证区间[O.IJ]是方程的一个有根区间
^[OJJDc[0.1,1],并且当%e[0J,l]时,恒有I0(x)l<y V1
依据不动点迭代法收敛过理,知该迭代公式收敛设/€[0.tl]是其根的
精确值, 因为= HO,故收敛为线性收敛,即收敛阶p = l
⑵记 f (X)= xe' -1
牛顿迭代法形式:
(£+1)严
1兀=
// I
5、应用牛顿法于方程/(x ) = l -一 =0,导出求V&的迭代公式
解:牛顿迭代法形式,-册
3佔£
2a
如果C/V1・可取兀=1,如果«>1-可取Xy =a
6、对于非线性证明方程x-lnx-2 = 0
(1) 证明在区间(1, 8)有一个单根■并大致估计单根的取值范
围.
(2) 写出Newton 迭代求解该根的迭代公式
解:(1)记f (x ) = x-}nx-2,显然/(X )处处可微
/(1) = -1<0 , lim /(x) = 4<sc
・K
所以,在区间(1, 8)内至少存在一个实根
另外,由于 /V ) = l-->0 ,X€(l,g ) X
所以,在区间(1, 00)内有且仅有一个实根
/(3) = l-ln3vO, /(4) = 2-ln4>0
可见根xe (3,4)
⑵牛顿迭代法形式―”-鵠
1-4
即:兀+|=兀--才 2a
HP : <
即:和’一41戸
考虑取如=4
7、据理证明X =1是方程x"-x'-2%-+3x = 1的一个二重根,
井构造计算F的具有平方收敛阶的Newton迭代
解:记/(X)=十一x'-2x2+3兀-1
因为/(1) = 0, r(l)=O,厂⑴HO
所以X = 1是方程/(X)= 0的一个二重根
注意到,当a是/(X)= 0的m重根0«>2)时,
牛顿迭代法求解/(X)= 0仅是线性收敛的
fM
事实上,对于牛顿迭代法,其迭代函数是(p(x} = x-冲
f (-V)
由住是/(X)= 0 的川重根,令/(x) = (x-ay”g(x), g(a)工0,
Cr-a)gCv)
则<p{x) = x- .
mg(x) + (x-a)g(X)
容易验证J 0(a) = 1——
,因w>l,0(a)H(X且0(尤)<1, 故牛顿迭代法是收敛的,但只是线性收敛。
求方程也重根的牛顿迭代法形式:兀+1 =兀-川孕丄
7 (X”)
2(€ - 兀;- 2»・;+3 兀-1)
4xH+3
该迭代至少为平方收敛
8、求方程疋-2x-5 = 0在区间[23]内根的近似值有如下变形
X = yj2x + 5
(1)试判泄对任意初始近似值兀€[2,3]简单迭代法X" =0(忑)的收敛性;
(2)写出求解该实根的Ncwion迭代格式,并考虑迭代初值的选取
解:(1)记0(戈)=範7¥?,容易验证0([2.3])c23]
并且I(p\x} 1< < 1
27
所以俠劝作为区间[2,3] 1:的压缩映射,存在一个不动点/ €[2J]
并且对于色0 €[2,3],迭代式Xz=(pg)均收敛到/
⑵牛顿迭代法形式—厂刖
x;+Xn+5
取如=3 (注:满足/(兀)/"(兀)>0)
9、为数值求得方程x^-x-4 = 0的正根可建立如下迭代格式
7Z-1 »
试利用迭代法的收敛理论证明对于0忑)>0 r该迭代序列收敛.且满足.lim兀,=x
/Ifno
解:记(p{x} = 4^ + x^ x>0
显然g)卜希Th I
所以,对于V兀>0,迭代式兀女)均收敛到X
10、对于非线性方程12-3x+2cosx = 0
(1) 证明方程存在唯一实根
2
(2) 证明对于任意的心e R ,迭代式
= 4 + ±cosx,产生的序列"*}收敛到方程的根
(3) 构造求解该方程根的Newton迭代式
解:(1〉记/(X)= 12-3x + 2cosx
显然/(X)连续可微,又lim /(%) = +O0, lim /(x) = y
.【TY X-X
所以根据连续函数零点存在定理可知3X €(YO ,+S )・成立/(/) = 0 另外,/\x ) = -3-2sinx<0,可见函数于d )严格单调递减
故满足/(%) = 0的点/唯一 •即方程存在唯一实根
2
(2)记0(x) = 4 +亍COSX
所以,对于g 迭代式戈知1=0(母)产生的序列{无}均收敛到方程的根/
(3)牛顿迭代法形式:耳利=兀-护丄
/ (兀)
EP :兀”严£ + 12一3・J+2COS 兀
2 “
3 + 2sin ・j 因为0(x)=
2・ —sin X 3
_ 12 + 2(cos 兀 +斗 sinx…) 3 + 2sinx…。