第六章非线性方程求根
- 格式:ppt
- 大小:2.54 MB
- 文档页数:34
非线性方程求根——不动点迭代法一、迭代法的基本思想迭代法是一种逐次逼近的方法,用某个固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度要求的结果。
例:求方程x 3-x -1=0 在x =1.5 附近的一个根。
解:将所给方程改写成31x x =+假设初值x 0=1.5是其根,代入得33101 1.51 1.35721x x =+=+=x 1≠x 0,再将x 1代入得33211 1.357211 1.33086x x =+=+=x 2≠x 1,再将x 2代入得33321 1.330861 1.32588x x =+=+=如此继续下去,结果如下:k x kk x k 01234 1.51.357211.330861.325881.324945678 1.324761.324731.324721.32472仅取六位数字,x 7与x 8相同,即认为x 8是方程的根。
x *≈x 8=1.32472这种逐步校正的过程称为迭代过程。
这里用的公式称为迭代公式,即311k k x x +=+k =0,1,2,……若x *满足f (x*)=0,称x *为ϕ(x )的一个不动点。
将连续函数方程f (x )=0改写为等价形式:x=ϕ(x ),其中ϕ(x )也是连续函数。
1()k k x x ϕ+=(k =0,1,……)不动点迭代法就是指以迭代格式二、不动点迭代法进行迭代求解的方法。
其中ϕ(x )称为迭代函数。
三、不动点迭代法的实现——MATLAB程序function[root,n]=stablepoint_solver(phai,x0,tol) if(nargin==2)tol=1.0e-5;enderr=1;root=x0;n=0;while(err>tol)n=n+1; %迭代次数r1=root;root=feval(phai,r1); %计算函数值err=abs(root-r1);end程序应用示例:function testmain% x^3-x-1=0% =>x^3=1+x% =>x=(1+x)^(1/3)ph=inline(‘(1+x)^(1/3)’,’x’);[root,n]=stablepoint_solver(ph,1)运行结果:root=1.3247n=8若对任意x 0∈[a , b ],由不动点迭代格式lim *k k x x →∞=则称迭代过程收敛,且x *=ϕ(x *)即f (x*)=0,x *为不动点。
非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。
设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。
(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。
解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。
非线性方程求根的方法简介与例题第一篇:非线性方程求根的方法简介与例题非线性方程f(x)=0求根主要可以采用下面三种方法,下面简单介绍下,并附例题,让解法更一目了然。
1)二分法简介:计算步骤如下:例题:2)不动点迭代,也叫简单迭代。
隐式化为显式,迭代法是一种逐次逼近法;其中f(x)'<1才能满足上述迭代格式。
继续迭代。
3)牛顿迭代法,实际上也叫切线法,是通过下面的方式推导出来的。
上述题目很简单,用牛顿法迭代就可以达到目的。
我们先设f(x)=x-cosx=0由公式得x=x0-x-cosx1+sinx0我们用二分法的原理,我们取x得x1=π,=x0-x0-cosx01+sinx0x1-cosx11+sinx1x2-cosx21+sinx2=π-π+11=1 x2=x1-=1-1-cos11+sin1=0.9998x3=x2-=1-1-cos0.99981+sin0.9998=0.9998x3=x2,并具有四位有效数字,所以只需迭代两次就可以达到题目所需的精度要求第二篇:非线性方程迭代上机作业总体要求:1. 2.开发语言可用任一种高级语言作业包括1)一份实验报告2)电子版作业的全套(压缩后提交在Webcc上),包括:⌝程序源代码;⌝可执行程序;⌝电子版实验报告(内容包括:一、实验目的二、模型建立三、模型求解 3.1 开发环境3.2 程序设计说明(要求设计为通用的)3.3 源代码 3.4 程序使用说明 3.5 模型的解四、小结(可含个人心得体会))第六章逐次逼近法§ 3 非线性方程的迭代解法上机实验题求 x5-3x3+x-1= 0 在区间[-8,8〕上的全部实根.试分别用:(1)二分法;(2)Newton法;(3)弦截法(割线法);(4)Newton下山法;求方程的根.准确到6位有效数字.要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较.以实验报告的形式提交.完成时间:5月18日第三篇:非线性方程的数值解法《计算方法》期末论文论文题目非线性方程的数值解法学院专业班级姓名学号指导教师日期目录摘要第1 章绪论1.1 问题的提出和研究目的和意义 1.2 国内外相关研究综述 1.3 论文的结构与研究方法第2 章非线性方程的数值解法2.1 二分法 2.2 迭代法2.3 迭代法的局部收敛性及收敛的阶 2.4 牛顿迭代法 2.5 牛顿法的改进 2.6 插值摘要数值计算方法,是一种研究解决数学问题的数值近似解方法,它的计算对象是那些。
现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。
全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。
使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。
《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。
基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。
其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。
目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。