高中数学知识点:推理与证明重难点总结
- 格式:doc
- 大小:12.50 KB
- 文档页数:2
高中数学中的难点与重点知识分析高中数学作为一门基础学科,对于学生来说往往是一道难以逾越的坎。
不同于初中数学,高中数学更加注重理论的推导和应用的灵活性,因此,很多学生在学习过程中会遇到各种难点。
本文将从几个重点知识点出发,分析高中数学中的难点,并提供相应的解决方法。
一、函数与方程函数与方程是高中数学的核心内容,也是学生较为困惑的部分。
其中,函数的概念和性质是学习的重点,尤其是对于初学者来说。
学生需要理解函数的自变量与因变量之间的关系,以及函数的图像表示和性质等。
此外,函数的运算、复合函数和反函数也是难点。
为了解决这些难点,学生可以通过多做例题和练习,加深对函数的理解。
同时,可以结合实际问题,将函数与实际应用相结合,提高学习的兴趣和理解程度。
方程是数学中的基本概念,也是解决实际问题的重要工具。
但是,方程的解法和方程的应用往往令学生感到困惑。
特别是高中数学中的二次方程和高次方程,学生需要掌握解方程的基本方法和技巧。
为了解决这些难点,学生可以通过多做习题和归纳总结,熟练掌握解方程的方法。
同时,学生还可以通过实际问题的解析和应用,加深对方程的理解和掌握。
二、数列与数学归纳法数列是高中数学中的重要内容,也是学生容易出错的地方。
学生需要掌握数列的概念、性质和常用的数列类型。
特别是等差数列和等比数列,学生需要熟练掌握求通项公式和前n项和的方法。
此外,数列的应用也是学生容易忽略的部分。
为了解决这些难点,学生可以通过多做习题和归纳总结,提高对数列的理解和掌握。
数学归纳法是解决数学问题的重要方法之一,也是高中数学中的难点。
学生需要理解数学归纳法的基本原理和步骤,以及其在证明和解题中的应用。
为了解决这些难点,学生可以通过多做归纳总结和推理,加深对数学归纳法的理解和掌握。
同时,学生还可以通过实际问题的分析和应用,提高对数学归纳法的理解和应用能力。
三、几何与三角函数几何是高中数学中的重要内容,也是学生容易出错的地方。
学生需要掌握几何的基本概念、性质和定理,以及几何证明的方法和技巧。
高三文科数学常考知识点整理归纳数学已成为许多国家及地区的教育范畴中的一部分。
它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。
这次小编给大家整理了高三文科数学常考知识点,供大家阅读参考。
一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益问题3)面积、体积最(大)问题二、推理与证明1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
高一数学知识点重点难点一、函数与方程函数是数学中的重要概念,高一数学课程中需要掌握函数的定义、函数图像的变换以及函数的性质等知识点。
对于平方函数、绝对值函数、一次函数等常见函数,需要熟练掌握其图像特征和性质,并能够应用到实际问题中去解答。
方程作为数学中的基本工具之一,是高一数学的难点之一。
高一数学课程中的方程主要涉及到一元二次方程、一次方程组和二元二次方程等。
特别是对于一元二次方程,需要重点掌握求根公式和判别式的运用,并能够运用到实际问题中解决。
二、几何与三角在几何的学习中,需要掌握几何基本性质、常见的几何公式以及几何图形之间的关系。
对于圆的相关知识,需要熟练掌握圆的基本性质和常见的定理,如切线定理、弦切角定理等。
三角学是高中数学中的重点难点,主要包括正弦定理、余弦定理、正切定理以及三角函数的相关性质等。
在解决实际问题时,需要能够灵活运用这些定理和公式。
三、概率与统计概率与统计是高一数学的另一难点。
概率主要涉及到事件的概率计算、事件之间的关系以及样本空间的构建等。
统计则需要掌握统计调查的方法和数据处理的技巧,包括频率统计、图表分析、平均数和标准差的计算等。
四、数列与逻辑数列是高一数学中的一个重要内容,需要理解数列的概念、数列的通项公式和前n项和的计算。
同时,需要熟练掌握等差数列和等比数列的性质以及其应用。
逻辑推理是高一数学的一个考察点,需要能够运用命题逻辑的方法进行推理和证明。
包括条件命题、充分必要条件、充要条件等概念的理解,并能够应用到相关问题中去解答。
五、矩阵与变量矩阵是高一数学中的一个重要概念,需要理解矩阵的定义、矩阵的运算以及矩阵的性质。
同时,需要能够运用矩阵解决实际问题,如线性方程组的解法等。
变量是数学中的一个基本概念,需要理解变量的含义和变量的应用。
在高一数学中,需要熟练掌握解方程的方法以及应用变量解决相关问题。
六、解析几何解析几何是高中数学的重点内容,需要掌握平面直角坐标系、直线和曲线的方程以及相关的性质。
高中数学考试的难点和重点是什么?高中数学考试:那些奇奇怪怪的难题讲真,每次看到学生们为了高中数学考试愁眉苦脸,我就想起我当年为了那道“小球从斜坡上滚下来,问它落地时间”的题有多抓狂。
这题啊,真是一道“集万千宠爱于一身”的题,物理公式、三角函数、微积分,全都要用上,简直是数学老师的“终极武器”!其实,高中数学考试的难点主要集中在几个方面:1. 概念理解的“玄学”我记得当年最头疼的就是函数的极限和导数的定义,各种ε 和δ ,看的我头晕眼花。
这些概念就像“天书”一样,你以为你懂了,其实你可能只是懂了个大概,一到考试,你就会发现理解的不够透彻。
比如,函数的极限,它就像是一群人跑向一个目标,最终停在那个目标附近。
但问题是,这群人到底能离目标多近,又需要多长时间才能到达,这就是“极限”的考点。
理解起来确实比较抽象,需要你真正花时间去琢磨。
2. 公式推导的“变奏曲”高中数学的公式,就像是一首首“变奏曲”,你以为你掌握了基本旋律,却不知道它会随时给你来个“转调”。
一个简单的公式,它可能会在不同的情境下以不同的形式出现,考查的知识点也随之变化。
比如,我们都知道三角函数的“和差化积”公式,但考试的时候,题目可能会用“积化和差”的形式来考查,要求你直接用公式进行计算,或者反过来,要求你从“积化和差”的形式推导出“和差化积”的公式。
这种“变奏曲”式的考查方法,真的让人防不胜防。
3. 逻辑推理的“逻辑陷阱”很多同学说高中数学难,其实就是因为它充满了“逻辑陷阱”。
考试题目会设下各种“圈套”,引诱你掉进它的陷阱。
比如一道证明题,它会给你一些看似无关的条件,然后要求你用一系列逻辑推理推导出结论。
但实际上这些条件可能都是“烟雾弹”,真正的解题关键往往藏在题目中那些看似不起眼的细节里。
我记得当年有一道解析几何的证明题,题干很长,条件也很多,但我完全没有找到解题的突破口。
最后我发现,解题的关键在于一个看似不起眼的“垂直”条件,只要抓住这个条件,就能一步步推导出结论。
2.3 数学归纳法1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想-证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度)(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n=1时,结论成立;(2)假设当n=k时结论成立,证明n=k+1时结论也必定成立.错误!错误!错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×")(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.( )答案(1)×(2)×(3)√2.做一做(1)已知f(n)=错误!+错误!+错误!+…+错误!,则f(n)共有________项,f(2)=________。
北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)·1、集合的基本关系·2、集合的含义与表示·3、集合的基本运算(重点)(2课时)·第二章函数·1、生活中的变量关系·2、对函数的进一步认识·3、函数的单调性(重点)·4、二次函数性质的再研究(重点)·5、简单的幂函数(5课时)·第三章指数函数和对数函数·1、正整数指数函数·2、指数概念的扩充·3、指数函数(重点)·4、对数·5、对数函数(重点)·6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用·1、函数与方程·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步·1、简单几何体·2、三视图(重点)·3、直观图(1课时)·4、空间图形的基本关系与公理(重点)·5、平行关系(重点)·6、垂直关系(重点)·7、简单几何体的面积和体积(重点)·8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·1、直线与直线的方程·2、圆与圆的方程·3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计·1、统计活动:随机选取数字·2、从普查到抽样·3、抽样方法·4、统计图表·5、数据的数字特征(重点)·6、用样本估计总体·7、统计活动:结婚年龄的变化·8、相关性·9、最小二乘法(3课时)·第二章算法初步·1、算法的基本思想·2、算法的基本结构及设计(重点)·3、排序问题(重点)·4、几种基本语句(2课时)·第三章概率·1、随机事件的概率(重点)·2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数·2、角的概念的推广·3、弧度制·4、正弦函数(重点)·5、余弦函数(重点)·6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量·1、从位移、速度、力到向量·2、从位移的合成到向量的加法(重点)·3、从速度的倍数到数乘向量(重点)·4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)·1、两角和与差的三角函数·2、二倍角的正弦、余弦和正切·3、半角的三角函数·4、三角函数的和差化积与积化和差·5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列·1、数列的概念·2、数列的函数特性·3、等差数列(重点)·4、等差数列的前n项和(重点)·5、等比数列(重点)·6、等比数列的前n项和(重点)·7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)·1、正弦定理与余弦定理正弦定理·2、正弦定理·3、余弦定理·4、三角形中的几何计算(难点)·5、解三角形的实际应用举例(6课时)·第三章不等式·1、不等关系·1.1、不等式关系·1.2、比较大小(重点)2,一元二次不等式(重点)·2.1、一元二次不等式的解法(重点)·2.2、一元二次不等式的应用【4课时】·3、基本不等式(重点)3.1基本不等式·3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)·4.2、简单线性规划(重点)·4.3、简单线性规划的应用(重点、难点)【3课时】选修1-1第一章常用逻辑用语1命题2充分条件与必要条件(重点)2.1充分条件2.2必要条件2.3充要条件3全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】第二章圆锥曲线与方程(重点)1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3曲线3.1双曲线及其标准方程3.2双曲线的简单性质【8课时】第三章变化率与导数(重点)1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数(重点)4导数的四则运算法则(重点)4.1导数的加法与减法法则4.2导数的乘法与除法法则第四章导数应用(重点)4.1导数的加法与减法法则4.2导数的乘法与除法法则【6课时】选修1-2第一章统计案例1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1流程图2结构图【1.5课时】第三章推理与证明1归纳与类比1.1归纳推理1.2类比推理2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】第四章数系的扩充与复数的引入1数系的扩充与复数的引入1.1数的概念的扩充1.2复数的有关概念(重点)2复数的四则运算(重点、高考必考点)2.1复数的加法与减法2.2复数的乘法与除法【1.5课时】选修2-1第一章常用逻辑用语1命题2充分条件与必要条件3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)第三章1从平面向量到空间向量第四章2空间向量的运算第五章3向量的坐标表示和空间向量基本定理第六章4用向量讨论垂直与平行第七章5夹角的计算第八章6距离的计算【6课时】第三章圆锥曲线与方程(重点、高考大题必考知识点)1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3双曲线3.1双曲线及其标准方程3.2双曲线的简单性质4曲线与方程4.1曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)1归纳与类比2综合法与分析法3反证法4数学归纳法【2课时】第二章变化率与导数(重点)1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数4导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性1.2函数的极值(重、难点)2导数在实际问题中的应用2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】第五章数系的扩充与复数的引入(重点)1数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1分类加法计数原理1.2分步乘法计数原理2.排列(重点、难点)2.1排列的原理2.2排列数公式3.组合3.1组合及组合数公式3.2组合数的两个性质4.简单计数问题5.二项式定理(重、难点)5.1二项式定理5.2二项式系数的性质【8课时】第二章概率(重点)1.离散型随机变量及其分布列2.超几何分布3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1连续型随机变量6.2正态分布【4课时】第三章统计案例1.回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析2.独立性检验(重点)2.1独立性检验2.2独立性检验的基本思想2.3独立性检验的应用【2课时】选修3-1第一章数学发展概述第二章数与符号第三章几何学发展史第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析选修3-2选修3-3第一章球面的基本性质1.直线、平面与球面的我诶制关系2.球面直线与球面距离第二章球面上的三角形1.球面三角形2.球面直线与球面距离3.球面三角形的边角关系4.球面三角形的面积【2课时】第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较选修4-1第一章直线、多边形、圆(重点)1.全等与相似2.圆与直线3.圆与四边形【2课时】第二章圆锥曲线1.截面欣赏2.直线与球、平面与球的位置关系3.柱面与平面的截面4.平面截圆锥面5.圆锥曲线的几何性质【3课时】选修4-2第一章平面向量与二阶方阵1平面向量及向量的运算2向量的坐标表示及直线的向量方程3二阶方阵与平面向量的乘法第二章几何变换与矩阵1几种特殊的矩阵变换2矩阵变换的性质第三章变换的合成与矩阵乘法1变换的合成与矩阵乘法2矩阵乘法的性质第四章逆变换与逆矩阵1逆变换与逆矩阵2初等变换与逆矩阵3二阶行列式与逆矩阵4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量1矩阵变换的特征值与特征向量2特征向量在生态模型中的简单应用选修4-4第一章坐标系1平面直角坐标系2极坐标系3柱坐标系和球坐标系第二章参数方程1参数方程的概念2直线和圆锥曲线的参数方程3参数方程化成普通方程4平摆线和渐开线选修4-5第一章不等关系与基本不等式(重点)l不等式的性质2含有绝对值的不等式(难点)3平均值不等式4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式2排序不等式3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法2、二进制第二章可约性1、素数与合数2、最大公因数与辗转相除法3、算术基本定理及其应用4、不定方程第三章同余1、同余及其应用2、欧拉定理还在更新。
高中数学题难点总结归纳高中数学题是许多学生头疼的问题,无论是对于基础薄弱的学生还是对于学有所成的学生,都可能遇到各种各样的难题。
本文将总结归纳一些高中数学题的难点和解题方法,帮助大家更好地应对高中数学。
一、函数与方程函数与方程是高中数学的基础内容,也是考试中常常出现的重点。
其中,绝对值函数、指数函数、对数函数和三角函数等经常成为学生的弱点。
在解题时,学生通常容易陷入以下几个难点:1. 难点一:对函数与方程的理解不深入很多学生对于函数与方程的定义和性质掌握不牢固,无法准确运用所学知识解题。
因此,掌握函数与方程的基本概念、性质和运算规则是解题的基础。
2. 难点二:不熟悉常见函数的性质和图像特征对于绝对值函数、指数函数、对数函数和三角函数等常见函数,学生需要熟悉它们的性质和图像特征。
比如,绝对值函数的图像是关于原点对称的一条折线,指数函数的图像是逐渐上升或下降的曲线。
3. 难点三:应用函数解决实际问题在实际问题中,学生经常会遇到需要建立函数模型来解决的问题。
这就要求学生能够将问题抽象成数学符号,建立数学模型,并运用函数知识解决问题。
解决方法:1. 加强基础知识的巩固学生需要理清函数与方程的定义和性质,熟练掌握常见函数的图像特征和性质,深入理解函数与方程之间的联系和运算规则。
2. 做大量的练习题通过反复练习,掌握函数与方程的应用技巧,提高解题的能力。
可以选择一些难度适中的练习册或试卷,坚持每天做一些练习。
3. 多理解、多思考实际问题在解决实际问题时,加强思维训练,培养抽象问题、建立数学模型和求解的能力。
可以通过做一些真实的实际问题或者数学建模题来提高解题能力。
二、平面几何平面几何是高中数学的重点和难点之一,考察学生的几何思维和证明能力。
其中,角的性质、三角形的性质和圆的性质是高中几何题中的难点。
1. 难点一:理解角的性质和运算规则学生需要熟悉角的度量和角的运算规则,掌握角的补角、余角、同位角、对顶角等性质。
第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
高中数学知识点:推理与证明重难点总结
一、合情推理
1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;
2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。
在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。
二、演绎推理
演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。
三、直接证明与间接证明
直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。
综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。
分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、
公理等)为止,这种证明方法叫做分析法。
间接证明是相对于直接证明说的,反证法是间接证明常用的方法。
假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。
四、数学归纳法
数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。