高一数学必修1函数的最值
- 格式:ppt
- 大小:2.26 MB
- 文档页数:1
高一数学必修1 函数的最值【学习导航】知识网络学习要求1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域.自学评价1.函数最值的定义:一般地,设函数()y f x =的定义域为A .若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =;若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =;2.单调性与最值:设函数()y f x =的定义域为[],a b ,若()y f x =是增函数,则max y =()f a ,min y =()f b ;若()y f x =是减函数,则max y =()f b ,min y =()f a .【精典X 例】一.根据函数图像写单调区间和最值:例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.【解】 由图可以知道:当 1.5x =-时,该函数取得最小值2-;当3x =时,函数取得最大值为3;函数的单调递增区间有2个:( 1.5,3)-和(5,6);该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7)二.求函数最值:例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x=,[]1,3x ∈. 【解】(1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; (2)因为函数1()f x x =在[]1,3x ∈上是单调减函数,所以当3x =时函数1()f x x=取得最小值为13.听课随笔追踪训练一1.函数2()4(0)f x x mx m =-+>(,0]-∞上的最小值(A )()A 4 ()B 4-()C 与m 的取值有关 ()D 不存在0 ,最大值是32. 2. 函数()f x =的最小值3.求下列函数的最值:(1)4()1,{1,0,1,2}f x x x =+∈-;(2)()35,[3,6]f x x x =+∈ 析:值,所以求函数的最值的方法有时和求函数值域的方法是相仿的. 解(1)(1)(1)2f f =-=;(0)1f =;(2)17f = 所以当0x =时,min 1y =;当2x =时max 17y =; (2)函数()35f x x =+是一次函数,30>故()35f x x =+在区间[3,6]所以当3x =时,min 14y =; 当6x =时,max 23y =;【选修延伸】含参数问题的最值:例3:求2()2f x x ax =-,[0,4)x ∈值.【解】22()()f x x a a =--,称轴为x a =的抛物线.[]min ()(0)0f x f ==; ①若0a ≤,则()f x 在[0,4)[]2min ()()f x f a a ==-;②若04a <<,③若4a ≥,则()f x 在[0,4)()f x 的最小值不存在.点评:含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!思维点拔:一、利用单调性写函数的最值?我们可以利用函数的草图,如果函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递增的,在[,]b c 上是单调递减的,则该函数在区间[,]a c 上的最大值一定是在x b =处取得;同理,若函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递减的,在[,]b c 上是单调递增的,则该函数在区间[,]a c 上的最小值一定是在x b =处取得.追踪训练1.函数)1(11)(x x x f --=的最大值是( D)()A 54()B 45()C 43()D 34 2. y=x 2+12-x 的最小值为( C ) A.0B.43C.1D 不存在.3. 函数2()21(0)f x ax ax a =++>在区间[3,2]-上的最大值为4,则a =____38____. 4.函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为5. 5.已知二次函数2()21f x ax ax =++在[]3,2-上有最大值4,某某数a 的值.解:函数2()21f x ax ax =++的对称轴为1x =-,当0a >时,则当2x =时函数取最大值4,即814a +=即38a =; 当0a <时,则当1a =-时函数取得最大值4,即14a -=,即3a =-所以,38a =或3a =-。
四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。
提高学生概括、推理的能力。
通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。
得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。
课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习
、
课后提高学生的数学运算能力和逻辑推理能力。
通过练习。
函数的最值问题(高一)一.填空题:1. f ( x)3x 5, x[3,6] 的最大值是。
f ( x)11,3 的最小值是。
, xx2.函数 y 12 4x x 2 的最小值是,最大值是 3.函数 y1的最大值是,此时 x2 x 2 8x104.函数 y 2x 3 3, 2 的最小值是,最大值是x , x15.函数 y 3 2, 1 的最小值是,最大值是x , xx 16.函数 y= x 2 - 的最小值是。
y x 1 2x 的最大值是x 27.函数 y=|x+1| –|2-x| 的最大值是 最小值是.8.函数 f x2 在 [2,6] 上的最大值是 最小值是。
x 19.函数 y= 3x( x ≥ 0)的值域是 ______________.1 2x10.二次函数 y=-x 2+4x 的最大值11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。
12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值13.函数 f ( x ) =1 的最大值是y 2x 22x 5的最大值是1 x(1 x)x 2 x 114. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是17. 若 f(x)= x2+ax+3 在区间 [1,4] 有最大值 10,则 a 的值为:18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x )m 恒成立, m 范围是。
教学目标1.了解函数单调性的概念,掌握判断简单函数单调性的方法2.能用文字语言和数学符号语言描述增函数、减函数、单调性等概念,能准确理解这些定义的本质特点重难点 3.会求一些简单函数的定义域、函数值。
【知识回顾与能力提升】1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其他区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.【新知识梳理与重难点点睛】1.定义域为I 的函数f(x)的增减性2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,就说函数y =f (x )在区间D 上具有(严格)的单调性,区间D 叫做y =f (x )的单调区间.3.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标.4.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.要点一 利用图象求函数的最值例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.解 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.规律方法 1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大值或最小值,应先求各段上的最值,再比较即得函数的最大值、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即得函数的最大值、最小值.跟踪演练1 已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值: (1)x ∈R ;(2)[0,3];(3)[-1,1]. 解 f (x )=3x 2-12x +5=3(x -2)2-7. (1)当x ∈R 时, f (x )=3(x -2)2-7≥-7, 当x =2时,等号成立.即函数f (x )的最小值为-7,无最大值.(2)函数f (x )的图象如图所示,由图可知,函数f (x )在[0,2)上递减,在[2,3]上递增,并且f (0)=5,f (2)=-7,f (3)=-4,所以在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5,在x =2时,取得最小值,最小值为-7.(3)由图象可知,f (x )在[-1,1]上单调递减,f (x )max =f (-1)=20,f (x )min =f (1)=-4.要点二 利用单调性求函数的最值例2 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值.解 任取2≤x 1<x 2≤5, 则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1,f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0, ∴f (x 2)-f (x 1)<0. ∴f (x 2)<f (x 1).∴f (x )=xx -1在区间[2,5]上是单调减函数.∴f (x )max =f (2)=22-1=2,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000;∴当x =300时,f (x )max =25 000,当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时 ,f (x )max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.规律方法 1.解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.2.实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.跟踪演练3 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少? 解 设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个. ∴y =(x -40)(1 000-10x ) =-10(x -70)2+9 000≤9 000. 故当x =70时,y max =9 000.答 售价为70元时,利润最大为9 000元.1.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值和最小值分别为( )A .f (2),f (-2)B .f (12),f (-1)C .f (12),f (-32)D .f (12),f (0)答案 C解析 由图象可知最大值为f (12),最小值为f (-32).2.已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )∴f (x )最小值为f (0)=f (2)=0. 而a <-x 2+2x 恒成立,∴a <0.10.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则a 的取值范围是________. 答案 (1,3]解析 由题意知f (x )在[1,a ]上是单调递减的, 又∵f (x )的单调减区间为(-∞,3], ∴1<a ≤3.11.画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间及最小值.解 f (x )的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.三、探究与创新12.求函数f (x )=x 2-2ax +2在[-1,1]上的最小值.解 函数f (x )图象的对称轴方程为x =a ,且函数图象开口向上,如图所示:①当a >1时,f (x )在[-1,1]上单调递减, 故f (x )min =f (1)=3-2a ;②当-1≤a ≤1时,f (x )在[-1,1]上先减后增, 故f (x )min =f (a )=2-a 2;③当a <-1时,f (x )在[-1,1]上单调递增, 故f (x )min =f (-1)=3+2a . 综上可知f (x )的最小值为。
函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x=,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
高一数学必修一中的函数极值与最值应用在高一数学必修一的学习中,函数极值与最值是非常重要的概念,它们在解决实际问题和数学理论中都有着广泛的应用。
首先,我们来明确一下函数极值和最值的定义。
函数的极值是指在函数定义域内的某个局部范围内,函数取得的最大值或最小值。
而函数的最值则是指在整个定义域内,函数所取得的最大值或最小值。
那么,如何求函数的极值和最值呢?这就需要用到导数这个工具。
对于一个可导函数,如果在某一点处导数为零,且在该点两侧导数的符号发生变化,那么这个点就是函数的极值点。
当导数从负变为正时,这个极值点是极小值点;当导数从正变为负时,这个极值点是极大值点。
在实际应用中,函数极值和最值有着诸多方面的体现。
比如在经济领域,企业常常需要考虑成本和利润的问题。
假设一家企业生产某种产品,其成本函数为 C(x),收入函数为 R(x),那么利润函数 P(x) = R(x) C(x)。
通过求利润函数的极值和最值,企业可以确定最优的生产数量,以实现利润的最大化。
再比如在物理问题中,常常会涉及到能量的变化。
例如一个物体在重力作用下自由下落,其高度与时间的关系可以用一个函数来表示。
通过求这个函数的极值和最值,可以确定物体下落的最大速度、最大高度等关键物理量。
在几何问题中,也经常会用到函数的极值和最值。
比如要在一个给定的矩形材料上剪出一个最大的圆形,就需要建立矩形边长与圆的半径之间的函数关系,然后求出这个函数的最值,从而确定圆的最大半径。
让我们通过一些具体的例子来更深入地理解函数极值与最值的应用。
例 1:某工厂生产一种产品,其成本 C 与产量 x 之间的函数关系为C(x) = 2x^2 10x + 50。
求当产量为多少时,平均成本最低?首先,平均成本函数为 C(x)/x = 2x 10 + 50/x 。
对其求导,得到导数为 2 50/x^2 。
令导数等于 0 ,解得 x = 5 。
当 x < 5 时,导数小于 0 ,函数单调递减;当 x > 5 时,导数大于 0 ,函数单调递增。
高一数学必修1 数学。
第一章。
完整知识点梳理大全(最全)集合与函数概念集合是数学中的基本概念之一,它包含了一些确定性、互异性和无序性的元素。
常见的数集有自然数集、正整数集、整数集、有理数集和实数集等。
集合中的元素与集合之间存在着一些关系,例如一个元素属于一个集合,可以表示为a∈M,而不属于则表示为a∉M。
集合的表示方法有自然语言法、列举法、描述法和图示法等。
其中,描述法是通过{x|x具有的性质}来表示集合,而图示法则是用数轴或XXX来表示集合。
集合还可以分为有限集、无限集和空集。
空集是不含有任何元素的集合,记为∅。
集合间的基本关系有子集、真子集和集合相等等。
子集指一个集合中的所有元素都属于另一个集合,而真子集则是指一个集合是另一个集合的子集,但不等于该集合。
如果两个集合中的元素完全相同,则它们是相等的。
集合的基本运算有交集、并集和补集等。
交集是指两个集合中共同存在的元素所组成的集合,而并集则是指两个集合中所有的元素所组成的集合。
补集是指一个集合中不属于另一个集合的所有元素所组成的集合。
最后,含有绝对值的不等式和一元二次不等式的解法也是数学中的重要知识点。
对于含有绝对值的不等式,可以通过分情况讨论来求解。
而对于一元二次不等式,则可以通过求解二次函数的根来确定其解集。
x|>a (a>0)x|c (c>0)XXX:x|-a<x<a}x|xa}We can treat ax+b as a whole and transform it into the form of |x|a (a>0) XXX.Summary of Knowledge Points in Chapter 1 of High School Mathematics2.Solving Quadratic InequalitiesDiscriminantΔ>0Δ=b-4acQuadratic ny=ax^2+bx+c (a>0) Δ=Δ<0XXXax^2+bx+c=0 (a>0) Ox=(-b±√Δ)/(2a)1,2where x1<x2)x|xx2}x|x1<x<x2}x1=x2=-b/2an of No Real Root ax^2+bx+c>0 (a>0) n setx|x≠-b/2a}Rax^2+bx+c0)n set1.2 n and Its XXX1.2.1 Concept of n1.A n is a correspondence een two non-empty sets A and B。
高一数学人教版必修一第一单元知识点:函数的基本性质高一数学人教版必修一第一单元知识点:函数的基本性质函数表示每个输入值对应唯一输出值的一种对应关系。
小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。
1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。
第2课时函数的最大(小)值学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.知识点一函数的最大(小)值思考在下图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?答案最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应,不是函数值.梳理一般地,设函数y=f(x)的定义域为I.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.知识点二函数的最大(小)值的几何意义思考函数y=x2,x∈[-1,1]的图象如下:试指出函数的最大值、最小值和相应的x的值.答案当x=±1时,y有最大值1,对应的点是图象中的最高点,当x=0时,y有最小值0,对应的点为图象中的最低点.梳理一般地,函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.1.因为f(x)=x2+1≥0恒成立,所以f(x)的最小值为0.(×)2.f (x )=1x(x >0)的最小值为0.(×)3.函数f (x )取最大值时,对应的x 可能有无限多个.(√)4.如果f (x )的最大值、最小值分别为M ,m ,则f (x )的值域为[m ,M ].(×)类型一 借助单调性求最值 例1 已知函数f (x )=xx 2+1(x >0).(1)求证:f (x )在(0,1]上为增函数; (2)求函数f (x )的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值(1)证明 设x 1,x 2是区间(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=(x 2-x 1)(x 2x 1-1)(x 21+1)(x 22+1).当0<x 1<x 2≤1时,x 2-x 1>0,x 1x 2-1<0, ∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,1]上单调递增.(2)解 当1≤x 1<x 2时,x 2-x 1>0,x 1x 2-1>0, f (x 1)-f (x 2)>0,f (x 1)>f (x 2), ∴f (x )在[1,+∞)上单调递减.∴结合(1)(2)可知,f (x )max =f (1)=12,无最小值.反思与感悟 (1)若函数y =f (x )在区间[a ,b ]上单调递增,则f (x )的最大值为f (b ),最小值为f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则f (x )的最大值为f (a ),最小值为f (b ). (3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势. 跟踪训练1 已知函数f (x )=2x -1(x ∈[2,6]),求函数的最大值和最小值. 考点 函数的最值及其几何意义 题点 由函数单调性求最值解 设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=2x 1-1-2x 2-1 =2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1).由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0, 于是f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以,函数f (x )=2x -1在区间[2,6]上是减函数.因此,函数f (x )=2x -1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x =2时取得最大值,最大值是2, 在x =6时取得最小值,最小值是25.类型二 求二次函数的最值例2 (1)已知函数f (x )=x 2-2x -3,若x ∈[0,2],求函数f (x )的最值; (2)已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最值; (3)已知函数f (x )=x -2x -3,求函数f (x )的最值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)∵对称轴x =1, ①当1≥t +2即t ≤-1时, f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=(t +2)2-2(t +2)-3=t 2+2t -3. ②当t +t +22≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.③当t ≤1<t +t +22,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4.④当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有g (t )=⎩⎪⎨⎪⎧t 2-2t -3,t ≤0,t 2+2t -3,t >0,φ(t )=⎩⎪⎨⎪⎧t 2+2t -3,t ≤-1,-4,-1<t ≤1,t 2-2t -3,t >1.(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.由(1)知y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =1时,f (x )min =-4,无最大值.反思与感悟 (1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)图象直观,便于分析、理解;配方法说理更严谨,一般用于解答题. 跟踪训练2 (1)已知函数f (x )=x 4-2x 2-3,求函数f (x )的最值; (2)求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值;(3)求函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值. 考点 函数的最值及其几何意义 题点 二次函数最值解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3.y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.(3)f (x )=x 2-4x -4=(x -2)2-8. 设f (x )在[t ,t +1]上的最小值为g (t ). 当t >2时,f (x )在[t ,t +1]上是增函数, ∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8; 当t +1<2即t <1时,f (x )在[t ,t +1]上是减函数, ∴g (t )=f (t +1)=t 2-2t -7.综上,g(t)=⎩⎪⎨⎪⎧t2-2t-7,t<1,-8,1≤t≤2,t2-4t-4,t>2.类型三借助图象求最值例3(2017·昌平区检测)若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为()A.2 B.1C.-1 D.无最大值考点函数的最值及其几何意义题点由函数图象求最值答案 B解析在同一坐标系中画出函数y=2-x2,y=x的图象,如图:根据题意,图中实线部分即为函数f(x)的图象.所以当x=1时,f(x)max=1.反思与感悟借助图象求最值注意两点(1)作图要准确;(2)最值的几何意义要理解.跟踪训练3已知函数f(x)=⎩⎪⎨⎪⎧-x,-1≤x≤0,x2,0<x≤1,x,1<x≤2,则f(x)的最大值为________.考点函数的最值及其几何意义题点由函数图象求最值答案 2解析f(x)的图象如图:则f(x)的最大值为f(2)=2.类型四 函数最值的应用例4 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值 解 方法一 令y =x 2-x +a ,要使x 2-x +a >0对任意x ∈(0,+∞)恒成立, 只需y min =4a -14>0,解得a >14. ∴实数a 的取值范围是⎝⎛⎭⎫14,+∞. 方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max , 又(-x 2+x )max =14,∴a >14.∴实数a 的取值范围是⎝⎛⎭⎫14, +∞. 引申探究把本例中“x ∈(0,+∞)”改为“x ∈⎝⎛⎭⎫12,+∞”,再求a 的取值范围. 解 f (x )=-x 2+x 在⎝⎛⎭⎫12,+∞上为减函数, ∴f (x )的值域为⎝⎛⎭⎫-∞,14, 要使a >-x 2+x 对任意x ∈⎝⎛⎭⎫12,+∞恒成立, 只需a ≥14,∴a 的取值范围是⎣⎡⎭⎫14,+∞. 反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a 来解决.任意x ∈D ,f (x )<a 恒成立一般可转化为f (x )max <a .跟踪训练4 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围. 考点 函数的最值及其几何意义 题点 含参二次函数最值解 ∵x >0,∴ax 2+x ≤1可化为a ≤1x 2-1x.要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,只需a ≤⎝⎛⎭⎫1x 2-1x min .设t =1x ,∵x ∈(0,1],∴t ≥1.1x 2-1x=t 2-t =⎝⎛⎭⎫t -122-14. 当t =1时,(t 2-t )min =0,即当x =1时,⎝⎛⎭⎫1x 2-1x min =0, ∴a ≤0.∴实数a 的取值范围是(-∞,0].1.函数y =-x +1在区间⎣⎡⎦⎤12,2上的最大值是( ) A .-12 B .-1 C.12 D .3考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 C2.函数f (x )=1x 在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 A3.函数f (x )=x 2,x ∈[-2,1]的最大值、最小值分别为( ) A .4,1 B .4,0 C .1,0D .以上都不对考点 函数的最值及其几何意义 题点 二次函数最值 答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧x +7,-1≤x <1,2x +6,1≤x ≤2,则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对考点 函数的最值及其几何意义 题点 分段函数最值 答案 A5.若不等式-x +a +1≥0对一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A .0 B .-2 C .-52D .-12考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 D1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.3.许多数学问题如不等式证明,恒成立的不等式,图象与y =a (a 为常数)的交点问题等,都与函数最值有关,所以会求函数最值是一种基础技能.。
函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x =,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x =4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是5.函数[]3,2,1y x x x =-∈--的最小值是 ,最大值是6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x213+-(x ≥0)的值域是______________.10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
第2课时函数的最大值、最小值1.函数的最值(1)定义.前提函数f(x)的定义域为D,且x0∈D,对任意x∈D 条件都有f(x)≤f(x0)都有f(x)≥f(x0)结论最大值为f(x0),x0为最大值点最小值为f(x0),x0为最小值点最大值和最小值统称为最值,最大值点和最小值点统称为最值点①配方法:主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;②换元法:用换元法时一定要注意新变元的取值范围;③数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出;④利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.最值点是点吗?提示:不是,是实数值,是函数值取得最值时的自变量x 的值.2.直线的斜率(1)直线斜率的定义.平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),①当x 1≠x 2时,称y 2-y 1x 2-x 1 为直线的斜率,记作Δy Δx ; ②当x 1=x 2时,称直线的斜率不存在.(2)直线的斜率与函数单调性的关系①函数递增的充要条件是其图像上任意两点连线的斜率都大于0. ②函数递减的充要条件是其图像上任意两点连线的斜率都小于0.3.函数的平均变化率(1)平均变化率的定义:若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I ,且x 1≠x 2,记y 1=f (x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1 , 称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.(2)函数的平均变化率与函数的单调性y =f (x )在I 上是增函数⇔Δy Δx >0在I 上恒成立y =f (x )在I 上是减函数⇔Δy Δx <0在I 上恒成立函数图像上任意两点连线的斜率大于0时,函数图像从左向右的变化趋势是什么?提示:函数图像从左向右逐渐上升.1.辨析记忆(对的打“√”,错的打“×”).(1)任何函数都有最大值、最小值.( × )提示:如函数y =1x 既没有最大值,也没有最小值.(2)一个函数的最大值是唯一的,最值点也是唯一的.( × )提示:函数的最大值是唯一的,但最值点不唯一,可以有多个最值点.(3)直线不一定有斜率,过函数图像上任意两点的直线也不一定有斜率.( × )提示:过函数图像上任意两点的直线一定有斜率,因为根据函数的定义,一定有x 1≠x 2.2.过函数图像上两点A (-1,3),B (2,3)的斜率Δy Δx =________.【解析】Δy Δx =3-32+1=0. 答案:03.已知函数f (x )=x -1x +1,x ∈[1,3],则函数f (x )的最大值为________,最小值为________.【解析】f (x )=x -1x +1 =1-2x +1,x ∈[1,3], 因为f (x )在[1,3]上为增函数,所以f(x)max=f(3)=1=f(1)=0.2,f(x)min答案:120类型一利用函数的图像求最值(数学运算、直观想象)1.(2021·太原高一检测)如图是函数y=f(x),x∈[-4,3]的图像,则下列说法正确的是()A.f(x)在[-4,-1]上单调递减,在[-1,3]上单调递增B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与y=f(x)的图像有三个交点时-1<t<2【解析】选C.A选项,由函数图像可得,f(x)在[-4,-1]上单调递减,在[-1,1]上单调递增,在[1,3]上单调递减,故A错;B选项,由图像可得,f(x)在区间(-1,3)上的最大值为f(1)=3,无最小值,故B错;C选项,由图像可得,f(x)在[-4,1]上有最小值f(-1)=-2,有最大值f(1)=3,故C正确;D选项,由图像可得,为使直线y=t与y=f(x)的图像有三个交点,只需-1≤t≤2,故D错.2.已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最小值、最大值点分别为________,________.【解析】作出函数f (x )的图像(如图).由图像可知,当x =±1时,f (x )取最大值,最小值为0,故f (x )的最小值为0,最大值点为±1.答案:0 ±13.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5], (1)如图所示,在给定的直角坐标系内画出f (x )的图像.(2)由图像指出函数f (x )的最值点,求出最值.【解析】(1)由题意,当x ∈[-1,2]时,f (x )=-x 2+3,为二次函数的一部分;当x ∈(2,5]时,f (x )=x -3,为一次函数的一部分;所以,函数f (x )的图像如图所示:(2)由图像可知,最大值点为0,最大值为3;最小值点为2,最小值为-1.图像法求最值、最值点的步骤【补偿训练】 已知函数f(x)=⎩⎨⎧x 2-x (0≤x≤2),2x -1(x >2),求函数f(x)的最大值、最小值. 【解析】作出f(x)的图像如图:由图像可知,当x =2时,f(x)取最大值为2;当x =12 时,f(x)取最小值为-14 .所以f(x)的最大值为2,最小值为-14 .【拓展延伸】求二次函数最值的常见类型及解法求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,当开口方向或对称轴位置不确定时,还需要进行分类讨论.求二次函数f (x )=ax 2+bx +c (a >0)在区间[m ,n ]上的最值一般分为以下几种情况:(1)若对称轴x =-b 2a 在区间[m ,n ]内,则最小值为f ⎝ ⎛⎭⎪⎫-b 2a ,最大值为f (m ),f (n )中较大者(或区间端点m ,n 中与直线x =-b 2a 距离较远的一个对应的函数值为最大值).(2)若对称轴x =-b 2a <m ,则f (x )在区间[m ,n ]上是增函数,最大值为f (n ),最小值为f (m ).(3)若对称轴x =-b 2a >n ,则f (x )在区间[m ,n ]上是减函数,最大值为f (m ),最小值为f (n ).【拓展训练】1.定轴定区间上的最值问题【例1】已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值.(1)R .(2)[0,3].(3)[-1,1].【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图像法求解.【解析】f (x )=3x 2-12x +5=3(x -2)2-7.(1)当x ∈R 时,f (x )=3(x -2)2-7≥-7,当x =2时,等号成立.故函数f (x )的最小值为-7,无最大值.(2) 函数f (x )=3(x -2)2-7的图像如图所示,由图可知,在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5;在x =2时取得最小值,最小值为-7.(3)由图可知,函数f (x )在[-1,1]上是减函数,在x =-1时取得最大值,最大值为20;在x =1时取得最小值,最小值为-4.(1)函数y =ax 2+bx +c (a >0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是增函数,当x =-b 2a 时,函数取得最小值. (2)函数y =ax 2+bx +c (a <0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是减函数,当x =-b 2a 时,函数取得最大值. 2.动轴定区间上的最值问题【例2】已知函数f (x )=x 2-2ax +2,x ∈[-1,1],求函数f (x )的最小值.【思路导引】二次函数开口方向确定,对称轴不确定,需根据对称轴的不同情况分类讨论.可画出二次函数相关部分的简图,数形结合解决问题.【解析】f(x)=x2-2ax+2=(x-a)2+2-a2的图像开口向上,且对称轴为直线x=a.当a≥1时,函数图像如图(1)所示,函数f(x)在区间[-1,1]上是减函数,最小值为f(1)=3-2a;当-1<a<1时,函数图像如图(2)所示,函数f(x)在区间[-1,1]上是先减后增,最小值为f(a)=2-a2;当a≤-1时,函数图像如图(3)所示,函数f(x)在区间[-1,1]上是增函数,最小值为f(-1)=3+2a.3.定轴动区间上的最值问题【例3】已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.【思路导引】二次函数的解析式是确定的,但定义域是变化的,需依据t的大小情况画出对应的简图(二次函数的一段),从而求解.【解析】f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,最小值为g (t )=f (1)=1;当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为g (t )=f (t )=t 2-2t +2.综上可得g (t )=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.本题中给出的区间是变化的,从运动的观点来看,让区间从左向右沿x 轴正方向移动,分析移动到不同位置时对最值有什么影响.借助图形,可使问题的解决显得直观、清晰.类型二 函数的平均变化率与单调性、最值(数学运算、逻辑推理)【典例】已知函数f (x )=2x -3x +1. (1)判断函数f (x )在区间[0,+∞)上的单调性,并用平均变化率证明其结论.【思路导引】任取x1,x2∈[0,+∞)⇒Δf(x)Δx>0⇒函数单调递增【解析】f(x)在区间[0,+∞)上是增函数.证明如下:任取x1,x2∈[0,+∞),且x1≠x2,f(x2)-f(x1)=2x2-3x2+1-2x1-3x1+1=(2x2-3)(x1+1)(x1+1)(x2+1)-(2x1-3)(x2+1)(x1+1)(x2+1)=5(x2-x1)(x1+1)(x2+1).所以Δf(x)Δx=5(x2-x1)(x1+1)(x2+1)x2-x1=5(x1+1)(x2+1).因为x1,x2∈[0,+∞),所以(x1+1)(x2+1)>0,所以Δf(x)Δx>0,所以函数f(x)在区间[0,+∞)上是增函数.(2)求函数f(x)在区间[2,9]上的最大值与最小值.【思路导引】由第(1)问可知f(x)在[2,9]上是增函数⇒f(2)是最小值,f(9)是最大值【解析】由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=2×9-39+1=32,最小值为f(2)=2×2-32+1=13.利用函数的平均变化率证明单调性的步骤(1)任取x 1,x 2∈D ,且x 1≠x 2.(2)计算f (x 2)-f (x 1),Δf (x )Δx .(3)根据x 1,x 2的范围判断Δf (x )Δx 的符号,确定函数的单调性.已知函数f (x )=x +1x -2,x ∈[3,7]. (1)判断函数f (x )的单调性,并用平均变化率加以证明.【解析】函数f(x)在区间[3,7]内单调递减,证明如下: 在[3,7]上任意取两个数x 1和x 2,且x 1≠x 2,因为f(x 1)=x 1+1x 1-2 ,f(x 2)=x 2+1x 2-2, 所以f(x 2)-f(x 1)=x 2+1x 2-2 -x 1+1x 1-2 =3(x 1-x 2)(x 1-2)(x 2-2). 所以Δf (x )Δx =3(x 1-x 2)(x 1-2)(x 2-2)x 2-x 1 =-3(x 1-2)(x 2-2), 因为x 1,x 2∈[3,7],所以x 1-2>0,x 2-2>0,所以Δf (x )Δx <0,函数f(x)为[3,7]上的减函数.(2)求函数f (x )的最大值和最小值.【解析】由单调函数的定义可得f(x)max =f(3)=4,f(x)min =f(7)=85 .类型三 常见函数的最值问题(直观想象、数学运算)不含参数的最值问题【典例】函数f(x)=-2x 2+x +1在区间[-1,1]上最小值点为________,最大值为________.【思路导引】求出一元二次函数的对称轴,利用对称轴和区间的关系解题.【解析】函数f(x)=-2x 2+x +1的对称轴为x =-12×(-2) =14 ,函数的图像开口向下,所以函数的最小值点为-1,最大值为f ⎝ ⎛⎭⎪⎫14 =-2×116 +14 +1=98 .答案:-1 98含参数的最值问题【典例】设a 为实数,函数f(x)=x 2-|x -a|+1,x ∈R .(1)当a =0时,求f (x )在区间[0,2]上的最大值和最小值.【思路导引】代入a 的值,化简后求最值.【解析】当a =0,x ∈[0,2]时函数f (x )=x 2-x +1,因为f (x )的图像开口向上,对称轴为x =12 ,所以,当x =12 时f (x )值最小,最小值为34 ,当x =2时,f (x )值最大,最大值为3.(2)当0<a <12 时,求函数f (x )的最小值.【思路导引】讨论对称轴与区间的位置关系求最值.【解析】f (x )=⎩⎪⎨⎪⎧x 2-x +a +1,x ≥a ,x 2+x -a +1,x <a .①当x ≥a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -12 2 +a +34 . 因为0<a <12 ,所以12 >a ,则f (x )在[a ,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫12 =34 +a ; ②当x <a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +12 2 -a +34 .因为0<a <12 ,所以-12 <a ,则f (x )在(-∞,a )上的最小值为f ⎝ ⎛⎭⎪⎫-12 =34 -a .综上,f (x )的最小值为34 -a .将本例的函数改为f (x )=x 2-2ax +1,试求函数在区间[0,2]上的最值.【解析】函数的对称轴为x =a ,(1)当a <0时,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=1;当0≤a ≤2时,f (x )min =f (a )=-a 2+1;当a >2时,f (x )在区间[0,2]上是减函数,所以f (x )min =f (2)=5-4a ,所以f (x )min =⎩⎪⎨⎪⎧1,a <0,-a 2+1,0≤a ≤2,5-4a ,a >2.(2)当a ≤1时,f (x )max =f (2)=5-4a ;当a >1时,f (x )max =f (0)=1,所以f (x )max =⎩⎨⎧5-4a ,a ≤1,1,a >1.一元二次函数的最值(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值点,代入函数解析式求最值.(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x =m ,区间[a ,b ]为例,①最小值:f (x )min =⎩⎪⎨⎪⎧f (a ),m ≤a ,f (m ),a ≤m ≤b ,f (b ),m ≥b .②最大值:f (x )max =⎩⎨⎧f (a ),m ≥a+b 2,f (b ),m <a +b 2. 当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.(1)已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值.【解析】因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a 2 ,当a 2 ≤12 ,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2 >12 ,即a >1时,f (x )的最大值为f (0)=1.(2)已知函数f (x )=x 2-x +1,求f (x )在[t ,t +1](t ∈R )上的最小值.【解析】f (x )=x 2-x +1,其图像的对称轴为x =12 , ①当t ≥12 时,f (x )在[t ,t +1]上是增函数,所以f (x )min =f (t )=t 2-t +1; ②当t +1≤12 ,即t ≤-12 时,f (x )在[t ,t +1]上是减函数,所以f (x )min =f (t +1)=t 2+t +1;③当t <12 <t +1,即-12 <t <12 时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12 上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12 =34 .1.(2020·西安高一检测)函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】选A.因为a >0,所以f (x )=9-ax 2开口向下,以y 轴为对称轴,所以f (x )=9-ax 2在[0,3]上单调递减,所以x =0时,f (x )最大值为9.2.函数f (x )=x +2x -1 ( )A .有最小值12 ,无最大值B .有最大值12 ,无最小值C .有最小值12 ,有最大值2D .无最大值,也无最小值 【解析】选A.f (x )=x +2x -1 的定义域为⎣⎢⎡⎭⎪⎫12,+∞ ,在定义域内单调递增,所以f (x )有最小值f ⎝ ⎛⎭⎪⎫12 =12 ,无最大值. 3.(2021·菏泽高一检测)设f (x )=x 2-2ax +a 2,x ∈[0,2],当a =-1时,f (x )的最小值是________,若f (0)是f (x )的最小值,则a 的取值范围为________.【解析】当a =-1时,f (x )=x 2+2x +1,开口向上,对称轴为x =-1, 所以函数f (x )=x 2+2x +1在(0,2)上单调递增,所以函数在x ∈[0,2]上的最小值f (x )min =f (0)=1.若f (0)是f (x )的最小值,说明对称轴x =a ≤0,则a ≤0,所以a 的取值范围为(-∞,0].答案:1 (-∞,0]【补偿训练】二次函数f (x )=12 x 2-2x +3在[0,m ]上有最大值3,最小值1,则实数m 的取值范围是________.【解析】因为f (x )=12 x 2-2x +3在[0,2]上单调递减,在[2,+∞)上单调递增.则当0<m <2时,⎩⎨⎧f (0)=3,f (m )=1, 此时无解;当2≤m ≤4时,x =2时有最小值1,x =0时有最大值3,此时条件成立; 当m >4时,最大值必大于f (4)=3,此时条件不成立.综上可知,实数m 的取值范围是[2,4].答案:[2,4]备选类型 函数最值的应用(数学建模)【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:厘米)满足关系式:C (x )=k 3x +5 (0≤x ≤10).若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )最小?并求其最小值.【思路导引】【解析】(1)由题意知C(0)=8,代入C(x)的关系式,得k =40,因此C(x)=403x +5 (0≤x≤10),而每厘米厚的隔热层建造成本为6万元, 所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+6x =8003x +5+6x(0≤x≤10). (2)令t =3x +5,由0≤x≤10,得5≤t≤35,从而有函数h(t)=800t +2t -10(5≤t≤35).令5≤t 1<t 2≤35,则h(t 1)-h(t 2)=(t 1-t 2)⎝ ⎛⎭⎪⎫2-800t 1t 2 , 当5≤t 1<t 2≤20时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)>0; 当20≤t 1<t 2≤35时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)<0. 所以h(t)=800t +2t -10(5≤t≤35)在区间[5,20]上单调递减,在区间[20,35]上单调递增,所以当t =20时,h(t)min =70,即当t =3x +5=20,x =5时,f(x)min =70.所以当隔热层修建5厘米厚时,总费用达到最小,为70万元.(1)通过换元,使函数式变得简单,易于研究其单调性.(2)以20为分界点将[5,35]分成两个单调区间,可结合对勾函数的单调性规律来理解.(2020·枣庄高一检测)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=⎩⎨⎧400x -12x 2,0<x ≤400,80 000,x>400,x 是“玉兔”的月产量(单位:件),总收益=成本+利润. (1)试将利润y 表示为月产量x 的函数.(2)当月产量为多少件时利润最大?最大利润是多少?【解析】(1)依题设,总成本为20 000+100x ,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12 (x -300)2+25 000,则当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,则y <60 000-100×400=20 000,所以当月产量为300件时,有最大利润25 000元.1.函数f (x )的图像如图,则其最大值、最小值点分别为( )A .f ⎝ ⎛⎭⎪⎫32 ,-32B .f (0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32 ,f (0) D .f (0),32 【解析】选D.观察函数图像,f (x )最大值、最小值点分别为f (0),32 .2.已知函数f (x )=x 2+2x +a (x ∈[0,2])有最小值-2,则f (x )的最大值为( )A .4B .6C .1D .2【解析】选B.f (x )=x 2+2x +a (x ∈[0,2])为增函数,所以最小值为f (0)=a =-2,最大值f (2)=8+a =6.3.(2021·大冶高一检测)若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(2,+∞)B .⎝⎛⎭⎪⎫-∞,12 ∪[2,+∞) C .(-∞,2] D .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 【解析】选D.因为函数y =2x -1在(-∞,1)和[2,5)上都是单调递减函数,当x <1时,y <0,x =2时,y =2,x =5时,y =12 ,所以函数的值域是(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 . 4.(教材练习改编)函数y =1x -3在区间[4,5]上的最小值为________. 【解析】作出图像可知y =1x -3在区间[4,5]上是减函数(图略),所以其最小值为15-3=12 . 答案:125.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b>0成立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.【解析】由f (a )-f (b )a -b>0,得f (x )在R 上是增函数, 则f (x )在[-3,-1]上的最大值是f (-1)=b .答案:b6.已知函数f (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.(1)求a ,b 的值;(2)若不等式f (x )-kx ≤0在x ∈[2,3]上恒成立,求实数k 的取值范围.【解析】(1)因为f (x )=ax 2-2ax +1+b (a >0)的图像开口向上,且对称轴为x =1,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (x )min =f (2)=4a -4a +1+b =1f (x )max =f (3)=9a -6a +1+b =4. 所以a =1,b =0; (2)由(1)得f (x )=x 2-2x +1,所以不等式f (x )-kx ≤0,即x 2-(2+k )x +1≤0在x ∈[2,3]上恒成立, 令g (x )=x 2-(2+k )x +1,g (x )的图像开口朝上, 则要使g (x )≤0在x ∈[2,3]上恒成立,所以⎩⎨⎧g (2)=4-4-2k +1≤0g (3)=9-6-3k +1≤0,解得k ≥43 , 所以实数k 的取值范围为k ≥43 .。
高一年级数学必修一知识点归纳笔记1.高一年级数学必修一知识点归纳笔记篇一对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
(1)对数函数的定义域是一组大于0的实数。
(2)对数函数的值域是所有实数的集合。
(3)函数总是传递(1,0)。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数。
2.高一年级数学必修一知识点归纳笔记篇二函数最值及性质的应用1、函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶数函数在关于原点对称的区间上具有相反的单调性。
3.在判断歧义单调性时,也可以作为商法。
过程和差法类似,不同的是差法是和0比,商法是和1比。
4、绝对值函数求最大值,先分段,然后通过每段的单调性,或者图像求最大值。
5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。
3.高一年级数学必修一知识点归纳笔记篇三空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.4.高一年级数学必修一知识点归纳笔记篇四二面角(1)半平面:平面中的一条直线把这个平面分成两部分,每一部分称为半平面。
高一数学必修一中的函数单调性与最值问题在高一数学必修一的学习中,函数的单调性与最值问题是非常重要的一部分内容。
它不仅是后续数学学习的基础,也在实际生活和其他学科中有着广泛的应用。
首先,我们来理解一下什么是函数的单调性。
简单来说,单调性就是函数值随着自变量的增大或减小而呈现出的一种变化规律。
如果函数值随着自变量的增大而增大,我们就说这个函数在某个区间上是单调递增的;反之,如果函数值随着自变量的增大而减小,那么这个函数在这个区间上就是单调递减的。
为了判断函数的单调性,我们通常会采用定义法。
假设给定函数$f(x)$,定义域为$I$,对于定义域$I$内某个区间$D$上的任意两个自变量的值$x_1$,$x_2$,当$x_1<x_2$时,如果都有$f(x_1)<f(x_2)$,那么就称函数$f(x)$在区间$D$上是单调递增的;如果都有$f(x_1)>f(x_2)$,则称函数$f(x)$在区间$D$上是单调递减的。
比如说,对于一次函数$y = 2x + 1$,我们可以任取两个自变量的值$x_1$和$x_2$,且$x_1 < x_2$。
那么$f(x_1) = 2x_1 + 1$,$f(x_2) = 2x_2 + 1$。
因为$x_1 < x_2$,所以$2x_1 < 2x_2$,从而$f(x_1)< f(x_2)$,所以这个一次函数在其定义域内是单调递增的。
再比如,二次函数$y = x^2$。
当$x < 0$时,随着$x$的增大,$y$的值逐渐减小,函数是单调递减的;当$x > 0$时,随着$x$的增大,$y$的值逐渐增大,函数是单调递增的。
除了定义法,我们还可以通过函数的导数来判断单调性。
这对于一些复杂的函数会更加方便和高效,但这是后续学习的内容,在高一阶段,我们主要还是掌握定义法。
接下来,我们谈谈函数的最值问题。
函数的最大值和最小值,简单理解就是函数在定义域内所能取到的最大和最小的函数值。
如果函数在某个区间上是单调递增的,那么在区间的左端点处取得最小值,在右端点处取得最大值;如果函数在某个区间上是单调递减的,那么在区间的右端点处取得最小值,在左端点处取得最大值。