分子间作力 氢键
- 格式:pptx
- 大小:496.81 KB
- 文档页数:15
分子间作用力(范德华力)和氢键都是影响物质物理性质(如熔点、沸点等)的重要因素。
分子间作用力广泛存在于分子之间,它是分子之间相互靠近时存在的相互作用力。
范德华力可以分为三种类型:取向力、诱导力和色散力。
取向力只存在于极性分子之间,它主要是由永久偶极之间的相互作用所引起的。
诱导力存在于极性分子和非极性分子之间,它主要是由极性分子的永久偶极诱导非极性分子发生极化而产生的。
色散力则存在于非极性分子之间,主要是由于瞬间偶极的相互诱导所产生的。
氢键是一种特殊的分子间作用力,它只存在于含有孤对电子的原子(如N、O、F)和氢原子之间。
与范德华力相比,氢键通常具有更高的强度。
这是因为氢键的形成是由于电子的共享,而不是简单的静电吸引。
总结来说,范德华力和氢键都是分子间作用力,但氢键的强度通常高于范德华力。
考点49 分子间作用力和氢键聚焦与凝萃1.掌握分子间作用力的本质及分子间作用力与化学键的区别;2.掌握影响分子间作用力的因素,了解分子间作用力对物质性质的影响;3.了解氢键及氢键对物质性质的影响。
解读与打通常规考点1.化学键分类化学键⎩⎪⎨⎪⎧离子键共价键⎩⎪⎨⎪⎧极性(共价)键:X —Y 非极性(共价)键:X —X 2.化学反应的本质反应物分子内化学键的断裂和生成物分子内化学键的形成。
3.分子间作用力(1)定义:把分子聚集在一起的作用力,又称范德华力。
(2)特点①分子间作用力比化学键弱得多;②影响物质的物理性质,如熔点、沸点、溶解度,而化学键影响物质的化学性质和物理性质;③存在于由共价键形成的多数共价化合物和绝大多数非金属单质及稀有气体之间,如CH 4、O 2、Ne 等。
(3)规律一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。
例如:熔、沸点:HCl<HBr<HI ,I 2>Br 2>Cl 2>F 2,Rn >Xe >Kr >Ar >Ne >He 。
4.氢键(1)定义:分子间存在的一种比分子间作用力稍强的相互作用。
(2)形成条件:除H 外,形成氢键的原子通常是O 、F 、N 。
(3)存在:氢键存在广泛,如蛋白质分子、醇、羧酸分子、H 2O 、NH 3、HF 等分子之间。
分子间氢键会使物质的熔点和沸点升高。
特别提醒:(1)氢键不是化学键,是介于分子间作用力和化学键之间的一种作用力。
(2)氢键、分子间作用力的大小主要影响物质的物理性质,如熔点、沸点等。
隐性考点氢键对物质性质的影响(1)对物质熔沸点的影响①某些氢化物分子存在氢键,如H 2O 、NH 3,HF 等,会使同族氢化物沸点反常,如H 2O>H 2Te>H 2Se>H 2S 。
②当氢键存在于分子内时,它对物质性质的影响与分子间氢键对物质性质产生的影响是不同的。
分子间作用力和氢键相邻原子间的强烈作用力称为化学键,分子与分子间则有比较弱的作用力,一般在10kJ·mol-1以下。
共价键的键能是102数量级,而离子键晶格能则是102~103数量级。
极性分子是一种偶极子,具有正负两极。
当它们靠近到一定距离时,就有同极相斥,异极相吸的静电引力,但这种引力比离子键的晶格能弱得多。
极性分子与非极性分子之间作用力则是由极性分子偶极电场使邻近的非极性分子发生电子云变形(或电荷位移)而相互作用产生的,如O2(或N2)溶于水中,O2和H2O分子间的作用力就是这种情况。
非极性分子与非极性分子之间的作用力来自电子在不停运动瞬间总会偏于这一端或那一端而产生的瞬间静电引力。
原子半径越大越容易产生瞬间静电引力。
稀有气体是单原子分子,这是典型的非极性分子,它们的液化过程,就是靠这种瞬间静电引力。
由氦(He)到氙(Xe)半径依次递增,瞬间的静电作用力也依次递增,沸点依次升高。
如沸点、熔点、粘度、表面张力等都与此有关。
氢键是一种特殊的分子间作用力,其能量约在10~30kJ·mol-1间。
F,O,N电负性很强,与H形成的共价键显较强极性,共用电子对偏于F或O或N这边而使其为负极,H 则为正极。
当另外一个电负性强的原子接近H时,就会产生静电引力。
氢原子和电负性强的X原子形成共价键之后,又与另外一个电负性强的Y原子产生较弱的静电引力,这种作用力叫氢键。
可以表示为X—H…Y如第ⅥA族氧(O)、硫(S)、硒(Se)、碲(Te)的氢化物的沸点递变规律,由H2Te,H2Se 到H2S,随分子量的递减,分子的半径递减;随分子间作用力的减小,沸点递减。
但分子量最小的H2O的沸点却陡然升高,见图。
这是因为氧的电负性很强,H2O分子间形成了O-H…O氢键,所以H2O分子间作用力大于同族其他氢化物。
ⅦA和ⅤA族氢化物沸点的变化规律中,HF和NH3也显得特殊,这也是因为形成了F—H…F和N—H…N氢键。
5、分子间作用力和氢键1.分子间作用力(1)概念:分子间存在一种把分子聚集在一起的作用力,叫做分子间作用力,又称范德华力。
(2)主要特征:①广泛存在于分子之间;②只有分子充分接近时才有分子间的相互作用力,如固体和液体物质中;③分子间作用力远远比化学键弱;④由分子构成的物质,其熔点、沸点、溶解度等物理性质主要有分子间作用力大小决定。
一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。
例如:I2>Br2>Cl2>F2;HI>HBr>HCl;Ar>Ne>He等。
2.氢键(1)氢键不是化学键,通常把氢键看做是一种较强的分子间作用力。
氢键比化学键弱,比分子间作用力强。
(2)分子间形成的氢键会使物质的熔沸点升高。
如水的沸点较高,这是由于水分子之间易形成氢键。
(3)分子间形成的氢键对物质的水溶性有影响,如NH3极易溶于水,主要是氨分子与水分子之间易形成氢键。
(4)通常N、O、F这三种元素的氢化物易形成氢键。
常见易形成氢键得化合物有H2O、HF、NH3、CH3OH等。
(5)氢键用“X…H”表示。
如水分子间的氢键:表示。
由于氢键的存在,液态水或固态水常用(H2O)n练习11关于氢键,下列说法正确的是()A、氢键比分子间作用力强,所以它属于化学键B、分子间形成的氢键使物质的熔点和沸点升高C、由于氨与分子间可形成分子间氢键,使氨在水中溶解度增大D、H2O是一种非常稳定的化合物,这是由于氢键所致练习12下列叙述中正确的是()A.同主族金属元素的原子半径越大熔点越高B.稀有气体原子序数越大沸点越低C.分子间作用力越弱的分子其沸点越低D.同周期元素的原子半径越小越易失去电子高考题1、CO2、CH、BF3都是非极性分子,HF、H2O、NH3都是极性分子,由此推测ABn型分子是非极性分子的经验规律正确的是()A、所有原子在同一平面B、分子中不含有氢原子C、在ABn中A原子没有孤对电子D、A的相对原子质量小于B2、关于氢键,下列说法正确的是()A.每一个水分子内含有两个氢键B.冰、水和水蒸气中都存在氢键C.DNA中的碱基互补配对是通过氢键来实现的D.H2O是一种非常稳定的化合物,这是由于氢键所致3、下列叙述正确的是()A、NH3是极性分子,分子中N原子是在3个H原子所组成的三角形的中心B、CCl4是非极性分子,分子中C原子处在4个Cl原子所组成的正方形的中心C、H2O是极性分子,分子中O原子不处在2个H原子所连成的直线的中央D、CO2是非极性分子,分子中C原子不处在2个O原子所连成的直线的中央4、固体乙醇晶体中不存在的作用力是()A.极性键B.非极性键C.离子键D.氢键5、下列事实与氢键有关的是()A.水加热到很高的温度都难以分解B.水结成冰体积膨胀,密度变小C.CH4、SiH4、GeH4、SnH4熔点随相对分子质量增大而升高D.HF、HCl、HBr、HI的热稳定性依次减弱6、下列各分子中,所有原子都满足最外层为8电子结构的是()A.H2O B.BF3 C.CCl4D.PCl57、下列关于天然气水合物中两种分子极性的描述正确的是()A、两种都是极性分子B、两种都是非极性分子C、CH4是极性分子,H2O是非极性分子D、H2O是极性分子,CH4是非极性分子跟踪练习一、选择题1、卤素单质从F2到I2,在常温、常压下的聚集状态由气态、液态到固态的原因是()A、原子间的化学键键能逐渐减小B、范德华力逐渐增大C、原子半径逐渐增大D、氧化性逐渐减弱2、下列各组物质中,化学键类型完全相同的是()A、HI和NaIB、H2S和CO2C、Cl2和CCl4D、F2和NaBr3、下列性质中,可以证明某化合物内一定存在离子键的是()A、晶体可溶于水B、具有较高的熔点C、水溶液能导电D、熔融状态能导电4、下列叙述中正确的是()A、极性分子中不可能含有非极性键B、离子化合物中不可能含有非极性键C、非极性分子中不可能含有极性键D、共价化合物中不可能含有离子键5、下列各组分子中属于含极性键的非极性分子的是()A、CO2、H2SB、C2H4、CH4C、Cl2 C2H2D、NH3、HCl6、下列物质中含有非极性键的共价化合物是()A、H2O2B、CH3COONaC、Na2O2D、I27、下列各组物质的晶体中,化学键类型相同,晶体类型也相同的是()A、SO2和SiO2B、CO2和H2OC、NaCl和HClD、CCl4和KCl8、下列物质中属于极性键构成的非极性分子是()A、HFB、H2OC、NH3D、CH49、能证明AlCl3为共价化合物的方法是()A、AlCl3溶液容易导电B、AlCl3水溶液呈酸性C、熔融AlCl3不能导电D、AlCl3溶于水可以电离出Al3+和Cl-10、下列分子中的键的极性最强的是()A、H2OB、NH3C、HFD、HCl11、下列说法中正确的是()(双选)A、由极性键构成的分子全是极性分子B、含有非极性键的分子不一定是非极性分子C、极性分子一定含有极性键,非极性分子一定含有非极性键D、以极性键结合的双原子分子,一定是极性分子12、A元素是第3周期半径最大的原子(除稀有气体外),B元素的L层电子数是K层电子数的3倍,A、B化合可形成化合物Z。
较强的分⼦间作⽤⼒——氢键第2课时较强的分⼦间作⽤⼒——氢键[⽬标定位] 1.了解氢键形成的条件及氢键的存在。
2.学会氢键的表⽰⽅法,会分析氢键对物质性质的影响。
⼀、氢键1.⽐较H2O和H2S的分⼦组成、⽴体构型及其物理性质,分析H2O的熔、沸点⽐H2S⾼的原因是什么?答案H2O和H2S分⼦组成相似,都是V形极性分⼦,常温下H2O为液态,熔、沸点⽐H2S ⾼。
在⽔分⼦中,氢原⼦与⾮⾦属性很强的氧原⼦形成共价键时,由于氧的电负性⽐氢⼤得多,所以它们的共⽤电⼦对就强烈地偏向氧原⼦,⽽使氢原⼦核⼏乎“裸露”出来。
这样带正电的氢原⼦核就能与另⼀个⽔分⼦中的氧原⼦的孤电⼦对发⽣⼀定程度的轨道重叠作⽤,使⽔分⼦之间作⽤⼒增强,这种分⼦间的作⽤⼒就是氢键,⽐范德华⼒⼤。
硫化氢分⼦不能形成氢键,故⽔的熔、沸点⽐硫化氢的⾼。
2.氢键的概念及表⽰⽅法氢键是⼀种特殊的分⼦间作⽤⼒,它是由已经与电负性很⼤的原⼦形成共价键的氢原⼦与另⼀分⼦中电负性很⼤的原⼦之间的作⽤⼒。
氢键的通式可⽤A—H…B—表⽰。
式中A和B 表⽰F、O、N,“—”表⽰共价键,“…”表⽰氢键。
3.氢键的形成条件有哪些?答案(1)要有⼀个与电负性很强的元素X形成强极性键的氢原⼦,如H2O中的氢原⼦。
(2)要有⼀个电负性很强,含有孤电⼦对并带有部分电荷的原⼦Y,如H2O中的氧原⼦。
(3)X和Y的原⼦半径要⼩,这样空间位阻较⼩。
⼀般来说,能形成氢键的元素有N、O、F。
所以氢键⼀般存在于含N—H、H—O、H—F键的物质中,或有机化合物中的醇类和羧酸类等物质中。
4.氢键的特征是什么?答案(1)饱和性在形成氢键时,由于氢原⼦半径⽐X、Y原⼦半径⼩得多,当氢原⼦与⼀个Y原⼦形成氢键X—H…Y后,氢原⼦周围的空间已被占据,X、Y原⼦的电⼦云的排斥作⽤将阻碍⼀个Y原⼦与氢原⼦靠近成键,也就是说氢原⼦只能与⼀个Y原⼦形成氢键,即氢键具有饱和性。
(2)⽅向性X—H与Y形成分⼦间氢键时,3个原⼦总是尽可能沿直线分布,这样可使X与Y尽量远离,使两原⼦间电⼦云的排斥作⽤⼒最⼩,体系能量最低,形成的氢键最强、最稳定,所以氢键还具有⽅向性(如下图)。
必修2第一章第三节化学键第三课时【学习目的】1、掌握分子间作用力含义与氢键的判断2、强化离子键和共价键的知识【学习重点】分子间作用力、氢键的应用【学习难点】氢键的判断【新知学习】一、化学键:1、定义:使离子或原子相结合的作用力称为化学键。
2、分类:、、3、离子键和共价键的比较:4、化学反应的实质:旧键的和新键的。
二、分子间作用力①概念:分子之间存在着一种把分子叫做分子间作用力,又称。
②强弱:分子间作用力比化学键,它主要影响物质的、等物理性质,化学键属分子内作用力,主要影响物质的化学性质。
③规律:一般来说,对于组成和结构相似的物质,越大,分子间作用力,物质的熔点、沸点也越。
④存在:分子间作用力只存在于由分子组成的共价化合物、共价单质和稀有气体的分子之间。
在离子化合物、金属单质、金刚石、晶体硅、二氧化硅等物质中只有化学键,没有分子间作用力。
三、氢键①概念:像、、这样分子之间存在着一种比的相互作用,使它们只能在较高的温度下才能汽化,这种相互作用叫做氢键。
②对物质性质的影响:分子间形成的氢键会使物质的熔点和沸点,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,消耗更多的能量。
【注意】分子间作用力和氢键由于作用力较弱,都不属于化学键!四、知识整理1、离子键:使阴、阳离子结合成化合物的静电作用叫做离子键由离子键结合在一起的化合物叫离子化合物【离子键的存在范围】(1)、活泼金属与活泼非金属形成的化合物;(2)、活泼金属阳离子(或NH4+)与酸根离子之间;(3)、活泼金属阳离子与OH—之间;2、电子式:在元素符号周围用小黑点或小叉表示最外层电子数的式子叫电子式掌握NaCl/MgO/K2O/CaCl2/Na2O2/NH4Cl/NaOH 电子式的写法3、共价键:原子之间通过共用电子对所形成的相互作用,叫做共价键掌握NH3,CH4,CO2,N2,O2,HClO,H2O2电子式的写法4、极性键与非极性键同种非金属元素原子之间形成非极性共价键(非极性键,可存在于非金属单质和化合物中)不同种非金属元素原子之间形成极性共价键(极性键,只存在与化合物中)(1)、含有离子键的化合物一定是离子化合物(2)、含有共价键的化合物不一定是共价化合物注意离子化合物的形成过程与共价化合物的形成过程写法的不同。
分子间作用力和氢键我们已讨论了三类化学键(离子键、共价键、金属键),它们都是分子内部原子间的作用力。
原子通过这些化学键组合成各种分子和晶体。
除此之外,分子与分子之间还存在着一种较弱的相互作用,大约只有几个到几十个KJ·mol-1,比化学键小一、二个数量级,这种分子间的作用力称为范德华尔力。
它是决定物质熔点、沸点、溶解度等物理化学性质的一个重要因素。
【分子的极性】分子极性的强弱,可以用偶极矩(μ)表示。
分子偶极矩定义为:偶极长(极性分子正负电荷之重心间的距离d与偶极电荷q的乘积,即:μ=q ×d◆分子的偶极矩是个矢量,正偶极子指向负偶极子。
对双原子分子而言,分子偶极矩等于键的偶极矩;对多原子分子而言,分子偶极矩则等于各个键的偶极矩的矢量和。
◆多原子分子的极性不但取决于键的极性,而且取决于分子的几何形状,例如:SO2、CO2中S=O键、C=O都是极性键,但因为CO2是直线型结构,键的极性相互抵消,正负电荷重心重叠,所以,CO2是非极性分子。
相反,SO2为V 型结构,正负电荷重心不能重合,因而SO2是极性分子。
◆具有对称结构(直线型、平面三角形、正四面体)的多原子分子,偶极矩为零,为非极性分子;结构不对称(V型、四面体、三角锥型)的多原子分子,偶极矩不为零,为极性分子◆单质分子的偶极距不一定为0,如O3◆键的偶极长不是核间距,HF、HCl、HBr、HI的偶极长降低(两原子电负性差值越大,键的偶极长越大)◆CO分子中,C原子有一个空的2p z轨道,接受了O原子的一对电子,从而使分子的负电重心移向了C原子因为一个电子所带电量为4.8×10-10静电单位,而偶极长d相当于原子间距离,其数量级为10-8 cm。
通常把10-18厘米·静电单位作为偶极矩μ的单位,称为“德拜”(Debye)用D表示。
偶极矩是一个矢量,可以通过实验测得。
偶极矩越大,分子极性越大,偶极矩μ=0,它是非极性分子。
高中化学选修3分子间作用力和氢键知识点总结一.分子间作用力1.定义:分子间存在着将分子聚集在一起的作用力,称分子间作用力。
分子间作用力也叫范德华力.2.实质:一种电性的吸引力.3.影响因素:分子间作用力随着分子极性.相对分子质量的增大而增大.分子间作用力的大小对物质的熔点.沸点和溶解度都有影响.一般来说.对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越强,物质的熔沸点也越高.4.只存在于由共价键形成的多数化合物,绝大多数非金属单质分子和分子之间.化学键是分子中原子和原子之间的一种强烈的作用力,它是决定物质化学性质的主要因素。
但对处于一定聚集状态的物质而言,单凭化学键,还不足以说明它的整体性质,分子和分子之间还存在较弱的作用力。
物质熔化或汽化要克服分子间的作用力,气体凝结成液体和固体也是靠这种作用力。
除此以外,分子间的作用力还是影响物质的汽化热、熔化热、溶解黏度等物理性质的主要因素。
分子间的作用力包括分子间作用力(俗称范德华力)和氢键(一种特殊的分子间作用力)。
分子间作用力约为十几至几十千焦,比化学键小得多。
分子间作用力包括三个部分:取向力、诱导力和色散力。
其中色散力随分子间的距离增大而急剧减小,一般说来,组成和结构相似的物质,分子量越大,分子间距越大,分子间作用力减小,物质熔化或汽化所克服的分子间作用力减小,所以物质的溶沸点升高。
化学键与分子间作用力比较化学键分子间作用力概念相邻的原子间强烈的相互作用物质分子间存在的微弱的相互作用能量较大很弱性质影响主要影响物质的化学性质主要影响物质的物理性质二.氢键-特殊的分子间作用力1.概念:氢键是指与非金属性很强的元素(主要指N、O、F)相结合的氢原子与另一个分子中非金属性极强的原子间所产生的引力而形成的.必须是含氢化合物,否则就谈不上氢键。
2.实质:氢键不是化学键,属于分子间作用力的范畴.但比普通分子间作用力要强得多.3.存在:水.冰.氨.无机酸.醇等物质能形成氢键.4.分类:分子内氢键和分子间氢键5.影响:分子间氢键的形成除使物质的熔沸点升高外,对物质的溶解度.硬度等也都有影响.6.表示法:用"X—H…Y"表示,且三原子要在一条直线上.X、Y与H构成分子。
§3 分子间作用力和氢键一、分子间作用力1、极性分子与非极性分子每个分子中正、负电荷总量相等,整个分子是电中性的。
但对每一种电荷量来说,都可设想一个集中点,称“电荷中心”。
在任何一个分子中都可以找到一个正电荷中心和一个负电荷中心。
⑴极性分子:若正电荷中心和负电荷中心不相互重合的分子叫极性分子。
⑵非极性分子:若正电荷中心和负电荷中心相互重合的分子叫非极性分子。
⑶在简单双原子分子中,如果是两个相同的原子,由于电负性相同,两原子所形成的化学键为非极性键,这种分子是非极性分子。
如果两个原子不相同,其电负性不等,所形成的化学键为极性键,分子中正负电荷中心不重合,这种分子就为极性分子。
⑷复杂的多原子分子来说,若组成的原子相同(如S8、P4等),原子间的化学键一定是非极性键,这种分子是非极性分子(O3除外,它有微弱的极性)。
如果组成的原子不相同(如CH4、SO2、CO2等),其分子的极性不仅取决于元素的电负性(或键的极性),而且还决定于分子的空间构型。
如CO2是非极性分子,SO2是极性分子。
2、分子偶极矩(μ):衡量分子极性的大小⑴μ=q.d d为偶极长(正负电重心之间的距离),d为正负电荷中心上的电荷量,μ可用实验测定,单位是库·米(C·m)。
⑵应用:①若某分子μ=O则为非极性分子,μ≠0为极性分子。
μ越大,极性越强,因此可用μ比较分子极性的强弱。
如μHCl=3.50×10-30 C·m,μH2O=6.14×10-30 C·m②用μ验证或判断某些分子的几何构型。
如NH3和BeCl3都是四原子分子。
μNH3=4.94×10-30 C·m,μBeCl3=0 C·m,说明NH3是极性分子为三角锥形,BeCl3为非极性分子为平面三角形的构型。
⑶诱导偶极和瞬间偶极①诱导偶极:外电场影响下所产生的偶极②瞬间偶极:在某一瞬间,分子的正电荷重心和负电荷重心会发生不重合现象,这时所产生的偶极3. 分子间作用力(范德华力)化学键的结合能一般在-1 数量级,而分子间力的能量只有几个kJ · mol-1 。
一化学键分子间作用力氢键的比较化学键、分子间作用力和氢键是化学中常见的概念,它们在化学反应和分子结构中起着重要的作用。
虽然它们在一些方面有一些相似之处,但它们在本质上有着明显的区别。
本文将比较化学键、分子间作用力和氢键,并详细讨论它们的特点和应用。
首先,化学键是一种强大的化学力,能够将原子或离子结合在一起形成分子或晶体。
化学键可以是离子键、共价键或金属键。
离子键是由正负电荷之间的相互吸引力形成的,如钠离子和氯离子在氯化钠中形成的离子键。
共价键是由共享电子形成的,如氢气中的氢原子和氧气中的氧原子之间形成的共价键。
金属键是金属中的自由电子形成的电子云,如金属中的铜离子和自由电子之间形成的金属键。
分子间作用力是分子之间相互作用的力,它们是分子中原子与其他分子中的原子之间的相互作用。
分子间作用力可以是范德华力、静电作用力或氢键。
范德华力是一种弱的力,是由于分子中正负电荷的不均匀分布而产生的,如烷烃分子间的范德华力。
静电作用力是由于分子中正负电荷之间的相互吸引力或相互排斥力而产生的,如溶液中的离子之间的静电作用力。
氢键是一种特殊的分子间作用力,是由于氢原子与氮、氧或氟等较电负原子之间的相互作用而产生的。
氢键通常是较强的作用力,对于水分子的特殊性质和DNA的结构起着重要作用。
在比较化学键、分子间作用力和氢键时,有以下不同之处:1.强度:化学键是最强的键,由于它们涉及原子间的共享或转移电子,因此比分子间作用力和氢键更稳定。
分子间作用力相对较弱,范德华力是最弱的作用力之一、氢键在这三种键中处于中间强度。
2.距离:化学键通常需要原子间较近的距离,因为它们涉及到电子共享或转移。
分子间作用力和氢键也需要较近的原子间距离,但相对于化学键来说,它们的作用距离可以更远。
3.方向性:化学键通常具有方向性,即它们在空间中有特定的方向。
分子间作用力和氢键可以具有方向性,但通常较弱或较不明显。
4.影响范围:化学键通常影响分子内部的结构和性质,如共价键在分子的构象确定性和化学反应中起重要作用。