圆的对称性教学反思
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
《圆的对称性》教学反思《圆的对称性》教学反思1我在对圆的对称性这节的教学过程中,从回忆等腰三角形这个轴对称图形开始,继而提问:如果以刚才演示的等腰三角形的顶点为圆心,腰长为半径做圆,那么圆是否是轴对称图形?同时,要求学生利用自制的圆形纸片动手实验,折叠观察交流,从而获得圆是轴对称图形,对称轴是过圆心的直线(有无数条)。
这一环节貌视简单,却为下面做好铺垫。
我要求学生事先做好学具,动手就可以很快,教学中要控制时间。
接下来我利用黑板上总结中所画的图形介绍圆的.相关概念:弧、弦。
在读写认的过程中使学生熟悉基础概念并感受优劣弧和弦长短的变化。
在此基础上安排学生活动:并讨论下列问题:(1)在探索圆的对称性的过程中,若折叠两条相交直径可以是那些位置关系呢?垂直是特殊情况,你能得出那些等量关系?(2)若把AB向下平移到任意位置,变成非直径的弦,观察一下,还有与刚才相类似的结论吗?(3)要求学生在纸片上画出图形,并沿CD折叠,试验后提出猜想。
(4)猜想结论是否正确,要加以理论证明引导学生写出已知,求证。
然后让学生阅读课本的证明,并回答下类问题:教材证明利用了圆的什么性质?若只证AE=BE,还有什么方法?(5)猜想得以证明,命题是真命题,我们得到了定理!在环环相扣的活动后总结垂径定理并板书定理推理格式。
在教学中,学习水平不足的同学参与了活动完成的质量不够,费时较长,一定程度上影响了课堂进度,教进应加强适时点拔指导。
垂径定理是中学数学中的一个很重要的定理,由于他涉及到的条件结论比较多学生容易搞混肴,本节课采取了,讲练结合动手操作的教学方法,课前布置所有同学制作一张圆形纸片,课上利用此纸片探索、体验圆是轴对称图形,并进一步利用圆的轴对称性探究垂径定理,环环相扣、逐层深入,激发学生的学习兴趣,收到了很好的教学方法。
《圆的对称性》教学反思2九年级上册第三章第一节圆的对称性分为3个课时,今天我讲授的是第一课时。
这节课结束了,喜忧掺半,我进行了课后反思,反思如下:圆的轴对称性、垂径定理是圆的重要性质之一,在圆的有关内容中占有举足轻重的地位,是今后研究圆与直线的位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,垂径定理反映了圆的重要性质,是证明线段相等、角相等、弧相等的重要依据,因此,它是整节书的重点,理解和证明垂径定理是本节课的难点,尤其学生在证明弧相等时比较吃力,语言表达不好。
2圆的对称性前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】,不迷路!【知识与技能】理解圆的旋转不变性,掌握圆心角、弧、弦之间的关系定理及其推论,会用这三者之间的关系进行简单的证明.【过程与方法】通过本节课的学习培养学生观察、实验、探究、归纳和概括能力.【情感态度】结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育;渗透圆的内在美.【教学重点】圆心角、弧、弦之间的关系定理及其推论.【教学难点】对定理中“在同圆或等圆中”前提条件的理解,以及从感性到理性的认识,发现归纳能力的培养.一、情景导入,初步认知问题1:什么是中心对称图形?中心对称图形有什么性质?问题2:说出你所了解的中心对称图形.【教学说明】问题提出后,有些同学在列举时会举出圆是中心对称图形,但是对于圆具有旋转不变性缺乏感性认识.中心对称图形的复习目的是引起学生对图形对称性的关注,那就是“重合”—“相等”为圆旋转以后与原来图形重合从而得到弧、弦等相等关系作好认知上的准备.二、思考探究,获取新知1.圆是轴对称图形,对称轴是任意一条过圆心直线.2.圆是中心对称图形,对称中心是圆心.3.在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等.4.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么他们对应的其余各组量都分别相等.【教学说明】鼓励学生用简练的语言叙述结论,进一步挖掘定理本身,得出定理的延伸.三、运用新知,深化理解1.见教材P71例题.2.下列说法正确的是()A.相等的圆心角所对的弧相等B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等D.圆心到弦的距离相等,则弦相等分析:A,C,D三项一定注意前提“在同圆或等圆中”.否则,错误.解:A,C,D中没有强调在同圆和等圆中,故错误,只有B正确.故选B.3.如图,AB、AC、BC都是⊙0的弦,∠AOC=∠B0C,∠ABC与∠BAC相等吗?为什么?解:相等,理由如下:∵∠AOC=∠B0C∴AC=BC(在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等)∴∠ABC=∠BAC4.如图,在⊙0中,弦AB=AC,A是⊙0的直径.试判断弦BD和CD是否相等,并说明理由.解:连接B0、C0∵AB=AC∴∠A0B=∠A0C(在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么他们对应的其余各组量都分别相等)∴∠B0D=∠C0D∴BD=CD(在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等)【教学说明】学生运用新知及时巩固,使每个学生都有收获.四、师生互动,课堂小结师生共同总结本节课所学的有关定理.1.作业:教材“习题3.2”中第2、3题.2.完成练习中本课时的练习.本节课的设计完全采取学生小组合作探究的方式进行.《课标》要求学生“做数学”,在做的活动中通过小组合作的方式,尝试与他们交流中获益,并学会尊重他人的看法,在数学活动中感受他人的思维方式和思维过程,以改进自己在认知方面的单一性,促进每一个学生的发展.充分体现学生的课堂参与性与教师的指导性.【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去但我们无论怎样地气喘吁吁疾步如飞,也赶不上岁月那轻捷的步履。
数学《圆的轴对称性》教学反思数学《圆的轴对称性》教学反思作为一名优秀的教师,我们要有一流的教学能力,通过教学反思可以有效提升自己的课堂经验,教学反思要怎么写呢?以下是小编精心整理的数学《圆的轴对称性》教学反思,希望对大家有所帮助。
数学《圆的轴对称性》教学反思1本节课学生对垂径定理都很好的掌握,亮点在于练习设计有梯度,本节例题学生掌握很好。
哲人说,但凡走过,必留下痕迹。
那么我们的数学课堂又该给学生留下些什么呢?北京师范大学数学科学学院曹一鸣教授这样评价一堂有价值的课:“一堂有价值的数学课,给予学生的影响应该是多元而立体的。
有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶。
” 数学就是数学,简洁、抽象、严密是数学学科的本质,也是她美之所在,这也是她能如此吸引人的重要原因。
教学中,应始终坚持以人为本的教育理念,抓住数学学科的本质教学数学。
本节课首先应留给学生的“轴对称图形和成轴对称”这一严谨的、合情合理的知识,同时还要让学生很好地体验数学源于生活、服务于生活,感受数学的奥妙,领悟数学学习的方法,学会数学地思考,学会用数学的思想和方法解决实际问题。
总之,这次课堂展示活动活动使我更清醒地认识到:一、能激活学生的数学思维的问题才是好问题。
我们不仅要努力精心设计这样的`好问题,同时还要以这种良好的数学素养潜移默化地影响每一个学生,引导学生善于发现并提出问题,发展问题意识;二、借助于各种恰当的教学手段。
通过观察、猜想、验证、实验、交流、推理等数学活动形式,引领学生从视觉、听觉、触觉、思维等全方位参与数学研究活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学本质理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展,这样的课才是好课。
数学《圆的轴对称性》教学反思2通过前测说明:⑴我班学生对圆的对称性的整体认识有了,对推理中简单命题的逆命题的构造掌握得比较好,但对于复合命题的逆命题的构造还没有形成基本的认知。
3.1.3《圆的对称性》教学设计一、学情分析中学生心理学研究指出,初中阶段是智力和思想发展的关键年龄段,学生逻辑思维能力逐步发展,观察能力、记忆能力和想象能力也随之迅速发展,由于学生在七(下)“圆的初步认识”一节中,已经学习了圆、弧、弦、等圆、等弧、扇形等概念,了解了点与圆的位置关系。
在八(上)学习了轴对称与轴对称图形,在八(下)学习了旋转中心对称与中心对称图形。
有了学习的基础,本节课通过教师引导、组织学生观察、思考、经历1°的弧概念的发生过程,理解这一定义的合理性。
并结合图形让学生理解“圆心角的度数与它所对弧的度数相等”、教师通过例4和例5引导学生独立思考、小组合作交流找出解决问题的思路,让学生说出每步推理和计算的依据,体会解题过程中辅助线的作用以及转化的思。
通过教师组织学生自主合作、主动探究的课堂教学活动,从而激发学生的创新意识和创新思维。
二、教材分析本节《圆的对称性》共安排3课时,在七(下)“圆的初步认识”一节中,已经学习了圆、弧、弦、等圆、等弧、扇形等概念,了解了点与圆的位置关系。
在八(上)学习了轴对称与轴对称图形,在八(下)学习了旋转中心对称与中心对称图形。
在此基础上,第3课时学习圆心角与弧的度量以及圆心角与它所对弧的度数之间的关系。
本课时的内容为弧的度量,利用学生已知道角的度量单位和圆心角与其所对弧的关系度量弧的大小,这是本课时的主要内容。
如果把圆周看作是圆心角是周角所对的弧,便可把1°的弧规定为一个圆周的1/360的弧,作为弧的度量单位。
因为n°的角是周角的n/360,所以n°的圆心角所对的弧是n°的弧。
建立了圆心角与所对弧的度数之间的联系后,对研究与圆有关的直线的平行、垂直,所成的角的度数提供了很大的方便。
例4和例5都是综合运用本节所学的圆的有关定理以及解直角三角形的知识解决有关圆心角、弧的度数及弦长的计算,使学生感受不同数学知识之间的实质性联系。
2.1 圆的对称性灵师不挂怀,冒涉道转延。
——韩愈《送灵师》汪村学校钱少华1.理解圆的有关概念及圆的对称性;(重点)2.掌握点与圆的位置关系的性质与判定.(重点)一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点一:圆的相关概念(2014-2015·临清期末)下列说法,正确的是( )A.弦是直径 B.弧是半圆C.半圆是弧 D.过圆心的线段是直径解析:A.弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B.弧是圆上任意两点间的部分,只有直径的两个端点把圆分成的两条弧是半圆,不是所有的弧都是半圆.故本选项错误;C.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的;D.过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.故选C.方法总结:本题考查的是对圆的认识,根据弦,弧,半圆和直径的概念对每个选项进行判断,然后作出选择.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:点与圆的位置关系在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,以B为圆心,以BC 为半径作⊙B,问点A、C及AB、AC的中点D、E与⊙B有怎样的位置关系?解析:本题关键是先求出A,C,D,E与圆心B的距离,再与半径BC的长度相比较.解:如右图所示,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,∴AB=AC2+BC2=5cm.∵⊙B的半径为3cm,AB=5cm>3cm,∴点C在⊙B上,点A在⊙B外.又∵DB=1×5=52cm<3cm,∴点D在⊙B内.连接EB,∵EB>BC=3cm,∴点E在⊙B外.方法总结:要确定某一点与圆的位置关系,只需计算该点与圆心的距离,再与半径的大小作比较.若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:圆的对称性观察下列图形:请问以上三个图形中是轴对称图形的有______,是中心对称图形的有______(分别用以上三个图形的代号填空).解析:依据轴对称图形和中心对称图形的定义解答题目.解:①②③①③方法总结:圆有无数条对称轴,圆的对称轴是过圆心的每一条直线,即直径所在的直线,而不是圆的直径.变式训练:见《学练优》本课时练习“课堂达标训练”第7题三、板书设计教学程中,应鼓励学生自己动手画圆,探究圆形成的过程,同时小组讨论、交流各自发现的圆的有关性质,使学生成为课堂的主人,进一步提升学生独立思考问题的能力及探究能力.【素材积累】1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相的朴素裙裾而闪亮登场然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
《圆的对称性》教学反思
《圆的对称性》本节主要是利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理。
我在教学中采用了让学生动手操作与探索相结合的形式。
本着让学生动起来,设计的时候能充分体现新的课程理念,精心设计好每一步教学流程。
不但考虑了教学内容,教学环节,更注重了学生的学习行为方式的改变,课程资源的开发利用。
从新课的导入我们就能够看到,充满了生活色彩,深深吸引了学生,课堂教学中,我调动了学生的各种积极性,通过小组动手操作合作,交流探究,激励学生积极参与合作学习。
让学生了解了圆的旋转不变性----一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合。
在后边的练习操作中,主要通过实验探索了圆的另一个特性,更增强调了学生学有价值的数学,让学生真正体验了探索获取新知的成就感和成功感,同时也达到了培养学生学习的主动性和创造性的目的。
其次,我提出议一议,引导学生有意识地归纳、总结所使用的研究图形的方法。
最后,通过达标检测题让学生应用所学解决实际问题,孩子们在解决问题的同时享受了成功的喜悦。
个性得到了彰显,解决问题的水平也得到了充分的提升,更感受到数学的价值,从而更加热爱数学学习。
最新六年级数学圆的对称性教学反思(模板5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新六年级数学圆的对称性教学反思(模板5篇)无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!令公桃李满天下,何用堂前更种花。
出自白居易的《奉和令公绿野堂种花》1.理解圆的旋转不变性;(重点)2.掌握圆心角、弧、弦之间相等关系的定理;(重点)3.能应用圆心角、弧、弦之间的关系解决问题.(难点)一、情境导入我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点一:圆的对称性下列说法中,不确的是()A.圆既是轴对称图形又是中心对称图形B.圆的每一条直径都是它的对称轴C.圆有无数条称轴D.圆的对称中心是它的圆心解析:A.圆既是轴对称图形又是中心对称图形,正确;B.圆的每一条直径所在直线都是它的对称轴,故B错误;C.圆有无数条对称轴,正确;D.圆的对称中心是它的圆心,正确.故选B.方法总结:由圆的概念以及轴对称和中心对称的意义易得圆既是轴对称图形,也是中心称图形.是轴对称图形时,过圆心的每一条直线都是它的对称轴;是中心对称图形时,对称中心是它的圆心.注意:圆对称性包括旋转不变性,轴对称性和中心对称性.圆的对称轴是直径所在的直线而不是直径.探究点二:圆心角、弧弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M 为⊙O 上一点,=MB ︵,MD ⊥OA 于点D ,ME ⊥OB 于点E ,求证:MD =ME .解析:连接O .根据等弧对等圆角,则∠MO =∠MOE ,再由角平分线的性质,得出MD =ME .证明:连接MO .∵ MA ︵=MB ︵,∴∠MOD =∠MOE ,又∵MD ⊥OA 于点D ,ME ⊥OB于点E ,∴MD =ME .方法总结:圆心角、弧弦之间等关系的定理可以用来明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.【类型二】 利用心角、弧、弦之间的关证明弧相等如图,在⊙O 中,AB 、CD 是直径,CE ∥AB 且交圆于点E ,求证:BD ︵=BE ︵.解析:首先连接OE ,由CE ∥AB ,可证得∠DOB =∠C ,∠BO =∠E ,然后由OC =OE ,可得∠C =∠E ,继而证得∠DOB =∠BOE ,则可证得BD ︵=BE ︵.证明:如图,连接OE .∵CE ∥AB ,∴∠DOB =∠C ,∠BOE =∠E .∵OC =OE ,∴∠C =∠E ,∴∠DOB =∠BOE ,∴BD ︵=BE ︵.方法总结:此类题主要运用了圆心角与弧的关系以及平行线的性质.注意掌握辅助线的作法及数形结合思想的应用.【类型三】 综合运用圆心角、弧、弦之间的关系进行计算如图,在△ABC 中,∠ACB =90°,∠B =36°,以C 为圆心,CA 为半径的圆交AB 于点D ,交BC 于点E .求AD ︵ 、DE ︵的度数.解析:连接CD .由直角三角形的性质求出∠A 的度数,再根据等腰三角形及三角形内角和定理分别求出∠ACD 及∠DCE 的度数,由圆心角、弧、弦的关系即可得出AD ︵、DE ︵的度数.解:如图,连接CD .∵△ABC 是直角三角形,∠B =36°,∴∠A =90°-36°=54°.∵AC =DC ,∴∠ADC =∠A =54°,∴∠ACD =180°-∠A -∠ADC =180°-54°-54°=72°,∴∠BCD =∠ACB -∠ACD =90°-72°=18°.∵∠ACD 、∠BCD 分别是AD ︵、DE ︵所对的圆心角,∴AD ︵的度数为72°,DE ︵的度数为18°.方法总结:解决本题的关键是根据题意作出辅助线,构造出等腰三角形.三、板书设计圆的对称性1. 圆的对称性2.①圆心角、弧、弦之间的关系②应用圆心角、弧、弦之间的关系解决问题本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再通过教师演示动态教具引导,让学生感受圆的旋转不变性,并得出圆心角、弧、弦三者之间的关系,能用这一关系定理,解决圆的计算证明问题,同时注重培养学生的探索能力和逻辑推理能力,力求体验数学的生活性、趣味性.【素材积累】不停地工作,即使慢,也一定会获得成功。
2 圆的对称性前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】店铺,不迷路!教学目标一、基本目标1.掌握圆的轴对称性、圆的中心对称性和圆的旋转不变性.2.理解在同圆或等圆中圆心角、弧、弦之间的对应关系,并运用它解决相关问题.二、重难点目标【教学重点】圆心角、弧、弦之间的关系.【教学难点】圆心角、弧、弦之间的关系定理中的“同圆或等圆”条件的理解及定理的应用.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P70~P72的内容,完成下面练习.【3min 反馈】1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心;把圆绕圆心旋转任一角度,所得的图形与原图形重合.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两条圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.如图,在⊙O 中,若∠AOB =∠COD ,则AB =CD ,AB ︵ =CD ︵ ;若AB ︵ =CD ︵ ,则∠AOB =∠COD ,AB =CD ;若AB =CD ,则∠AOB =∠COD ,AB ︵ =CD ︵ ,ADB ︵ =CBD ︵.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵ =CE ︵.BE 与CE 的大小有什么关系?为什么?【互动探索】(引发学生思考)根据圆心角、弦、弧之间的关系可得AD ︵ =BE ︵ ,再合已知条件AD ︵ =CE ︵ ,即可通过等量代换及同圆中相等的弧所对的弦相等得出结论.【解答】BE =CE .理由如下:∵∠AOD =∠BOE ,∴AD ︵ =BE ︵ .又∵AD ︵ =CE ︵, ∴BE︵ =CE ︵ , ∴BE =CE .【互动总结】(学生总结,老师点评)解此类题时,应从同圆中圆心角、弦、弧之间的关系进行判断.【例2】如图所示,A 、B 、C 是⊙O 上三点,∠AOB =120°,C 是AB ︵的中点,试判断四边形OACB 的形状,并说明理由.【互动探索】(引发学生思考)由∠AOB =120°,C 是的中点,可想到连结OC →OA =AC =BC =OB →四边形OACB 是菱形.【解答】四边形OACB 是菱形.理由如下:如图,连结OC .∵∠AOB =120°,C 是AB ︵的中点,∴∠AOC =∠BOC =错误!∠AOB =60°.又∵CO =BO ,∴△OBC 是等边三角形,∴OB =BC .同理可得,△OCA 是等边三角形,∴OA =AC .又∵OA =OB ,∴OA =AC =BC =BO ,∴四边形OACB 是菱形.【互动总结】(学生总结,老师点评)解此类题时,由弧中点联想到弧、弦、圆心角的关系定理,作辅助线(连结弧中点和圆心)解问题.活动2 巩固练习(学生独学)1.如图,在⊙O 中,已知AB ︵ =CD ︵,则AC 与BD 的关系是( A )A .AC =BDB .AC <BD C .AC >BD D .不确定2.如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,求∠BOD 的度数.解:连结OC .∵BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,∴∠AOD =∠DOC =∠BOC .又∵AB 是⊙O 的直径,∴∠BOD =23×180°=120°.3.如图,在⊙O 中,弦AB =CD ,那么∠AOC 和∠BOD 相等吗?请说明理由.解:∠AOC =∠BOD .理由如下:在⊙O 中,∵弦AB =CD ,∴∠AOB =∠COD ,∴∠AOB -∠COB =∠COD -∠COB ,∴∠AOC =∠BOD .4.如图,AB 、CD 为⊙O 的直径,AC ︵ =CE ︵,求证:BD =CE .证明:连结AC .∵AC ︵ =CE ︵,∴AC =CE .∵∠AOC =∠BOD ,∴AC =BD ,∴BD =CE .活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB .求证:AC ︵ =BD ︵ .【互动探索】求证AC ︵ =BD ︵ ,由弧、弦、圆心角的关系定理,考虑作辅助线连结OC 、OD ,从而通过证明∠COM =∠DON 来得到AC ︵ =BD ︵ .【证明】如图,连结OC 、OD .∵AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,∴OM =ON .∵CM ⊥AB ,DN ⊥AB ,∴∠OMC =∠OND =90°.在Rt △OMC 和Rt △OND 中,∵⎩⎨⎧ OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (=∠DON ,∴AC ︵ =BD ︵.【互动总结】(学生总结,老师点评)规律总结:在同圆或等圆中,如果两条弧(一般同为优弧或劣弧)、两条弦、两个圆心角中有一组量相等,那么它们所对应的其余各组量都分别相等.环节3 课堂小结,当堂达标(学生总结,老师点评)圆的对称性⎩⎨⎧ 轴对称图形中心对称图形旋转不变性圆心角、弧、弦之间的关系练习设计请完成本课时对应练习!【素材积累】 从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。
圆的对称性教学反思(一)对于《圆》的相关知识,学生在小学已经有了初步的认识。
对于圆的轴对称性,学生在七年级下学期第七章时有了一个了解,并且利用折叠的方法去研究轴对称图形也有了一定的经验和基础。
《圆的对称性》的核心内容是利用圆的轴对称性探索垂径定理,进而应用垂径定理去分析解决问题,而对于垂径定理几个逆定理,北师大教材中只介绍了一个,依据《数学课程标准》,教学时不宜进行过多扩充。
因此在本节课堂教学过程安排了创设情境,感受体验,经历探索,应用训练,收获体会五部分构成:1、在教学过程中,能够充分体现教师的组织者,引导者,合作者的身份,以学生为主体和核心,以学生的亲身参与为主要手段,利用学生熟知的三大银行的标志作为本节课的情境,让学生意识到数学来源于生活,充分引发学生兴趣,进入学习状态,感受体验中,组织学生开展亲身实践活动,得出圆是轴对称图形的结论,并感受弧、弦直径的意义,经历探索在上一环节中继续深入,在教师的引导下,对垂径定理开展实践探索与证明,进而形成结论的过程,而应用训练则是在利用垂径定理解决问题;收获体会是本节课的小结,尝试由学生独立归纳,老师适当引导归纳,教学过程的核心部分是经历探索及应用训练的过程,这既是知识性目标完成的关键,同时也是过程性目标及情感态度变得以实现的核心,而且也是学生分析,解决问题能力及创新意识培养的最佳环节。
以上各环节,都充分依据《数学课程标准》中的第二部分即“课程目标”。
将知识与技能,数学思考,解决问题和情感与态度密切融合2、在课堂教学过程能够根教学内容的特点,结合学生的年龄特点。
采用了提问、组织实践探究、学生亲身经历感受、电脑动画演示、练习等多种教学方法。
达到知识性目标、过程性目标及情感目标的完成。
教学中能够适时地对学生在学习方法上给与指导,启发,改进和拓展学生的学习方式,特别地使学生体会研究几何图形的方法,教学中充分以悬念问题为依托,以学生的亲身实践经历为手段,创设良好的,有助于激发学生学习兴趣的教学环境。
圆的对称性教学反思(集锦3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆的对称性教学反思(集锦3篇)圆的对称性教学反思(1)本节课的教学策略是通过学生自己动手折叠、思考、交流等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态课件及引导,让学生感受圆的对称性;并得出弧、弦、圆心角的三者之间的关系;掌握圆的旋转对称性、中心对称性和轴对称性;并能运用圆的对称性研究圆中的圆心角、弧、弦间的关系,并能解决圆的简单的问题。
一、预习检测1._____________________________________________________________是中心对称图形,对称中心是_______________________.2. 圆是________________,它的对称中心是________________.3.已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.(1)如果AB=CD,那么______,______,______;(2)如果OE=OG,那么______,______,______;(3)如果= ,那么______,______,______;(4)如果∠AOB=∠COD,那么______,______,______.(目的:巩固基础知识)4. 90°的圆心角所对的弧的度数为_____________.度数为60°的弧所对的圆心角的度数为_____________.二、讲授新课三、尝试与交流.按下面的步骤做一做:1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下.2.在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′ (如下图示),圆心固定.注意:∠AOB和∠A′O′B′时,要使OB相对于0A的方向与O′B′相对于O′A′的方向一致,否则当OA与O′A′重合时,OB与O′B′不能重合.3.将其中的一个圆旋转一个角度,使得OA与O′A′重合.教师叙述步骤,同学们一起动手操作.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(结论可能有:1.由已知条件可知∠AOB=∠A′O′B′.2.由两圆的半径相等,可以得到∠OBA=∠O′B′A′=∠OAB和∠O′A′B′.3.由△AOB≌△A′O′B′可得到AB=A′B′.4.由旋转法可知AB=A′B′.)刚才到的AB=A′B′理由是一种新的证明弧相等的方法——叠合法.我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和A′B′重合,弦AB与弦A′B′重合,即AB=A′B′.在上述操作过程中,你会得出什么结论?在等圆中,相等的圆心角所对的弧相等,所对的弦相等.上面的结论,在同圆中也成立.于是得到下面的定理:这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.(通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.如下图示。
圆的对称性-教学反思北师大版九年级数学下第三章圆《3.2圆的对称性》教学反思一、教学设计反思:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
为了在课堂教学中更好地体现“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”、“先学后教”的教学理念,本节课的教学设计,以“学案引领、自主探究、合作交流、展示点拨”为主线,让每个学生都有参与数学活动的机会和空间。
教学从研究圆的旋转不变性出发,探究圆心角、弧、弦之间的关系,在探究过程中通过学生动手操作、折叠、旋转圆的图片、猜想、思考、交流等活动,亲身经历知识的发生、发展及其探求过程,促使学生进行主动探究学习。
教师借助白板操作、动画演示,引导学生观察、探索、发现图形的特征,总结规律,建立新知。
同时注重培养学生的探索能力和简单的逻辑推理能力.体验数学的生活性、趣味性,激发他们的学习兴趣.总的来说,本节课中应充分将课堂还给学生,把数学的课堂变成了数学探讨的课堂,学生探究的课堂,让学生体验到数学的美.二、白板教学应用较为突出或关键的事件及思考1、情景引入中运用媒体形象直观的展现了折扇中蕴涵的圆心角、弧、弦之间的关系,激发学生的学习兴趣,并让学生体会到数学来源于生活。
2、在探究圆的旋转不变性和探究圆心角、弧、弦之间的关系定理时,应用白板的拖动、旋转功能动态演示,形象直观展示了知识形成的过程,让学生在观察——猜想——证明——归纳得出结论的过程中,既轻松又形象直观地获得了新知,又培养了自主探究的学习方法,提高了分析问题、解决问题的能力。
3、在应用练习过程中,运用白板的遮盖、链接等功能使课堂教学灵活多样,让数学也充满了趣味性,大大提高了课堂效率。
4、运用魔术笔的聚光灯的功能将课堂变成舞台的效果,运用魔术笔放大的功能,引起学生的注意力。
圆的对称性教学反思
圆的对称性>教学反思(一)
对于《圆》的相关知识,学生在小学已经有了初步的认识。
对于圆的轴对称性,学生在七年级下学期第七章时有了一个了解,并且利用折叠的方法去研究轴对称图形也有了一定的经验和基础。
《圆的对称性》的核心内容是利用圆的轴对称性探索垂径定理,进而应用垂径定理去分析解决问题,而对于垂径定理几个逆定理,北师大教材中只介绍了一个,依据《数学课程标准》,教学时不宜进行过多扩充。
因此在本节课堂教学过程安排了创设情境,感受体验,经历探索,应用训练,>收获体会五部分构成:
1、在教学过程中,能够充分体现教师的组织者,引导者,合作者的身份,以学生为主体和核心,以学生的亲身参与为主要手段,利用学生熟知的三大银行的标志作为本节课的情境,让学生意识到数学来源于生活,充分引发学生兴趣,进入学习状态,感受体验中,组织学生开展亲身实践活动,得出圆是轴对称图形的结论,并感受弧、弦直径的意义,经历探索在上一环节中继续深入,在教师的引导下,对垂径定理开展实践探索与证明,进而形成结论的过程,而应用训练则是在利用垂径定理解决问题;收获体会是本节课的小结,尝试由学生独立归纳,老师适当引导归纳,教学过程的核心部分是经历探索及应用训练的过程,这既是知识性目标完成的关键,同时也是过程性目标及情感态度变得以实现的核心,而且也是学生分析,解决问题能力及创新意识培养的最佳环节。
以上各环节,都充分依据《数学课程标准》中的第二部分即“课程目标”。
将知识与技能,数学思考,解决问题和情感与态度密切融合
2、在课堂教学过程能够根教学内容的特点,结合学生的年龄特点。
采用了提问、组织实践探究、学生亲身经历感受、电脑动画演示、练习等多种教学方法。
达到知识性目标、过程性目标及情感目标的完成。
教学中能够适时地对学生在学习方法上给与指导,启发,改进和拓展学生的学习方式,特别地使学生体会研究几何图形的方法,教学中充分以悬念问题为依托,以学生的亲身实践经历为手段,创设良好的,有助于激发学生学习兴趣的教学环境。
本节课采用了以学生亲身感受与经历数学的学习活动,并在实践体验中探索发现数学知识的课堂教学模式,充分体现了《数学课程标准》中所倡导的学生在数学学习活动中过程性目标的体现与落实。
存在问题:
由于垂径定理是学生所接触到的第一个有关于圆的性质定理,再加之弧、弦概念的刚刚接触,因而表述或灵活应用中事必会存在问题。
另外,利用轴对称性进行几何说理学生会感觉不适应,在垂径定理的证明时会有一定的难度,同时如何在垂径定理的证明及应用过程中作辅助线,学生也会感到困难。
当然,如何合理用代数方法解决几何问题对于学生来讲也是一个小小的挑战。
由于时间会较为紧迫,因此,相应的练习安排得较少,这样可能会影响了学生对新定理的应用的训练,在本节课后应该增强一节习题课让学生加深对垂径定理及其逆定理的理解。
圆的对称性教学反思(二)
我在对圆的对称性这节的教学过程中,从回忆等腰三角形这个轴对称图形开始,继而提问:如果以刚才演示的等腰三角形的顶点为圆心,腰长为半径做圆,那么圆是否是轴对称图形?同时,要求学生利用自制的圆形纸片动手实验,折叠观察交流,从而获得圆是轴对称图形,对称轴是过圆心的直线(有无数条)。
这一环节貌视简单,却为下面做好铺垫。
我要求学生事先做好学具,动手就可以很快,教学中要控制时间。
接下来我利用黑板上总结中所画的图形介绍圆的相关概念:弧、弦。
在读写认的过程中使学生熟悉基础概念并感受优劣弧和弦长短的变化。
在此基础上安排学生活动:并讨论下列问题:(1)在探索圆的对称性的过程中,若折叠两条相交直径可以是那些位置关系呢?垂直是特殊情况,你能得出那些等量关系?(2)若把AB向下平移到任意位置,变成非直径的弦,观察一下,还有与刚才相类似的结论吗?(3)要求学生在纸片上画出图形,并沿CD折叠,试验后提出猜想。
(4)猜想结论是否正确,要加以理论证明引导学生写出已知,求证。
然后让学生阅读课本的证明,并回答下类问题:教材证明利用了圆的什么性质?若只证AE=BE,还有什么方法?(5)猜想得以证明,命题是真命题,我们得到了定理!在环环相扣的活动后总结垂径定理并板书定理推理格式。
在教学中,学习水平不足的同学参与了活动完成的质量不够,费时较长,一定程度上影响了课堂进度,教进应加强适时点拔指导。
垂径定理是中学数学中的一个很重要的定理,由于他涉及到的条件结论比较多学生容易搞混肴,本节课采取了,讲练结合动手操作的教学方法,课前布置所有同学制作一张圆形纸片,课上利用此纸片探索、体验圆是轴对称图形,并进一步利用圆的轴对称性探究垂径定理,环环相扣、逐层深入,激发学生的学习兴趣,收到了很好的教学方法。
圆的对称性教学反思(三)
学生对圆的对称性的整体认识有了,在学习态度和方法上,有基本的分析问题并努力寻找解决问题的态度和能力,几何的判断、推理、证明能力基本能够达到要求。
学生已经具备了学习、探究圆的轴对称性所需的基本知识,如轴对称性、轴对称性图形的性质等。
在了解了这些基本情况的基础上,利用动手试一试,找一找的环节,进一步培养学生的观察、分析、归纳的逻辑思维能力。
同时,通过学生自己动手体验知识的形成过程,使学生获得成功的体验,增强学生的自信心。
学生能够在老师的带领、启发下探求到新的知识。
本堂课的教学难点可以确定为垂径定理的推论的得出过程。
同时根据此情况可以通过解决相关的知识性的问题,让学生体会到数学的严谨的美,从而达到教育他们要实事求是、思考问题要缜密的学习态度。
根据学生的具体情况,可以采用小组合作式学习,形式可以采取讨论式。
这样可以提高学生们之间互相交流,沟通的能力,培养他们合作学习的意识。
通过引导学生对垂径定理的特征图形的分析,可以培养学生抓特征图形的能力,让他们在以后的学习中,对图形可以进行更好的分析,同时提高应用图形的能力。
而在整个教学中我对学生只是一个在方法上的引导者,鼓励、帮助学生自己去发现问题、探究问题,这也是我以后的教学指向。
相信长此以往学生一定会在自己研究问题上取得很好的效果的。