二元一次方程复习
- 格式:doc
- 大小:398.00 KB
- 文档页数:13
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
二元一次方程组重点讲解(复习专用) 在学完第八章之后,常会遇到一些变式问题和一些综合性问题,我们具备怎样的素养,才能准确解答这些问题呢?至少要实现以下六会:一、会根据方程意义,巧推系数取值情况例1.方程●x-2y=x+5是二元一次方程,●是被污染的x的系数,请你推断●的值,属于下列情况中的()A.不可能是-1B.不可能是-2C.不可能是1D.不可能是2析解:由二元一次方程的意义知,●不可能是1,因为当●是1时,把已知方程整理后,所得的方程就会成为,只含有未知数y的一元一次方程,这与已知相矛盾,所以●的值“不可能是1".因此,答案应为:C.评注:紧扣二元一次方程的意义推断是关键.二、会依据解的意义,逆推原方程组例2.小明给小刚出了一道数学题:如果我将二元一次方程组中的方程①里y的系数用◆遮住,②中x的系数用◆覆盖,并且告诉你2,1.xy=⎧⎨=⎩是这个方程组的解,你能求出原来的方程组吗?析解:由二元一次方程组解的意义知2,1xy=⎧⎨=⎩能使①成立,把它代入①得2×2+◆×1=3,解得◆=-1;同样把2,1xy=⎧⎨=⎩代入②可得,◆=1。
把求得的y、x的系数,代入已知方程组即可求得原方程组为213,3. xx y-=⎧⎨+=⎩评注:透彻理解二元一次方程组解得意义,是本题求解的关键.三、会选择恰当的变形方程,使得代入后较易化简①②33.2,yx yx=+=+⎧⎨⎩① ② 21图1例3。
用代入法解方程组342,2 5.x y x y +=⎧⎨-=⎩ 使得代入后化简比较容易的是( )A 。
由①得x=243y - B.由①得y=234x - C 。
由②得x=52y + D.由②得y=2x -5析解:无论是把A 中的x=243y-代入②,或把B 中的y=234x -代入②,或把C 中的x=52y +代入①,都没有用D 中的y=2x -5代入①后容易化简,所以,答案为:D 。
评注:代入系数为分数的代数式,没有代入系数为整数的代数式容易化简。
二元一次方程组知识点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为axbyc(a、b、c为常数,并且a0,b 0)。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有且只有一个解。
3、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
4、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
5、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
6、二元一次方程组应用题列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;找:找出能够表示题意两个相等关系;列:根据这两个相等关系列出必需的代数式,从而列出方程组;解:解这个方程组,求出两个未知数的值;答:在对求出的方程的解做出是否合理判断的基础上,写出答案§8.1二元一次方程组一、填空题1、二元一次方程 4x-3y=12,当x=0,1,2,3 时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当k=______时,方程为一元一次方程;当 k=______时,方程为二元一次方程。
二元一次专题复习【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解. (2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法 (1)用代入消元法解二元一次方程组的一般过程: 要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程: 要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.(3)图像法解二元一次方程组的一般过程: ①把二元一次方程化成一次函数的形式.②在直角坐标系中画出两个一次函数的图像,并标出交点. ③交点坐标就是方程组的解. 要点诠释:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像相交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解. 要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、二元一次方程(组)与一次函数 1.二元一次方程与一次函数的关系(1)任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a cy x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数.(2)我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点诠释:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同. 2. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 3.用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法. 利用待定系数法解决问题的步骤: 1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.二元一次习题精讲注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.2.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.1 C.2 D.04.下面能满足方程3x+2=2y的一组解是()A.B.C.D.5.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.6.修一条排水渠,甲队独做需10天,乙队独做需15天,现由两队合修,中途乙队被调走,余下的任务由甲队单独做,又修了5天后完成.在这个过程中,甲、乙两队合修了()A.2天B.3天C.4天D.5天7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.28.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如图:1支笔和1本笔记本应付()A.10元B.11元C.12元D.13元9.若是关于x、y的方程x+ay=3的解,则a值为()A.1 B.2 C.3 D.410.下列方程组中不是二元一次方程组的是()A.B.C.D.11.在下列方程中:(1)3x+=8;(2)+2y=4;(3)3x+=1;(4)x2=5y+1;(5)y=x;(6)2(x﹣y)﹣3(x+)=x+y是二元一次方程的有()A.2个B.3个C.4个D.5个12.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.13.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A.B.C.D.14.已知关于x,y的方程组,甲看错a得到的解为,乙看错了b得到的解为,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b=C.a=﹣l,b=D.a=﹣1,b=﹣115.若x|k|+ky=2+y是关于x、y的二元一次方程,则k的值为()A.1 B.﹣1 C.1或﹣1 D.016.一次函数y=2x+4的图象如图所示,则下列说法中错误的是()A.x=﹣2,y=0是方程y=2x+4的解B.直线y=2x+4经过点(﹣1,2)C.当x<﹣2时,y>0 D.当x>0时,y>417.已知是二元一次方程组的解,则b﹣a的值是()A.1 B.2 C.3 D.418.若关于x,y的二元一次方程组的解中x,y的值相等,则k的值是()A.2 B.l C.0 D.﹣219.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2 20.如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=021.用代入法解方程组有以下过程,其中错误的一步是()(1)由①得x=③;(2)把③代入②得3×﹣5y=5;(3)去分母得24﹣9y﹣10y=5;(4)解之得y=1,再由③得x=2.5.A.(1)B.(2)C.(3)D.(4)22.如图,点C在直线AB上,∠ACD的度数比∠BCD的度数的3倍少20°,设∠ACD和∠BCD的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.23.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是()A.26千米,2千米B.27千米,1千米C.25千米,3千米D.24千米,4千米第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明24.如图所示,两条直线l1,l2的交点坐标可以看作方程组的解.25.已知关于x,y的二元一次方程的解互为相反数,则8k的立方根是.26.若关于x,y的方程组的解满足x+y=6,则m的值为.27.如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.28.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?29.解下列方程组:(1)(2)30.七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.(2)求从网店购买这些奖品可节省多少元.31.计算(1)化简:(2)化简:(3)解方程2x2﹣1=7;(4)解方程组:32.为了鼓励居民节约用水,市政府决定对居民用水收费实行“阶梯价”,即当每月用水量不超14吨(含14吨)时,则采用基本价收费;当每月用水量超过14吨时,超过部分每吨采用市场价收费.小惠家3、4月份的用水量及收费情况如下表:(2)小惠家5月份用水26吨,则她家应交水费多少元?33.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?34.如图,这是一个矩形养鸡场的平面图,一边靠墙(有阴影的直线),其余边用60米的篱笆围成.养鸡场被分割成三个面积相等的矩形区域①、②、③.且AD>AB.若养鸡场的总面积为162平方米,求AD的长.35.A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇.6小时后甲剩余的路程是乙剩余路程的2倍,求甲乙二人的速度.36.穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.(1)求甲乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,还需要多少天完成任务?37.某校开展贫困生帮扶募捐工作,该校七(1)班40名学生共捐款500元,捐款情况如下表:他求出10元和15元的人数各是多少?38.河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.试卷第11页,总12页39.某工程队承包了全长3150米的公路施工任务,甲、乙两个组分别从东、西两端同时施工,已知甲组比乙组平均每天多施工6米,经过5天施工,两组共完成了450米.(1)求甲、乙两个组平均每天各施工多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多施工4米,乙组平均每天比原来多施工6米,按此施工进度,能够比原来少用多少天完成任务?试卷第12页,总12页参考答案与试题解析一.选择题(共23小题)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A .B .C .D .【分析】设大马有x匹,小马有y匹,根据大马与小马的总匹数是100,1匹大马能拉3片瓦,3匹小马能拉1片瓦共拉100匹瓦,列出方程组,此题得解.【解答】解:设大马有x匹,小马有y匹,根据题意得:.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把x=1代入方程组中第二个方程求出y的值,进而求出x﹣y的值,确定出点所在象限即可.【解答】解:把x=1代入6x+5y=﹣1中得:6+5y=﹣1,解得:y =﹣,x﹣y=1﹣(﹣)=,则(,﹣)所在的象限是第四象限,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.1 C.2 D.0【分析】把代入方程组,得到一个关于a,b的方程组,将方程组的两1个方程左右两边分别相加,整理即可得出a+b的值.【解答】解:把代入方程组,得:,①+②,得:7(a+b)=7,则a+b=1.故选:B.【点评】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.4.下面能满足方程3x+2=2y的一组解是()A .B .C .D .【分析】把各选择支代入二元一次方程,验证即可.【解答】解:当x=4,y=2时,方程的左边=14,方程的右边=4,因为方程的左边≠方程的右边,所以A不满足方程;当x=3,y=5时,方程的左边=11,方程的右边=10,因为方程的左边≠方程的右边,所以B不满足方程;当x=2,y=4时,方程的左边=8,方程的右边=8,因为方程的左边=方程的右边,所以C满足方程;当x=1,y=3时,方程的左边=5,方程的右边=6,因为方程的左边≠方程的右边,所以D不满足方程;故选:C.【点评】本题考查了二元一次方程的解,二元一次方程有无数个解,它的解满足方程左右两边相等.5.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A .B .C .D .2【分析】设购买甲种花木x棵、乙种花木y棵,根据总价=单价×数量结合购买两种树苗共200棵,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设购买甲种花木x棵、乙种花木y棵,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.修一条排水渠,甲队独做需10天,乙队独做需15天,现由两队合修,中途乙队被调走,余下的任务由甲队单独做,又修了5天后完成.在这个过程中,甲、乙两队合修了()A.2天B.3天C.4天D.5天【分析】甲、乙两队合修了x天,根据整个工程分两部分列出方程求解即可.【解答】解:设甲、乙两队合修了x天,根据题意得:(+)x +×5=1,解得:x=3,故选:B.【点评】本题考查了方程的应用,解题的关键是能够根据题意找到等量关系并列出方程,难度不大.7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.2【分析】,②﹣①得:x﹣y=1,根据“方程组的解满足x﹣y =m﹣1”,得到关于m的一元一次方程,解之即可.【解答】解:,②﹣①得:x﹣y=1,∵方程组的解满足x﹣y=m﹣1,∴m﹣1=1,解得:m=2,故选:D.【点评】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.8.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记3本,期间他与售货员对话如图:1支笔和1本笔记本应付()A.10元B.11元C.12元D.13元【分析】设1支签字笔的价格为x元,1本笔记本的价格为y元,根据小明与售货员的对话,列出关于x和y的二元一次方程组,解之即可.【解答】解:设1支签字笔的价格为x元,1本笔记本的价格为y元,根据题意得:,解得:,8+4=12(元),即1支笔和1本笔记本应付12元,故选:C.【点评】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.9.若是关于x、y的方程x+ay=3的解,则a值为()A.1 B.2 C.3 D.4【分析】把x、y的值代入方程,得出一个关于a的意义一次方程,求出方程的解即可.【解答】解:∵是关于x、y的方程x+ay=3的解,∴代入得:2+a=3,解得:a=1,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出一个关于a的一元一次方程是解此题的关键.10.下列方程组中不是二元一次方程组的是()A .B .C .D .【分析】二元一次方程的定义:含有两个未知数,并且未知数的项的最高次数是1的方程叫二元一次方程;二元一次方程组的定义:由两个二元一次方程组成的方程组叫二元一次方程组.4【解答】解:因为A,B,D都符合二元一次方程组的定义;C中xy是二次.故选:C.【点评】此题考查了二元一次方程组的定义,正确把握二元一次方程组的定义是解题关键.11.在下列方程中:(1)3x +=8;(2)+2y=4;(3)3x +=1;(4)x2=5y+1;(5)y=x;(6)2(x﹣y)﹣3(x +)=x+y是二元一次方程的有()A.2个B.3个C.4个D.5个【分析】根据二元一次方程的定义即可求出答案.【解答】解:(2)+2y=4;(5)y=x;(6)2(x﹣y)﹣3(x +)=x+y是二元一次方程,故选:B.【点评】本题考查二元一次方程的定义,解题的关键是正确理解二元一次方程的定义,本题属于基础题型.12.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A .B .C .D .【分析】此题中的等量关系有:①某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则2x=y+2.【解答】解:根据某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则y=2x﹣2.可列方程组.故选:C.【点评】考查了由实际问题抽象出二元一次方程组.找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.13.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A .B .5C .D .【分析】设应该分装大小瓶两种产品x瓶、y瓶,根据大瓶和小瓶的销售数量比为2:5及每天生产这种消毒液22.5吨,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设应该分装大小瓶两种产品x瓶、y瓶,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.14.已知关于x,y 的方程组,甲看错a 得到的解为,乙看错了b得到的解为,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b =C.a=﹣l,b =D.a=﹣1,b=﹣1【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,分别求出a与b即可.【解答】解:把代入ax+2y=1得:a﹣4=1,解得:a=5,把代入x﹣by=2得:1﹣b=2,解得:b=﹣1,则把a、b错看成的值为a=5,b=﹣1.故选:A.【点评】此题考查了二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.若x|k|+ky=2+y是关于x、y的二元一次方程,则k的值为()A.1 B.﹣1 C.1或﹣1 D.0【分析】直接利用二元一次方程的定义进而分析得出答案.【解答】解:∵x|k|+ky=2+y是关于x、y的二元一次方程,∴|k|=1,k﹣1≠0,解得:k=﹣1,故选:B.【点评】此题主要考查了二元一次方程的定义,正确把握定义是解题关键.616.一次函数y=2x+4的图象如图所示,则下列说法中错误的是()A.x=﹣2,y=0是方程y=2x+4的解B.直线y=2x+4经过点(﹣1,2)C.当x<﹣2时,y>0D.当x>0时,y>4【分析】根据一次函数的性质即可解决问题;【解答】解:观察图象可知直线y=2x+4经过(﹣2,0)和(0,4),∴x=﹣2,y=0是方程y=2x+4的解,故A正确,∵x=﹣1时,y=2,∴直线y=2x+4经过点(﹣1,2),故B正确,当x>0时,y>4,故D正确,当x<﹣2时,y<0,故C错误,故选:C.【点评】本题考查一次函数图象上的点的特征,函数与二元一次方程的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.已知是二元一次方程组的解,则b﹣a的值是()A.1 B.2 C.3 D.4【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】解:把代入方程组得:,解得:,则b﹣a=3+1=4,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x,y 的二元一次方程组的解中x,y的值相等,则k的值是()A.2 B.l C.0 D.﹣2【分析】由x与y的值相等得到y=x,代入方程组中计算即可求出k的值.【解答】解:由题意得:y=x,7代入方程组得:,解得:x =,k=0,则k=0.故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.19.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【解答】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积=3×7=21(cm2).故选:B.【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.20.如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0 【分析】根据互为相反数的两个数的和为0,可得二元一次方程组,根据解二元一次方程组,可得答案.【解答】解:(x+y﹣5)2与|3x﹣2y+10|互为相反数,(x+y﹣5)2+|3x﹣2y+10|=0,8解得.故选:C.【点评】本题考查了解二元一次方程组,先得出一个二元一次方程组,再解二元一次方程组.21.用代入法解方程组有以下过程,其中错误的一步是()(1)由①得x=③;(2)把③代入②得3×﹣5y=5;(3)去分母得24﹣9y﹣10y=5;(4)解之得y=1,再由③得x=2.5.A.(1)B.(2)C.(3)D.(4)【分析】出错一步为(3),理由去分母时两边都乘以2,写出正确的解法即可.【解答】解:其中错误的一步为(3),正确解法为:去分母得:24﹣9y﹣10y=10,移项合并得:﹣19y=﹣14,解得:y=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,点C在直线AB上,∠ACD的度数比∠BCD的度数的3倍少20°,设∠ACD和∠BCD的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【分析】此题中的等量关系有:①由图可得,∠ACD和∠BCD组成了平角,则和是180;②∠ACD的度数比∠BCD的度数的3倍少20°【解答】解:由题意得,.故选:B.【点评】此题关键是能够结合图形进一步发现两个角之间的一种等量关系,即两个角组成了一个平角,和是180度.。
二元一次方程组复习1.二元一次方程:(1)二元:两个未知数(2)一次:未知项的次数为1 (3)方程:整式方程(4)判断是不是,先整理后判断2.二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值3.方程中的元与次元:未知数次:未知项的最高次数例1:下列方程:①3x+6=2x ,②xy=3,③,④○5x+3y+z=9,○601=+yx ,○75-y=2, ○85(x-y)+2(2x-3y)=4.其中二元一次方程有____________________ 例2:已知方程6213=-y x ,用含x 的代数式表示y.例3:求出方程2x+3y=5的自然数解。
4.二元一次方程组:一般地,含有相同的两个未知数的两个二元一次方程合在一起,就组成一个二元一次方程组。
5.二元一次方程组的解:使二元一次方程组中每个方程左右两边的值分别相等的两个未知数的值(两个方程的公共解) 例4:方程3x-2y=1与方程1232=+y x ,若x 的值相等,则y 值是多少?例5:当a 、b 为何值时,代数式ax-3+5x+a+b 的值恒为0?6.二元一次方程组的解法:代入消元法 加减消元法 例6:已知nm yx +32与813y n x+-是同类项,求m 、n 的值例7:解方程组: (1)⎩⎨⎧=-+--=-5)1()2(2)1(22y x y x(2)⎪⎩⎪⎨⎧-=-=+)2(6)9(54334y x y x(3)⎪⎪⎩⎪⎪⎨⎧=-+-=+++25323473523y x y x(4)⎪⎪⎩⎪⎪⎨⎧=-=+315321512y x y x(5)⎩⎨⎧=-=+453332n m n m(6)⎪⎪⎩⎪⎪⎨⎧-+=-+=--5.120944351)2(3.01x y x y(7)⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x yx y x(8)⎩⎨⎧=-=+b y x ay x 227.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是? 练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+-- 练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32 跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95 跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩ (三)、选择适当的方法解下列方程组(1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---= 题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
二元一次方程组【知识点一:二元一次方程的定义】定义:方程有两个未知数 ,并且未知数的次数都是1,像这样的方程 ,我们把它叫做二元一次方程。
含有两个未知数的两个一次方程组成的一组方程,叫做二元一次方程组。
例1 下列方程组中,不是二元一次方程组的是( )。
A 、B 、C 、D 、【举一反三】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩,其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 2、 若753313=+--m n m y x是关于x 、y 二元一次方程,则m =_________,n =_________。
【知识点二:二元一次方程组的解定义】一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
例2、方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==2y xD .⎩⎨⎧==02y x【举一反三】1、 当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.2、 下面几个数组中,哪个是方程7x+2y=19的一个解( )。
A 、 31x y =⎧⎨=-⎩ B 、 31x y =⎧⎨=⎩ C 、 31x y =-⎧⎨=⎩ D 、 31x y =-⎧⎨=-⎩3、 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩【知识点三:二元一次方程正整数解问题】例3、写出二元一次方程2315x y +=的正整数解【举一反三】甲种物品每个4kg ,乙种物品每个7kg ,现有甲种物品x 个,乙种物品y 个,共76千克。
基础知识预览一、概念一元二次方程:只含有一个未知数,未知数的 是2,且系数不为 0,这样的整式方程叫一元二次方程.一般形式: .其中 称为二次项、 称为一次项,称为常数项, 分别称为二次项系数和一次项系数. 二.一元二次方程的解法 1.直接开平方法 2. 配方法1. 把方程化成一元二次方程的一般形式。
2. 把二次项系数化为1。
3. 把含有未知数的项放在方程的左边,不含未知数的项放在方程的右边。
4. 方程的两边同加上一次项系数一半的平方。
5. 方程的左边化成完全平方的形式,方程的右边化成非负数。
6. 利用直接开平方的方法去解。
3. 公式法 ( 2b x a -±=)1.把方程化成一元二次方程的一般形式。
2. 写出方程各项的系数。
3. 计算出24b ac -的值,看24b ac -的值与0的关系,若24b ac -﹤0,则此方程没有实数根 。
4. 当24b ac -≥0时, 代入求根公式 计算出方程的值4. 因式分解法1. 移项,使方程的右边为0。
2. 利用提取公因式法,平方差公式,完全平方公式,十字相乘法对左边进行因式分解3. 令每个因式分别为零,得到两个一元一次方程。
4. 解这两个一元一次方程,它们的解就是原方程的解易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.三、一元二次方程20ax bx c ++=(a ,b ,c 为常数,a ≠0)根的判式是: △=24b ac - 一元二次方程根的判别式四、一元二次方程根与系数的关系()21212120,0,,,b c x bx c a x x x x x x a a++=≠+=-=如果a 的两个根是那么易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零 这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.例1.下列方程中,关于x 的一元二次方程有:( )①2x =0 ,②20ax bx c ++= ,③2x -3=x , ④20a a x +-= , ⑤1223m xx +-= =0,⑥1133x x += , ⑦2= , ⑧22(1)9x x +=-A 、2个B 、3个C 、4个D 、5个1、在选择方程082,0105,1,5)2)(1(42222=+=-=+=+-x x x y x x x ,12121,0432242+=+=+-x x x x x 中,应选一元二次方程的个数为( )A 3 个B 4 个C 5 个D 6 个2、方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是A. ①和②B. ②和③C. ③和④D. ①和③3、下列方程中,关于x 的一元二次方程是( )A.()()12132+=+x xB.02112=-+xx C.02=++c bx ax D. 1222-=+x x x4、方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是5、关于x 的方程)0(0)(2≠=-+-ab ab x b a abx 中, 二次项是 ; 常数项是 ;一次项是 ;例2、当m 是何值时,关于x 的方程22234)1()2(x x m x m =--++(1)是一元二次方程; (2)是一元一次方程;(3)若x=-2是它的一个根,求m 的值。
总结:你能发现什么? 练习1、已知方程 1223m xx +-= 是关于x 的一元二次方程,则m=__________2、关于x 的方程 221(1)50aa a x x --++-= 是一元二次方程,则a=__________ 3、关于x 的方程03)3(7=+---x x m m 是一元二次方程,那么m=_______________.4、关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程5、关于x 的方程023)1()1(2=++++-m x m x m ,当m ________时为一元一次方程;当m ___________时为一元二次方程。
例3、 你觉得用什么方法解下列试题比较好?试一试,用多种方法解答。
(1)9)12(2=-x (2)22321622x x x x ++=-+(3)23(1)0x x --= (4) 025)2(10)2(2=++-+x x(5)42)2)(1(+=++x x x (6)0)4()52(22=+--x x总结:你发现什么?2.一般二次三项式2ax bx c ++型的大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.反过来,就得到: 我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c++就可以分解成.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.试想一下,若在2ax bx c ++=0(a ≠0)一元二次方程中运用会有什么发现例4、解下列方程(1) 276x x -+ =0 (2) 21336x x -+-=0(3)21252x x --=0 (4) 22568x xy y --+=0能力提升(1) 22(2)7(2)8x x x x +-+- =0 (2)a ax x x 51522---+=0(3)0)23(22=-+--b b a x a x 0)1(122=--+-kx k x x练习、解方程。
(1) x 2 + 8x + 15=0 (2) x 2 - 2x - 15=0(3)-x 2 + 8x -15 =0 (4) -x 2 - 8x + 15=0(5)2x 2 + 11x + 15=0 (6)2x 2 - 13x + 15 =0例5、当k 取什么值时,已知关于x 的方程:222(41)210x k x k -++-= (1)方程有两个不相等的实根; (2)方程有两个相等的实根;(3)方程无实根;例6、(08武汉)下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④ 若240b ac ->,则一元二次方程有两个相等的实数根其中正确的是( )A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.例7、已知m 为非负整数,且关于x 的方程 :2(2)(23)20m x m x m ---++= 有两个实数根,求m 的值。
总结:做这类题你应该注意什么呢?1、若关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是。
(A )1<k (B )1≤k (C )1<k 且0≠k (D )1≤k 且0≠k 2,关于x 的一元二次方程 x ²-2mx+m ²+1=0的根的情况是 ( )A.有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D.不能确定3、a 是任意实数,关于x 的方程01222=-+-a ax x 的根的情况是( ) (A )有两个不相等的实数根 (B )有两个相等的实数根 (C )没有实数根 (D )根的个数与a 的取值有关4、关于x 的一元二次方程02322=-+-m x x 的根的情况是A. 有两个不相等的实根B. 有两个相等的实根C. 无实数根D. 不能确定5. 方程07)1(82=----k x k x 的一个根为零,则=k ( )A 1-B 163C 4D 76、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 ( )A. 27B. 33C. 27和33D. 以上都不对7、当k = 时,方程0)1(2=+++k x k x 有一根是0. 8、已知方程032=+-mx x 的两个实根相等,那么=m ; 9.已知322--x x 与7+x 的值相等,则x 的值是10、已知7532=++x x ,则代数式2932-+x x 的值为________________. 11、若一个三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 .12、已知a 、b 、c 为三角形的三边, 求证 ∶方程0)(222222=+-++b x c b a x a 没有实数根13、求证:关于x 的方程:2(2)210x m x m --+-= 有两个不相等的实根。
例8、设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________,1211x x +=__________,(x 1-x 2)2=_______.例9、2560,2x kx k +-=已知方程的一个根是,求它的另一个根及的值1、已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( )A.11B.12C.13D.142、如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( )A. x 2+3x +4=0B. x 2-4x +3=0C. x 2+4x -3=0D. x 2+3x -4=03、已知1x =-是方程260x ax -+=的一个根,则a=____________,另一个根为_________;4、若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = .能力提升已知关于x 的一元二次方程()2120x m x m --++=.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+课后作业:1、方程0122=-+x x 根的判别式的值是_________2、如果()51222+++-m x m x 是一个完全平方公式,则=m ______。
3、已知关于x 的一元二次方程02=++q px x 的两根为2和3,则q p +=________.4、(06泉州)菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x的一个根,则菱形ABCD 的周长为 .5、设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为6、若21,x x 是方程0532=-+x x 的两个根,则()()1121++x x 的值为( )(A )–7(B ) 1(C ) 291+-(D ) 291--7、(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=8. (2009年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007 C .2008 D .20099.(2009年南充)方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =10.(2009年日照)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( )A. 1B.2C.-1D.-2。