7.4 状态反馈和极点配置
- 格式:pdf
- 大小:1.19 MB
- 文档页数:16
状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。
第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a)FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
线性系统的状态反馈及极点配置1.前言随着现代控制理论的不断发展和成熟,线性系统的状态反馈控制在控制理论中得到了广泛的应用,并成为了控制领域中重要的一种控制方法。
状态反馈控制能够将系统的状态进行反馈,并利用反馈得到的信息对系统进行控制,从而达到使系统达到预期控制目标的目的。
本文将从状态反馈控制的原理和实现方法两方面介绍线性系统的状态反馈及极点配置。
2.状态反馈控制的原理状态反馈控制是建立在现代控制理论的基础上的一种高级控制方法。
状态反馈控制的基本思想是在系统中引入反馈环节,设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,以期望控制系统按照预期的运动轨迹运行。
因此,状态反馈控制要实现以下两个步骤:- 系统状态量的测量:首先要在系统中安装测量传感器,实时地测量系统状态量,使得状态量可以被反馈到控制器中。
- 反馈控制器的设计:设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,实现对系统的精确控制。
因此,状态反馈控制的基本原理就是将系统状态量反馈到控制器中,以期望控制系统按照预期的运动轨迹运行。
2.2 状态空间模型与状态反馈控制状态空间模型是状态反馈控制的基础。
状态空间模型是一种方便描述线性系统动态行为和控制器的模型。
对于线性时不变系统,我们可以用如下的状态变量描述:x(t) = [x1(t),x2(t),...,xn(t)]T其中,x(t) 是系统在时刻 t 的状态量,n 是状态量的数量,x1(t),x2(t),...,xn(t) 分别是系统的每个状态量。
状态空间模型可以用一组线性常微分方程描述:dx/dt = Ax + Bu其中,A 是系统的状态方程矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接耦合矩阵。
系统的状态反馈控制可以表示为:u(t) = -Kx(t)其中,K 是状态反馈矩阵。
将状态反馈控制引入到状态空间模型中,可以得到控制器的状态空间模型为:y = Cx上述控制器的状态空间模型就是一个闭环系统,通过反馈控制器将系统状态返回到系统,形成了一个反馈环。
极点配置状态反馈控制器的设计王俊伟于新海(河套学院机电工程系)摘要围绕双级倒立摆案例,对极点配置状态反馈控制器的设计方法展开讨论,对最终的计算结果进行仿真,并通过仿真结果分析了系统的稳定性、动态性能和稳态误差情况。
倒立摆的开环系统状态空间模型状态不稳定且动态性能较差,通过引进极点配置状态反馈控制器,倒立摆的闭环系统状态达到稳定,而且动态性能得到改善。
关键词状态反馈控制器双级倒立摆极点配置能控标准型爱克曼公式动态特性稳态误差中图分类号TH865文献标识码B文章编号1000-3932(2021)01-0015-05极点配置状态反馈控制器设计得好坏直接决定了控制系统动态性能的优劣!配置极点的目的不仅是使系统稳定还要使系统的动态性能满足控制要求[1]!在配置状态反馈控制器时,根据被控制对象的要求,可以采用3种方法实现:极点配置状态反馈控制器的直接法、极点配置状态反馈控制器的变换法和爱克曼公式[2]'这3种方法仅适用于单输入系统,优点是只要系统能控,就可以实现极点配置的状态反馈,缺点是不能用于多输入系统的极点配置状态反馈控制器。
对于单输入系统,如果系统能控可以实现极点的任意配置,改善动态性能,但有可能使闭环控制系统的稳态误差变大[3]!1极点配置状态反馈控制器的直接法线性时不变系统如下:x=Ax+Bu(])'=Cx其中,X是系统的*维状态向量;*是状态向量对时间的导数;u是状态反馈控制律;#、B和C是适当维数的已知常数矩阵;'是系统的输出。
采用的状态反馈控制律是:u=-kx+v(2)其中,-是一维外部输入;k是反馈增益矩阵。
将式(2)代入式(1)得到闭环系统状态方程:*二(.-Bk)x+B-(3)极点配置状态反馈控制器的直接法分5步实现⑷。
第1步,检验系统(1)的能控性,如果系统能控,进行第2步。
第2步,计算闭环系统特征多项式:)et[!0—(#—Bk)]二!*+(3*_]+k*_14!*i1--------(3]+k])!+30+,0(4)其中,!是闭环极点。
线性系统状态反馈区域极点配置算法研究摘要20世纪50年代后期,控制理论由经典控制理论向现代控制理论转变,现代控制理论是在引入状态和状态空间概念的基础上发展起来的。
与经典控制理论一样,现代控制系统中仍然主要采用反馈控制结构,但不同的是,经典控制理论中主要采用输出反馈,而现代控制系统中主要采用内部状态反馈。
状态反馈可以为系统控制提供更多的信息反馈,从而实现更优的控制。
闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所应具备的分布情况,把极点的配置作为系统的动态品质指标。
这种把极点配置在某位置的过程称为极点配置。
在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。
本论文对线性系统的状态反馈区域极点配置的算法进行了研究,分别以具有 稳定裕度和具有圆域极点约束的状态反馈控制器设计为例,利用线性矩阵不等式LMI处理方法,编写系统的MATLAB仿真程序。
最后以同样的方法对不确定系统状态反馈区域极点配置进行了研究,结果证明了设计方法的正确性和有效性。
关键词:线性系统;状态反馈;极点配置;线性矩阵不等式;不确定系统Algorithmic Research for Regional PoleAssignment of Linear System Via StateFeedback ControllersABSTRACTIn the late 1950s, control theory later by classical control theory to modern control theory shift, modern control theory is introducing state and state space concept developed on the basis of. As with classical control theory, modern control system still mainly uses the feedback control structure, but different is, classical control theory mainly uses the output feedback, and modern control system mainly uses the internal state feedback. State feedback control for system provide more information feedback, so as to achieve better control.The distribution of closed-loop system poles depends on system stability and dynamic quality, therefore, can according to the system dynamic quality request, provisions that poles of close-loop system should have the distribution of the pole, configuration of the system dynamic quality indicators. The position of the poles in the process called poles. In space, the general state method in the feedback system state variables or output variable method to achieve system poles. This thesis studied the algorithm of linear system state feedback regional poles, and respectively by the state feedback controller design of stability margin of and has round domain constraints as examples, by using the linear matrix inequality LMI treatment methods, writing MATLAB simulation program of system. Finally in the same way the uncertain system state feedback regional poles are studied, and the result shows the design method is correct and effective.Key words:Linear system;State feedback;Pole placement;LMI;Uncertain system目录摘要............................................................................................................................................ΙABSTRACT...........................................................................................................................П1 绪论 (1)1.1课题背景及意义 (1)1.2 极点配置简介 (1)1.3 本论文研究的主要工作 (2)2理论基础及数学准备 (3)2.1 区域极点配置问题 (3)2.2 状态反馈 (4)2.3 线性矩阵不等式LMI (6)2.3.1 线性矩阵不等式LMI基本变换引理 (7)2.3.2 LMI工具箱介绍 (8)2.4 本章小结 (10)3线性定常系统状态反馈区域极点配置算法研究 (11)3.1 精确极点配置 (11)3.1.1 问题描述 (11)3.1.2 算法步骤 (12)3.1.3 仿真分析 (12)3.2具有稳定裕度的区域极点配置 (15)3.2.1 问题描述 (16)3.2.2具有稳定裕度的状态反馈控制器设计 (16)3.2.3程序清单 (17)3.2.4仿真结果 (18)3.3具有圆域极点约束的状态反馈控制器设计 (21)3.3.1 问题描述 (21)3.3.2具有圆域极点约束的状态反馈控制器设计 (21)3.3.3 程序清单 (22)3.3.4仿真结果 (23)3.4 本章小结 (26)4 线性不确定系统状态反馈区域极点配置算法研究 (27)4.1 不确定性 (27)4.2线性不确定系统区域极点配置 (27)4.2.1 问题描述 (27)4.2.2 不确定系统区域极点约束的状态反馈控制器设计 (28)4.2.3 仿真分析 (30)4.3 本章小结 (32)结论 (33)致谢 (34)参考文献 (35)1 绪 论1.1 课题背景及意义在20世纪50年代蓬勃兴起的航天技术的推动下,1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。
状态反馈控制器的设计状态反馈控制器是一种常见的控制器设计方法,用于调节系统的动态响应和稳定性。
它通过测量系统的输出和状态,并将这些信息与期望输出进行比较,来计算出控制器的控制输入。
接下来,我将介绍状态反馈控制器的基本原理、设计步骤和两个常见的设计方法。
状态反馈控制器的基本原理是基于系统的状态反馈,即通过系统的状态变量来进行控制。
在状态反馈控制器的设计中,首先需要确定系统的状态方程或状态空间表达式。
状态方程描述了系统的状态变化关系,通常使用微分方程或差分方程表示。
状态空间表达式则是将系统的状态方程转换为矩阵形式,以便于计算和分析。
设计一个状态反馈控制器包括以下步骤:1.系统建模:首先需要建立系统的数学模型,确定系统的输入、输出和状态变量。
这可以通过物理建模、数学建模或实验数据分析等方法来完成。
系统的模型可以是连续时间模型,也可以是离散时间模型。
2.系统稳定性分析:通过分析系统的特征值或极点,判断系统的稳定性。
如果系统的特征值都位于单位圆内或实部小于零,则系统是稳定的。
3.设计目标确定:根据系统的性能要求和目标,确定设计的指标,例如系统的快速响应、稳定性、误差补偿等。
4.控制器设计:根据系统的状态方程和控制目标,使用控制理论和方法,设计控制器的增益矩阵。
常用的设计方法有极点配置法和最优控制方法。
5.系统闭环仿真:将设计好的控制器与系统模型相连,进行闭环仿真,检验系统在不同工况和干扰下的响应性能。
可以通过调整控制器的参数来优化系统的性能。
接下来,我将介绍两种常见的状态反馈控制器设计方法:极点配置法和最优控制方法。
1.极点配置法:该方法通过选择恰当的状态反馈增益矩阵,使系统的极点移动到预定位置。
首先需要确定期望的系统极点位置,然后使用反馈增益矩阵的公式进行计算和调整。
极点配置法的优点是设计简单,但对系统的模型和性能要求较高。
2.最优控制方法:该方法是基于最优控制理论,对系统的控制性能进行优化设计。
最优控制方法通常需要确定一个性能指标,例如系统的能量消耗、误差最小化等,然后使用最优化算法来计算最优的控制器增益矩阵。
线性系统极点配置问题张颖(控制学院 检测技术与自动化装置 2009010191)摘要: 极点配置是一类最为典型和最为简单的综合问题。
机点配置实质上是对经典控制理论综合方法的一个直接推广。
本文针对单输入连续时间线性时不变受控系统,基于状态反馈类型控制,系统讨论极点配置问题的综合理论和综合算法。
1. 问题的提出:状态反馈的极点配置问题状态反馈的极点配置问题:就是对给定的受控系统,确定状态反馈律u=-Kx+v, v 为参考输入即确定一个 的状态反馈增益矩阵K ,使所导出的状态反馈闭环系统的极点为{ },也就是成立 解决上述极点配置问题,需要解决两个问题: 1)建立可配置条件问题,即利用状态反馈而任意地配置其闭环极点所应遵循的条件。
2)建立相应的算法,即用以确定满足极点配置要求的状态反馈增益矩阵K的算法。
2.问题的解决: 〈一〉准备知识1. 循环矩阵定义:如果系统矩阵A 的特征多项式等同于其最小多项式,则称为循环矩阵。
2. 循环矩阵特性:1)A 为循环矩阵,当且仅当它的约当规范形中相应于每一个不同的特征值仅有一个特征块。
2)如果A 的所有特征值为两两相异,则对应于每一个特征值必仅有一个约当块,因此A 必定是循环的。
3)若A 为循环矩阵,则其循环性是指:必存在一个向量 b ,使向量组可张成一个 n 维空间,也即{A ,b}为能控。
4)若{A ,B}为能控,且A 为循环,则对几乎任意的实向量 p,单输入矩阵对 {A ,Bp}为能控。
5) 若A 不是循环的,但{A ,B}为能控,则对几乎任意的常阵K ,A-BK为循环。
〈二〉 极点可配置条件线性定常系统 可通过线性状态反馈任意地配置其全部极点的充分必要条件,是此系统为完全能控。
证:必要性:已知可配置极点,欲证{A ,B}为能控。
n p ⨯BuBK A +-=x x )( **2*1,,,nλλλ n i BK A i i ,,2,1,)(* ==-λλBu A +=x x利用反证法,假设{A ,B}不完全能控,则必可分解为:上式表明,状态反馈不能改变系统不能控部分的特征值,因此不可能任意地配置极点,与已知前提矛盾,故假设不成立。