中考数学总复习:切线的概念·判定·性质
- 格式:ppt
- 大小:121.00 KB
- 文档页数:10
切线的性质与判定一选择题:1.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()°°°°2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()3.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E 等于()°°°°4.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB 的位置关系是( )5.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB度数是( )A.80° B.110° C.120° D.140°6.已知如图, AB 是半圆 O 的直径,弦. AD 、 BC 相交于点 P ,那么等于∠ BPD 的()A.正弦 B.余弦 C.正切 D.以上都不对7.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE度数是()A.55° B.60° C.65° D.70°8.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A. B. C.3 D.29.如图,△ABC中AB=AC=5,BC=6,点P在边AB上,以P为圆心的⊙P分别与边AC、BC相切于点E、F,则⊙P 的半径PE的长为( )A. B.2 C. D.⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,若∠CPD=20°,则∠CAP等于()°°°°°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:12.如图,点A、B分别在x轴、y轴上(),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①; ②若4,OB =2,则△ABC的面积等于5; ③若,则点C的坐标是(2,),其中正确的结论有()13.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( )A.21 B.20 C.19 D.1814.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A. B. C. D.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值X围是()A.r≥1 B.1≤r≤C.1≤r≤D.1≤r≤416.如下图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.下面四个结论:①ED是⊙O的切线;②BC=2OE;③△BOD为等边三角形;④△EOD∽△CAD.正确的是()A.①② B.②④ C.①②④ D.①②③④17.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()B. C. D.18.如图,在平面直角坐标系中,直线经过、,的半径为2(为坐标原点),点是直线上的一动点,过点作的一条切线,为切点,则切线长最小值为( )A. C. D.19.如图,在△ABC中,AB=10,AC =8,BC=6,经过点C且与边相切的动圆与CA,CB分别相交于点P,Q,则线段PQ 长度的最小值是()A. B. C. D.20.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H,以O为圆心,OC为半径的圆弧交OA于D,若直线GH与弧CD所在的圆相切于矩形内一点F,则下列结论:①AG=CH;②GH=;③直线GH的函数关系式;④梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,⊙P的半径为.其中正确的有()A.1个B.2个C.3个D.4个二填空题:21.如图,点D为AC上一点,点O为AB上一点.AD=DO,以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF,若∠BAC=220,则∠EFG的大小为(度)22.如图,⊙O是以数轴原点O为圆心,半径为3的圆,与坐标轴的正半轴分别交于A、C两点,OB平分∠AOC,点P在数轴上运动,过点P且与OB平行的直线与⊙O有公共点,则线段OP的取值X围是.⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.24.如图,直线y=x﹣2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移动秒.25.如图,在△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值是.26.如图,点P在双曲线y=(x>0)上,⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF ⊥PE交x轴于点F,若OF-OE=8,则k的值是.27.如图,在正方形ABCD中,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ与半圆O相切;②;③∠ADQ=2∠CBP;④cos∠CDQ=.其中正确的是(请将正确结论的序号填在横线上).28.如图,扇形OAB的半径为4,∠AOB=90°,P是半径OB上一动点,Q是弧AB上的一动点.(1)当P是OB中点,且PQ∥OA时(如图1),弧AQ的长为;(2)将扇形OAB沿PQ对折,使折叠后的弧QB′恰好与半径OA相切于C点(如图2).若OP=3,则O到折痕PQ 的距离为.29.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.30.如图,正方形ABCD的边长为2,将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A 出发,沿图中所示方向按A→B→C→D→A滑动到点A为止,同时点F从点B出发,沿图中所示方向按B→C→D→A →B滑动到点B为止,那么在这个过程中,线段QF的中点M所经过路线围成的图形面积为.三简答题:31.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以O为圆心,OA为半径的⊙O经过点D.(1)求证:BC是⊙O的切线;(2)若BD=5,DC=3,求AC的长.32.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B (1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.33.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长34.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于E点,D为BC的中点.求证:DE与⊙O相切.35.如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC•GA;(3)在(2)的条件下,若tanD=,EG=,求⊙O的半径.36.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF∶OB=1∶3,⊙O的半径为3,求的值.37.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.38.如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r 的取值X围为.39.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.40.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC 于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.参考答案5.B6.B7.C.8.B.9.A【解答】解:连结CP,作AH⊥BC于H,如图,设⊙P的半径为r,∵AB=AC=5,∴BH=CH=BC=3,∴AH==4,∵以P为圆心的⊙P分别与边AC、BC相切于点E、F,∴PE⊥BC,PF⊥AC,∵S△ABC=S△PAC+S△PBC,∴BC×AH=BC×PE+AC×PF,即6×4=6r+5r,∴r=.故选A.13.C17.B解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.20.D.试题分析:①∵四边形OABC是矩形,∴OE=BE,BC∥OA,OA=BC,∴∠HBE=∠GOE,∵在△BHE和△OGE中,∠HBE=∠GOE,OE=BE,∠HEB=∠GEO,∴△BHE≌△OGE(ASA),∴BH=OG,∴AG=CH.④如图2,连接BG,∵在△OCH和△BAG中,CH=AG,∠HCO=∠GAB,OC=AB,∴△OCH≌△BAG(SAS),∴∠CHO=∠AGB.∵∠HCO=90°,∴HC切⊙O于C,HG切⊙O于F,∴OH平分∠CHF,∴∠CHO=∠FHO=∠BGA.∵△CHE≌△AGE,∴HE=GE.∵在△HOE和△GBE中,HE=GE,∠HEO=∠GEB,OE=BE,∴△HOE≌△GBE(SAS),∴∠OHE=∠BGE.∵∠CHO=∠FHO=∠BGA,∴∠BGA=∠BGE,即BG平分∠FGA.∵⊙P与HG、GA、AB都相切,∴圆心P必在BG上.过P做PN⊥GA,垂足为N,则△GPN∽△GBA,∴,设半径为r,则,解得r=.故选D.0 22.0<OP≤3 23. 3 cm. 24.2 25.26.1627.①③【解答】解:①如图1连接DO,OQ,在正方形ABCD中,AB∥CD,AB═CD,∵P是CD中点,O是AB中点,∴DP∥OB,DP═OB,∴四边形OBDP是平行四边形,∴OD∥BP,∴∠1=∠OBQ,∠2=∠3,又∵OQ=OB,∴∠3=∠OBQ,∴∠1=∠2,在△AOD和△QOD中,,∴△AOD≌△QOD,∴∠OQD=∠A=90°,∴DQ与半圆O相切,①正确;②如图2连接AQ,可得:∠AQB=90°,在正方形ABCD中,AB∥CD,∴∠ABQ=∠BPC,设正方形边长为x,则CP=x,由勾股定理可求:BP=,∴cos∠BPC=,cos∠ABQ=,∴=,又AB=x,可求,BQ=x,PQ=x,∴=,②不对;③如图3连接AQ,OQ,由①知,∠OQD=90°,又∠OAD=90°,可求∠ADQ+∠AOQ=180°,∵∠3+∠AOQ=180°,∴∠3=∠ADQ,由②知,∠1+∠4=90°,又∠4+∠CBP=90°,∴∠CBP=∠1,∵OA=OQ,∴∠1=∠2,又∵∠3=∠1+∠2,∴∠3=2∠CBP,∴∠ADQ=2∠CBP,故③正确;④如图4,过点Q作QH⊥CD,易证QH∥BC,设正方形边长为x,由②知:PQ=x,cos∠BPC=,可求:PH=x,HQ=x,∴DH=DP+PH=x,由勾股定理可求:DQ=x,∴cos∠CDQ==,故④不正确.综上所述:正确的有①③.28.(1)π;(2).【解答】解:(1)如图1,连接OQ,∵扇形OAB的半径为4且P是OB中点,∴OP=2,OQ=4,∵PQ∥OA,∴∠BPQ=∠AOB=90°,∴∠1=30°,∴∠2=∠1=30°,由弧AQ的长==π,故答案为:π;(2)如图2,找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,则OM=O′M,OO′⊥PQ,O′P=OP=3,点O′是所在圆的圆心,∴O′C=OB=4,∵折叠后的弧QB′恰好与半径OA相切于C点,∴O′C⊥AO,∴O′C∥OB,∴四边形OCO′B是矩形,在Rt△O′BP中,O′B==2,在Rt△OBO′K,OO′==2,∴OM=OO′=×2=,即O到折痕PQ的距离为,故答案为:.29.﹣330.4-π31.(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线.(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:,在Rt△AED和Rt△ACD中,,∴Rt△AED ≌ Rt△ACD∴AC=AE,设AC=x,则AE=x,AB=x+4,在Rt△ABC中,即,解得x=6,∴AC=6.32.1)证明:连接OC,如图所示:∵AB是⊙的直径,∴∠ACB=90°,即∠1+∠2=90°,∵OB=OC,∴∠2=∠B,又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切线;(2)解:∵PC是⊙O的切线,∴PC2=PA•PB,∴62=4×PB,解得:PB=9,∴AB=PB﹣PA=9﹣4=5.33.1)证明略(3分)(2)BC=234【解答】解:连接OD,OE,∵O,D分别是AB,BC中点,∴OD∥AC,∴∠2=∠A,∠3=∠1,∵OA=OE,∴∠A=∠3,∴∠1=∠2,在△OED和△OBD中,,∴△OED≌△OBD,∴∠OED=∠ABC=90°,∴DE⊥OE,∵点D在⊙O上,∴DE与⊙O相切.35.(1)证明:如图,连接OB.∵AB为⊙O切线,∴OB⊥AB,∴∠ABG+∠OBG=90°,∵点E为的中点,∴OE⊥CD,∴∠OEG+∠FGE=90°,又∵OB=OE,∴∠OBG=∠OEG,∴∠ABG=∠FGE,∵∠BGA=∠FGE,∴∠ABG=∠BGA,∴AB=AG;(2)证明:连接BC,∵DG=DE,∴∠DGE=∠DEG,由(1)得∠ABG=∠BGA,又∵∠BGA=∠DGE,∴∠A=∠D,∵∠GBC=∠D,∴∠GBC=∠A,∵∠BGC=∠AGB,∴△GBC∽△GAB,∴,∴GB2=GC•GA;(3)连接OD,在Rt△DEF中,tanD=,∴设EF=3x,则DF=4x,由勾股定理得DE=5x,∵DG=DE,∴DG=5x,∴GF=DG﹣DF=x.在Rt△EFG中,由勾股定理得GF2+EF2=EG2,即(3x)2+x2=()2,解得x=1,设⊙O半径为r,在Rt△ODF中,OD=r,OF=r﹣3x=r﹣3,DF=4x=4,由勾股定理得:OF2+FD2=OD2,即(r﹣3)2+(4)2=r2,解得r=,∴⊙O的半径为.36.解:(1)连接OD,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,而OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线(2)∵OF∶OB=1∶3,∴OF=1,BF=2,设BE=x,则DE=EF=x+2,∵AB为直径,∴∠ADB=90°,∴∠ADO=∠BDE,而∠ADO=∠A,∴∠BDE=∠A,又∠BED=∠DEA,∴△EBD∽△EDA,∴==,即==,∴x=2,∴==37.(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴∠ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD=,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径为3.38.(1)证明见解析;(2),;(3)<r<.(1)∵∠CBF=∠CFB,∴CB=CF,又∵AC=CF,∴CB=AF,∴△ABF是直角三角形,∴∠ABF=90°,∴直线BF是⊙O的切线;(2)连接DO,EO,∵点D,点E分别是弧AB的三等分点,∴∠AOD=60°,又∵OA=OD,∴△AOD是等边三角形,∴∠OAD=60°,又∵∠ABF=90°,AD=5,∴AB=10,∴BF=;扇形DOE的面积==;(3)连接OC,则圆心距OC=,由题意得,<r<,故答案为:<r<.39.(1)证明见试题解析;(2)证明见试题解析;(3).(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.40.(1)证明见试题解析;(2).试题解析:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE==AE,在RT△BEC中,tanC==.。
切线的判定与性质(复习)教案一、教学内容:中考数学复习——切线的判定与性质二、教学目标:1、知识技能:(1)掌握切线的判定定理,能判断一条直线是否为圆的切线;(2)掌握切线的性质定理,能利用切线的性质定理解决相关问题。
2、能力技能(1)通过观察、比较切线的判定方法,发展学生的推理与归纳能力;(2)学生通过运用切线的性质解决问题的过程,逐渐形成用数学语言表述问题的能力。
(3)通过学习添加辅助线,提高思维能力。
3.情感、态度与价值观经历复习圆的切线的判定与性质的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累学习经验,获得成功的体验;利用数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、重、难点:重点:掌握切线的判定定理和性质定理难点:切线的判定定理和性质定理应用四、教学过程(一)知识简要归纳——温故而知新1.经过半径的 并且 的直线是圆的切线。
如图所示,它的符号语言表示为:2.判断一条直线是否为圆的切线,现已有 种方法:一是看直线与圆公共点的个数:( 与圆有 公共点的直线是圆的切线)二看圆心到直线的距离d与圆的半径之间的关系;(当d r 时,直线是圆的切线) 三是利用 。
3.认真观察下列图形,看看下列说法是否正确(1).与圆有公共点的直线是圆的切线. ( )(2).和圆心距离等于圆的半径的直线是圆的切线; ( )(3).垂直于圆的半径的直线是圆的切线; ( )(4)4.切线的性质定理:圆的切线 的半径。
如图所示,它的符号语言表示为:(二)、合作探究图(1) 图(2) 图(3) 图(4) 图(5)例1直线A B经过⊙O上的点C,并且O A=O B,C A=C B,求证:直线A B是⊙O的切线.归纳小结:象例1 这种证明方法可简记为:有“切点”,连半径,证垂直。
例2:已知:O为∠B A C平分线上一点,O D⊥A B于D,以O为圆心,O D为半径作⊙O。
求证:⊙O与A C相切。
初中数学切线性质和切线长知识点归纳切线性质和切线长切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理圆的切线垂直于经过切点的半径推论1 经过圆心且垂直于切线的直线必经过切点推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角同学们,看了这些学问点的介绍,很熟识了吧,要准时复习哦。
这样才能记得更好的。
中考物理学问归纳:压强和浮力1.压力:垂直作用在物体外表上的力叫压力。
2.压强:物体单位面积上受到的压力叫压强。
3.压强公式:P=F/S ,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F单位是:牛;受力面积S单位是:米24.增大压强方法 :(1)S不变,F↑;(2)F不变,S↓ (3) 同时把F↑,S↓。
而减小压强方法则相反。
5.液体压强产生的缘由:是由于液体受到重力。
6.液体压强特点:(1)液体对容器底和壁都有压强,(2)液体内部向各个方向都有压强;(3)液体的压强随深度增加而增大,在同一深度,液体向各个方向的压强相等;(4)不同液体的压强还跟密度有关系。
7.液体压强计算公式:,〔ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。
〕8.依据液体压强公式:可得,液体的压强与液体的密度和深度有关,而与液体的体积和质量无关。
9.证明大气压强存在的试验是马德堡半球试验。
10.大气压强产生的缘由:空气受到重力作用而产生的,大气压强随高度的增大而减小。
11.测定大气压强值的试验是:托里拆利试验。
12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计〔金属盒气压计〕。
13.标准大气压:把等于760毫米水银柱的大气压。
1标准大气压=760毫米汞柱=1.013×105帕=10.34米水柱。
14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时上升。
注意请用页面视图显示,才可以看到完整试题! 5.切线的判定与性质第1题. 已知:如图,AB 是⊙O 的直径,AD 是弦,OC 垂直AD 于F 交⊙O 于E ,连结DE 、BE ,且∠C =∠BED .(1)求证:AC 是⊙O 的切线; (2)若OA =10,AD =16,求AC 的长.答案:(1)证明:∵∠BED =∠BAD ,∠C =∠BED∴∠BAD =∠C ∵OC ⊥AD 于点F∴∠BAD +∠AOC =90o ∴∠C +∠AOC =90o ∴∠OAC =90o ∴OA ⊥AC∴AC 是⊙O 的切线. (2)∵OC ⊥AD 于点F ,∴AF =21AD =8 在Rt △OAF 中,OF=22AF OA -=6 ∵∠AOF =∠AOC ,∠OAF =∠C ∴△OAF ∽△OCA ∴OAOFOC OA = 即 OC =35061002==OF OA 在Rt △OAC 中,AC =34022=-OAOC .第2题. 如图,PA 为O ⊙的切线,A 为切点.直线PO 与O ⊙交于B C 、两点,30P ∠=°,连接AO AB AC 、、.求证:ACB APO △≌△.C ED A F O B AOBPC答案:证明:PA 为O 的切线,90PAO ∴∠=°. 又30P ∠= °,60AOP ∴∠=°,1302C AOP ∴∠=∠=°, C P ∴∠=∠, AC AP ∴=.又BC 为O 直径,90CAB PAO ∴∠=∠=°, ACB APO ∴△≌△(ASA ).第3题. 已知,如图,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.答案:解:∵DE 是O 的直径∴90DBE =︒∠ ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ∵AC 是O 的切线 ∴90CAO =︒∠又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠第4题. 如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5. 求(1)O ⊙的半径; (2)sin BAC ∠的值.EC答案:解:(1)连接PO OB ,.设PO 交AB 于D . PA PB ,是O ⊙的切线. ∴90PAO PBO ∠=∠=°,PA PB =,APO BPO ∠=∠. ∴3AD BD ==,PO AB ⊥.∴4PD ==.在Rt PAD △和Rt POA △中,tan AD AOAPD PD PA==∠. ∴·351544AD PA AO PD ⨯===,即O ⊙的半径为154. (2)在Rt AOD △中,94DO ===.∴934sin 1554OD BAC AO ∠===.第5题. 如图,MP 切O ⊙于点M ,直线PO 交O ⊙于点A 、B ,弦AC MP ∥,求证:MO BC ∥.答案:证:∵AB 是⊙O 的直径,∴∠ACB =90° ∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB ∴∠MOP =∠BCP 第16题图从而,MO ∥BC .第6题. 如图,PA 是O ⊙的切线,切点为A ,36APO ∠=°,则AOP ∠的度数为()A .54°B .64°C .44°D .36°答案:A第7题. 如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点,ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线于E 点. (1)求证:AE DE ⊥;(2)计算:AC AF ·的值.答案:(1)证明:在Rt ABC △中,9030BAC C D ∠=∠=°,°,为BC 的中点, 60ABD AD BD DC ∴∠===°,.ABD ∴△为等边三角形.O ∴点为ABD △的中心(内心,外心,垂心三心合一).∴连接OA ,OB ,30BAO OAD ∠=∠=°.60OAC ∴∠=°.又AE 为O ⊙的切线,90OA AE OAE ∴⊥∠=,°. 30EAF AE BC ∴∠=∴.∥.又四边形ABDF 内接于圆O .90AEF FDC ∴∠=∠=°.即AE DE ⊥.(2)解:由(1)知,ABD △为等边三角形.60ADB ∴∠=°.30ADF C FAD DAC ∴∠=∠=∠=∠°,.ADF ACD ∴△∽△,则AD AFAC AD =.2AD AC AF ∴=·.又16362AD BC AC AF ==∴=.·.O P图90FDC BAC ∴∠=∠=°.第8题. 如图,在ABC △中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于点G ,交AB 于点F ,FB 恰为O ⊙的直径. (1)求证:AE 与O ⊙相切;(2)当14cos 3BC C ==,时,求O ⊙的半径.答案:(1)证明:连结OM ,则OM OB =. ∴12∠=∠.∵BM 平分ABC ∠. ∴13∠=∠. ∴23∠=∠. ∴OM BC ∥.∴AMO AEB ∠=∠.在ABC △中,AB AC =,AE 是角平分线, ∴AE BC ⊥. ∴90AEB ∠=°. ∴90AMO ∠=°. ∴OM AE ⊥. ∴AE 与O ⊙相切.(2)解:在ABC △中,AB AC =,AE 是角平分线,∴12BE BC ABC C =∠=∠,. ∵14cos 3BC C ==,, ∴11cos 3BE ABC =∠=,. 在ABE △中,90AEB ∠=°,∴6cos BEAB ABC==∠. 设O ⊙的半径为r ,则6AO r =-. ∵OM BC ∥,∴AOM ABE △∽△. ∴OM AOBE AB =. ∴626r r -=. 解得32r =.B∴O ⊙的半径为32.第9题. 如图,已知点E 在△ABC 的边AB 上,以AE 为直径的⊙O 与BC 相切于点D ,且AD 平分∠BAC . 求证:AC ⊥BC .答案:证明:连接OD∵OA = OD ,∴∠1 =∠3;∵AD 平分∠BAC ,∴∠1 =∠2; ∴∠2 =∠3; ∴OD ∥AC , ∵BC 是⊙O 的切线 ∴OD ⊥BC ∴AC ⊥BC .第10题. 如图,O ⊙是Rt ABC △的外接圆,点O 在AB 上,BD AB ⊥,点B 是垂足,OD AC ∥,连接CD . 求证:CD 是O ⊙的切线.答案:证明:连接CO OD AC COD ACO CAO DOB ∴∠=∠∠=∠ ∥.,ACO CAO COD DOB ∠=∠∴∠=∠又OD OD OC OB ==,. COD BOD ∴△≌△D BA O C90OCD OBD ∴∠=∠=°OC CD ∴⊥,即CD 是O ⊙的切线第11题. 如右图,已知△ABC 中,AB=AC ,DE ⊥AC 于点E ,DE 与半⊙O 相切于点D . 求证:△ABC 是等边三角形.答案:证明:连结OD ∵DE 切半⊙O 于D∴DE OD ⊥ ∴︒=∠90ODE ∵AC DE ⊥ ∴︒=∠90DEA∴=∠ODE DEA ∠∴OD ∥AC ∴C DOB ∠=∠∵AC AB = ∴DOB C B ∠=∠=∠ ∴OD BD =∵OB OD = ∴BOD △是等边三角形 ∴︒=∠60B∵AC AB = ∴ABC △是等边三角形第12题. 如图,直线AB 与⊙O 相切于点A ,⊙O的半径为2,若∠OBA = 30°,则OB 的长为( ) A . B .4C .D .2答案:BBBO第13题. 如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD 是否是⊙O 的切线,并说明理由;(2)若CD = 33 ,求BC 的长.答案:(1)CD 是⊙O 的切线. 证明:连接OD . ∵∠ADE =60°,∠C =30°,∴∠A =30°. ∵OA=OD ,∴∠ODA=∠A =30°. ∴∠ODE=∠ODA+∠ADE =30°+60°=90°,∴OD ⊥CD . ∴CD 是⊙O 的切线.(2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33. ∵tan C =CDOD, ∴OD=CD ·tan C =33×33=3. ∴OC=2OD =6.∵OB=OD =3,∴BC=OC -OB =6-3=3.第14题. 如图 ,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.图10C B答案:(1)①65②法一:在矩形ABCD 中,AD BC =,ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△,得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠, OFA EBA ∠=∠, ∴OF EB ∥, ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线(法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△, ∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+=.∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切.法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=,∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分)第15题. 已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明); (2)A ∠=30°,CDO ⊙的半径r .答案:(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△,BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等 (每写出一个正确结论得1分,满分4分.) (2)解:AB 是O ⊙的直径90ADB ∴∠=° 又30E ∠= ° 30A ∴∠=°12BD AB r ∴== 又BC 是O ⊙的切线 90CBA ∴∠=° 60C ∴∠=︒在Rt BCD △中,3CD =tan 602BD rDC ∴==° 2r ∴=第16题. 如图,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC .(1)求证:ABC POA △∽△; (2)若2OB =,72OP =,求BC 的长.答案:(1)证明:BC OP ∥ AOP B ∴∠=∠ AB 是直径 90C ∴∠=°PA 是O ⊙的切线,切点为A90OAP ∴∠=° C OAP ∠=∠ABC POA ∴△∽△(2)ABC POA △∽△ BC AB OA PO∴= 722OB PO == ,24OA AB ∴==, 4722BC ∴=716827BC BC ∴==,第17题. 如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则=∠P __ ___度.答案:60第18题. 如图,AB 是O ⊙的直径,10AB DC =,切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E . (1)求证:AC 平分BAD ∠;(4分)(2)若3sin 5BEC ∠=,求DC 的长.(4分)PBA答案:(1)证明:连结OC由DC 是切线得OC DC ⊥ 又AD DC ⊥ AD OC ∥∴DAC ACO ∠=∠又由OA OC =得BAC ACO ∠=∠D A C B A C ∴∠=∠ 即AC 平分BAD ∠(2)解:方法一:AB 为直径∴90ACB ∠=°又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··8AC ∴==又DAC BAC BEC ∠=∠=∠ 且AD DC ⊥24sin sin 5CD AC DAC AC BEC ∴=∠=∠=·· 方法一:AB 为直径 90ACB ∴∠=°又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··8AC ∴==又90DAC BAC D ACB ∠=∠∠=∠= ,° ADC ACB ∴△∽△DC AC CB AB =,即8610DC = 解得245DC =第19题. 如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC 交圆O 于点D ,连结AD ,若45ABC ∠=°,则下列结论正确的是( )A .12AD BC = B .12AD AC = C .AC AB > D .AD DC >BA答案:A第20题. 如图,在直角梯形ABCD 中,AB CD ∥,90B ∠= ,AB =AD ,∠BAD 的平分线交BC 于E ,连接DE .(1)说明点D 在△ABE 的外接圆上;(2)若∠AED =∠CED ,试判断直线CD 与△ABE 外接圆的位置关系,并说明理由.答案:(1)证法一:∵∠B =90°,∴AE 是△ABE 外接圆的直径. 取AE 的中点O ,则O 为圆心,连接OB 、OD . ∵AB =AD ,∠BAO =∠DAO ,AO =AO , ∴△AOB ≌△AOD . ∴OD =OB .∴点D 在△ABE 的外接圆上. 证法二:∵∠B =90°,∴AE 是△ABE 外接圆的直径. ∵AB =AD ,∠BAE =∠DAE ,AE =AE , ∴△ABE ≌△ADE . ∴∠ADE =∠B =90°.取AE 的中点O , 则O 为圆心,连接OD ,则OD =12AE .∴点D 在△ABE 的外接圆上.(2)证法一:直线CD 与△ABE 的外接圆相切.理由:∵AB ∥CD , ∠B =90°. ∴∠C =90°. ∴∠CED +∠CDE =90°. 又∵OE =OD , ∴∠ODE =∠OED . 又∠AED =∠CED , ∴∠ODE =∠DEC .∴ODC ∠=∠CDE +∠ODE =∠CDE +∠CED =90°. ∴CD 与△ABE 的外接圆相切. 证法二: 直线CD 与△ABE 的外接圆相切. 理由:∵AB ∥CD , ∠B =90°. ∴∠C =90°. 又∵OE =OD , ∴∠ODE =∠OED . 又∠AED =∠CED ,∴∠ODE =∠DEC . ∴OD ∥BC .∴90ODC ∠= . ∴CD 与△ABE 的外接圆相切.第21题. 如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( )AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A .1个 B .2个 C .3个 D .4个答案:D第22题. 如图,O ⊙与AB 相切于点A ,BO 与O ⊙交于点C ,26B ∠=°,则OCA ∠= 度.答案:58第23题. 如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°,B(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求 BC 的长.(结果保留π)答案:(1)证明:连结OC , 30AC CD D =∠= ,°, 30A D ∴∠=∠=° OA OC = ,230A ∴∠=∠=°, 160∴∠=°, 90OCD ∴∠=°.CD ∴是O ⊙的切线. (2)160∠= °,BC∴的长=π60π3π180180n R ⨯⨯==. 答: BC的长为π第24题. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,∠C =20°. 求∠CDA 的大小.答案:解:∵连接OD∵CD 与⊙O 相切于点D ,∴∠CDO =90° ∵∠C =20°,∴∠COD =90°-20°=70° ∵OD =OA ,∴∠A =∠ADO又∵∠ADO =∠A =21∠COD =35° ∴∠CDA =∠CDO +∠ADO =125°第25题. 如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.答案:3第26题. 如图,两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .答案:60°第27题. 如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.答案:直线DE 与半圆O 相切. 证明:法一:连接OD ,作OF CD ⊥于点F .∵6CD =,∴132DF CD ==. ∵1025533OE OB BE =+=+=. ∴35325553DF OD OD OE ===,,A∴DF ODOD OE=. ∵CD AB ∥,∴CDO DOE ∠=∠. ∴DOF OED △∽△, ∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切.法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G .∵6CD =,∴132DF CD ==.在Rt ODF △中,4OF = ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, 在Rt DGE △中,203DE ===.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ∴CD DE ⊥.∴直线DE 与半圆O 相切.第28题. 如图,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为 .答案:3πP第29题. 如图,在Rt △ABC 中,∠C=90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E ,连结DE 、OE .(1)求证:DE 是⊙O 的切线;(2)如果⊙O 的半径是23cm ,ED=2cm ,求AB 的长.答案:证明:(1)连结OD .由O 、E 分别是BC 、AC 中点得OE ∥AB . ∴∠1=∠2,∠B =∠3,又OB=OD . ∴∠2=∠3. 而OD=OC ,OE=OE ∴△OCE ≌△ODE . ∴∠OCE=∠ODE .又∠C=90°,故∠ODE =90°. ∴DE 是⊙O 的切线. (2)在Rt △ODE 中,由32OD =,DE =2 得52OE =又∵O 、E 分别是CB 、CA 的中点∴AB =2·5252OE =⨯=∴所求AB 的长是5cm .第30题. 如图,︒=∠30MAB ,P 为AB上的点,且BADOCEB6=AP ,圆P 与AM 相切,则圆P 的半径为 .答案:3第31题. 如图,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).答案:解:(1)ACO BCO APC BPC PAO PBO △≌△,△≌△,△≌△ (2)PA 、PB 为O ⊙的切线PO ∴平分90APB PA PB PAO ∠=∠=,,° PO AB ∴⊥∴由圆的对称性可知:AOD S S =阴影扇形在Rt PAO △中,11603022APO APB ∠=∠=⨯=︒°90903060AOP APO ∴∠=-∠=-︒=︒°°260π1360AODS S ⨯⨯∴==阴影扇形π6=第32题. 已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.答案:解:(1)∵∠ABC =90°,∴OB ⊥BC . ∵OB 是⊙O 的半径, ∴CB 为⊙O 的切线. 又∵CD 切⊙O 于点D , ∴BC =CD ;(2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. 又∵∠ABC =90°, ∴∠ABD +∠CBD =90°.由(1)得BC =CD ,∴∠CDB =∠CBD . ∴∠ADE =∠ABD ;(3)由(2)得,∠ADE =∠ABD ,∠A =∠A .∴△ADE ∽△ABD . ∴AD AB =AEAD. ∴21BE+=12,∴BE =3, ∴所求⊙O 的直径长为3.第33题. 如图,PA 是O ⊙的切线,切点为30A PA APO =∠=,°,则O ⊙的半径长为 .∙ABCD EO∙ABCD EO答案:2第34题. 如图,射线PQ 是O ⊙相切于点A ,射线PO 与O ⊙相交于B 、C 两点,连接AB ,若12PB BC :=:上,则PAB ∠的度数等 于( )A .26°B .30°C .32°D .45°答案:B第35题. 在平面直角坐标系中,已知(40)A -,,(10)B ,,且以AB 为直径的圆交y 轴的正半轴于点(02)C ,,过点C 作圆的切线交x 轴于点D . (1)求过A B C ,,三点的抛物线的解析式(2)求点D 的坐标(3)设平行于x 轴的直线交抛物线于E F ,两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由?图4答案:解:(1)令二次函数2y ax bx c =++,则164002a b c a b c c -+=⎧⎪++=⎨⎪=⎩12322a b c ⎧=-⎪⎪⎪∴=-⎨⎪=⎪⎪⎩∴过A B C ,,三点的抛物线的解析式为213222y x x =--+.(2)以AB 为直径的圆圆心坐标为302O ⎛⎫' ⎪⎝⎭,52O C '∴=32O O '= CD 为圆O '切线 O C C D '∴⊥ 90O CD DCO '∴∠+∠=°90CO O O CO ''∠+∠=° C OO D C O '∴∠=∠ O CO CDO '∴△∽△ //O O OC OC OD '= 3/22/2OD = 83OD ∴= D ∴坐标为803⎛⎫ ⎪⎝⎭,(3)存在抛物线对称轴为32X =-设满足条件的圆的半径为r ,则E 的坐标为3()2r r -+,或3()2F r r --, 而E 点在抛物线213222y x x =--+上 21333()()22222r r r ∴=--+--++112r ∴=-+212r =-- 故在以EF 为直径的圆,恰好与x轴相切,该圆的半径为1-,1+.第36题. 已知:如图,AB 为O ⊙的直径,AB AC =,O ⊙交BC 于D ,DE AC ⊥于E . (1)请判断DE 与O ⊙的位置关系,并证明; (2)连结AD ,若O ⊙的半径为52,3AD =,求DE 的长.答案:解:(1)DE 与⊙O 相切. 证明:连结OD .∵OB =OD ∴∠B =∠1∵AB =AC ∴∠B =∠C ∴∠C =∠1∴OD ∥AC (同位角相等,两直线平行) ∵DE ⊥AC ∴∠DEC =90°∴∠ODE =∠DEC =90°(两直线平行,内错角相等)∴OD ⊥DE ∵OD 为⊙O 半径∴DE 是⊙O 的切线(过半径外端且垂直于半径的直线是圆的切线)(2)∵AB 为⊙O 直径∴∠ADB =90° ∴在Rt △BDA 中,∠ADB =90°∴BD =4∵AB =AC ∴BD =CD =4∵DE ⊥AC ∴S △ADC =AD CD ∙21 S △ADC =DE AC ∙21∴AD CD ∙21=DE AC ∙21∴DE ⨯=⨯534 ∴DE =512第37题. 如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P .(1)求证:AP 是O ⊙的切线;(2)若O ⊙的半径58R BC ==,,求线段AP 的长.答案:解:(1)证明:过点A 作AE BC ⊥,交BC 于点E . AB AC =,AE ∴平分BC . ∴点O 在AE 上. 又AP BC ∥, AE AP ∴⊥.AP ∴为O ⊙的切线. (2)142BE BC == ,3OE ∴=.又AOP BOE ∠=∠ , OBE OPA ∴△∽△.BE OE AP OA∴=. 即435AP =. 203AP ∴=.第38题. 已知,如图,O ⊙的直径AB 与弦CD 相交于E , BCBD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=,求线段AD 、CD 的长.答案:解:(1) 直径AB 平分 CD, ∴AB CD ⊥.BF 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥. CD BF ∴∥. (2)连结BD ,AB 是O ⊙的直径, 90ADB ∴∠=°, 在Rt ADB △中,3cos cos 4A C ∠=∠=,428AB =⨯=. 3cos 864AD AB A ∴=∠=⨯= .AB CD ⊥于E , 在Rt AED △3cos cos 4A C ∠=∠=,sin A ∠=.sin 6DE AD A ∴=∠== 直径AB 平分 CD ,2CD DE ∴==.第39题. 如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是 AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.答案:解:(1)OA OC A ACO =∴∠=∠ ,, 又22COB A COB PCB ∠=∠∠=∠ ,, A ACO PCB ∴∠=∠=∠. 又AB 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥, 而OC 是O ⊙的半径, ∴PC 是O ⊙的切线.(2)AC PC A P =∴∠=∠ ,, A ACO PCB P ∴∠=∠=∠=∠,O N B PCAMO N B PCAM又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠ ,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. (3)连接MA MB ,,点M 是AB 的中点, AM BM ∴=,ACM BCM ∴∠=∠, 而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,2BM MN MC ∴= , 又AB 是O ⊙的直径, AM BM=, 90AMB AM BM ∴∠==°,.4AB BM =∴= ,28MN MC BM ∴== .第40题. 如图,等腰OAB △中,OB OA =,以点O 为圆心作圆与底边AB 相切于点C .求证:BC AC =.答案:证明:∵AB 切⊙O 于点C ,∴AB OC ⊥. ∵OB OA =, ∴BC AC =.(若用三角形全等、勾股定理、三角函数等知识证明的按相应步骤给分.)第41题. 如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( )AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A .1个 B .2个 C .3个 D .4个B答案:D第42题. 如图,AB 与O ⊙相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .答案:28°第43题. 如图,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥于点N .(1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.答案:(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线. (2)连接AM .∵AB 为直径,点M 在O ⊙上,∴90AMB ∠=°. ∵120AB AC BAC =∠=,°,∴30B C ∠=∠=°,∴60AOM ∠=°. 又∵在Rt AMC △中,MN AC ⊥于点N ,∴30AMN ∠=°.1sin sin 30sin 302AN AM AMN AC =∠==°°,cos sin 30cos302MN AM AMN AC =∠==°°,C∴()28ANMOAN OM MN S +==梯形,260π1π3606OAM S == 扇形,∴4π24S =阴影.第44题. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径;(2)求切线CD 的长答案:解:(1)连接OD , 在O ⊙中,直径AB ⊥弦DF 于点E ,122DE DF ∴==.在Rt ODE △中,1OE =,2DE =,OD ∴cm ). (2)CD 切O ⊙于点D ,OD CD ∴⊥于点D .在OED △与ODC △中,90OED ODC ∠=∠=°,EOD DOC ∠=∠. ∴OED ODC △∽△. 则OE ED OD DC =2DC =.CD ∴=cm ).第45题. 如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连结DB ,且AD=DB . (1)求证:DB 为⊙O 的切线.(2)若AD=1,PB=BO ,求弦AC 的长.ACD FO E B 图答案:(1)证明: 连结OD∵ P A 为⊙O 切线 ∴ ∠OAD = 90°∵ OA=OB ,DA=DB ,DO=DO , ∴ΔOAD ≌ΔOBD ∴ ∠OBD =∠OAD = 90°, ∴P A 为⊙O 的切线 (2)解:在RtΔOAP 中, ∵ PB =OB =OA ∴ ∠OP A =30° ∴ ∠POA =60°=2∠C , ∴PD =2BD =2DA =2 ∴ ∠OP A =∠C =30° ∴ AC =AP =3第46题. 如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.答案:证明:(1)连接OD OE BD 、、.AB 是O ⊙的直径,90CDB ADB ∴∠=∠=°, E 点是BC 的中点,DE CE BE ∴==. OD OB OE OE ODE OBE ==∴ ,,△≌△. 90ODE OBE ∴∠=∠=∴°,直线DE 是O ⊙的切线. (2)作OH AC ⊥于点H ,由(1)知,BD AC ⊥,EC EB =.OA OB OE AC =∴ ,∥,且12OE AC =. CDF OEF ∴∠=∠,DCF EOF ∠=∠.CF OF = ,DCF EOF ∴△≌△,DC OE AD ∴==. 45BA BC A ∴=∴∠=,°. OH AD OH AH DH ∴== ⊥,.13tan 3OH CH OH ACO CH ∴=∴∠==,.CEB A OF D C EBAOF D H第47题. 如图,O ⊙是Rt △ABC 的外接圆,∠ABC =90°,点P 是圆外一点,P A 切O ⊙于点A ,且P A=PB .(1)求证:PB 是O ⊙的切线;(2)已知P ABC =1,求O ⊙的半径.答案:解:(1)证明:连接OBOA OB OAB OBA =∴∠=∠ ,. PA PB PAB PBA =∴∠=∠ ,.OAB PAB OBA PBA ∴∠+∠=∠+∠. 即PBO ∠.又PA 是O ⊙的切线,9090P A O P B O ∴∠=∴∠=°,°, OB PB ∴⊥.又OB 是O ⊙的半径,PB ∴是O ⊙的切线.说明:还可连接OB 、OP ,利用OAP OBP △≌△来证明OB PB ⊥.(2)解:连接OP ,交AB 于点D .PA PB =∴ ,点P 在线段AB 的垂直平分线上. OA OB =∴ ,点O 在线段AB 的垂直平分线上. OP ∴垂直平分线段AB . 90PAO PDA ∴∠=∠=°又APO DPA APO DPA ∠=∠∴ ,△∽△.2AP POAP PO DP DP PA∴=∴=,·. ()21122OD BC PO PO OD AP ==∴-= 又,.即2212PO PO -=,解得2PO =.在Rt APO △中,1OA ==,即O ⊙的半径为1.(图)(图)P第48题. 如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径;(2)求图中阴影部分的面积.答案: (1)连结OC ,则 OC AB ⊥.∵OA OB =,∴1122AC BC AB ===⨯= 在Rt AOC △中,3OC ===. ∴ ⊙O 的半径为3.(2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. 阴影部分的面积为Rt Δ=OBC OCD S S S -阴影扇形 =12OC CB ⋅-3π2-3π2.C O A B D。
中考数学一轮复习几何部分专题21:切线的判定与性质必考知识点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
必考例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线; (2)EM =FM 。
分析:(1)由于AC 为直径,可考虑连结EC ,构造直角三角形来解题,要证BC 是⊙O 的切线,证到∠1+∠3=900即可;(2)可证到EF ∥BC ,考虑用比例线段证线段相等。
证明:(1)连结EC ,∵DE =CD ,∴∠1=∠2 ∵DE 切⊙O 于E ,∴∠2=∠BAC ∵AC 为直径,∴∠BAC +∠3=900∴∠1+∠3=900,故BC 是⊙O 的切线。
(2)∵∠1+∠3=900,∴BC ⊥AC 又∵EF ⊥AC ,∴EF ∥BC ∴CDMFAD AM BD EM == ∵BD =CD ,∴EM =FM【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。
求证:AC 是⊙O 的切线。
分析:由于⊙O 与AC 有无公共点未知,因此我们从圆心O 向AC 作垂线段OE ,证OE 就是⊙O 的半径即可。
证明:连结OD 、OA ,作OE ⊥AC 于E∵AB =AC ,OB =OC ,∴AO 是∠BAC 的平分线 ∵AB 是⊙O 的切线,∴OD ⊥AB 又∵OE ⊥AC ,∴OE =OD∴AC 是⊙O 的切线。
【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。
(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。
中考数学专题复习:与圆的切线有关的线段计算斗门区第四中学卢燕英教学目标:1、掌握圆的切线证明的技巧.2、会选择适当的作辅助线的方法.3、学会计算与圆的切线有关的线段.教学重点:1、圆的切线的证明 2、与圆的切线有关的线段的计算.教学难点:灵活运用勾股定理、相似三角形对应边成比例、三角函数等建立方程进行有关线段的计算.教学方法:启发引导与归纳讨论相结合.教学过程:一、复习:1.切线的性质定理:圆的切线垂直于经过切点的半径.(解决与圆的切线有关题目)解题技巧是:圆心与切点的连线是常用的辅助线.2.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆切线.证圆的切线技巧:(1)如果直线与圆有交点,连接圆心与交点的半径,证明直线与该半径垂直,即“有交点,连半径,证垂直”.(2)如果直线与圆没有明确的交点,则过圆心作该直线的垂线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.二、运用技巧类型一:“有交点,连半径,证垂直”.【难点在于如何证明两线垂直】1.如图,AB=AC,AB为⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切.【说明】:此题可以引导学生通过证明平行来证明垂直,也可通过证明两角互余,来证明垂直,解题中要注意知识的综合运用。
(还有的题目也可证明三角形全等来证明垂直,这里就没去举例)类型二:“无交点,作垂直,证半径”.【难点在于作出的垂线段,如何证明该垂线段等于半径】2.如图,已知OC平分∠AOB,D是OC上任一点,⊙D与OA相切于点E,求证:OB与⊙D相切.小结:切线证明的步骤及方法:①审题;②根据题意选择适当的添辅助线方法;③证垂直或证半径.三、实战中考例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.变式训练:如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.A B【解题的关键】构造思想——运用相似三角形对应边成比例,或三角函数边角的关系、勾股定理等找出隐藏的线段之间的数量关系,建立数学模型,利用方程的思想,设出未知数表示关键的线段,再运用线段之间的数量关系建立方程来解决问题。
考纲要求:1.掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明..2.掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明..基础知识回顾:1.切线一般地,当直线与圆有唯一公共点时,叫直线与圆相切,其中的直线叫做圆的切线,唯一的公共点叫切点.(1)切线与圆只有一个公共点.2.切线(2)切线到圆心的距离等于圆的半径.的性质(3)切线垂直于经过切点的半径.(1)与圆只有一个公共点的直线是圆的切线(定义法).3.切线(2)到圆心的距离等于半径的直线是圆的切线.的判定(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.应用举例:招数一、利用切线进行证明和计算。
【例1】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.【答案】(1)证明见解析;(2)10.【解析】(1)证明:,,,,,,;即直径的长是10.学科@网【例2】如图,在平面直角坐标系中,直线经过点、,⊙的半径为2(为坐标原点),点是直线上的一动点,过点作⊙的一条切线,为切点,则切线长的最小值为()A.B.C.D.【答案】D【解析】招数二、添加辅助线法:通常利用添加辅助线来辅助证明圆的切线。
【例3】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O 的半径.【答案】(1)证明见解析;(2).【解析】(1)证明:连接,,,,,在中,,,,则为圆的切线;【例4】如图,△ABC中,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC是⊙O的切线.解析:过点O作OE⊥AC于点E,连结OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BA C的平分线,∴OE=OD,即OE是⊙O的半径,∵AC经过⊙O的半径OE的外端点且垂直于OE,∴AC是⊙O的切线.招数三、切线的性质和判定的综合应用。
沪教版数学中考考点总结现时数学已包括多个分支.创建于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。
结构,就是以初始概念和公理动身的演绎系统。
今天作者在这给大家整理了一些沪教版数学中考考点总结,我们一起来看看吧!沪教版数学中考考点总结一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、类似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、类似三角形:1.定义:对应角相等,对应边成比例的三角形叫做类似三角形。
2.性质:(1)类似三角形的对应角相等;(2)类似三角形的对应线段(边、高、中线、角平分线)成比例;(3)类似三角形的周长比等于类似比,面积比等于类似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形类似;(2)两边对应成比例,且夹角相等,两三角形类似;(3)三边对应成比例,两三角形类似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形类似。
数学中考考点分析一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相干元素,初中数学复习提纲、初中数学复习提纲等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦数学中考考点知识点1.概念把形状相同的图形叫做类似图形。
专题07 切线的性质与判定重难点题型分类-高分必刷题专题简介:本份资料包含《切线的性质与判定》这一节在没涉及相似之前各名校常考的主流题型,具体包含的题型有:切线的性质、切线长定理、切线的判定这四类题型;其中,重点是切线的判定这一大类题型,本资料把证明切线的判定方法归纳成四种类型:第I类:用等量代换证半径与直线的夹角等于90°;第II类:用平行+垂直证半径与直线的夹角等于90°;第III类:用全等证半径与直线的夹角等于90°;第IV类:没标出切点时,证圆心到直线的距离等于半径。
本份资料所选题目均出自各名校初三试题,很适合培训学校的老师给学生作切线的专题复习时使用,也适合于想在切线的性质与判定上有系统提升的学生自主刷题使用。
切线的性质:告诉相切,立即连接圆心与切点,得到半径与切线的夹角等于090。
1.如图,AB是⊙O的切线,点B为切点,连接AO并延长交⊙O于点C,连接BC.若∠A =26°,则∠C的度数为()A.26°B.32°C.52°D.64°(第1题图)(第2题图)2.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M (0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)3.(长郡)如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.4.(师大)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线DE交BC于点D,交AC于点E,连接BE,经过C、D、E三点作⊙O,(1)求证:CD是⊙O的直径;(2)若BE是⊙O的切线,求∠ACB的度数;(3)当AB=,BC=6时,求图中阴影部分的面积.切线长定理:5.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA 6.(长郡)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是.(第6题图)(第7题图)7.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为()A.44B.42C.46D.478.(青竹湖)如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,以AB 为直径作⊙O ,恰与另一腰CD 相切于点E ,连接OD 、OC 、BE .(1)求证:OD ∥BE ;(2)若梯形ABCD 的面积是48,设OD =x ,OC =y ,且x +y =14,求CD 的长.内切圆与外接圆半径问题9.两直角边长分别为6cm 、8cm 的直角三角形外接圆半径是 cm .10.已知,Rt △ABC 中,∠C =90°,AC =6,AB =10,则三角形内切圆的半径为 .11.在Rt △ABC 中,∠C =90°,AB =6,△ABC 的内切圆半径为1,则△ABC 的周长为( )A .13B .14C .15D .1612.(雅礼)已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_________.13.(长沙中考)如图,在△ABC 中,AD 是边BC 上的中线,∠BAD =∠CAD ,CE ∥AD ,CE 交BA 的延长线于点E ,BC =8,AD =3.(1)求CE 的长;(2)求证:△ABC 为等腰三角形.(3)求△ABC 的外接圆圆心P 与内切圆圆心Q 之间的距离.14.(青竹湖)如图,在矩形ABCD 中,AC 为矩形ABCD 对角线, DG AC ⊥于点G ,延长DG 交AB 于点E ,已知6AD =,8CD =。
切线的判定和性质一、课标要求了解切线的概念:探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线。
会过圆上一点画圆的切线。
二、教学目标1.复习巩固直线与圆相切的位置关系;2.归纳直线与圆相切的性质和判定方法以及切线长定理,并能运用这些知识进行计算和证明;3.能运用直线与圆的位置关系解决实际问题,体验数学与实际生活的密切联系;4.会利用方程思想解决几何问题,体验数形结合思想;5.在计算与证明中培养学生的分析问题、解决问题以及综合运用知识的能力。
三、教学重点运用切线的性质和判定方法进行计算与证明。
四、教学难点灵活运用所学知识解决有关切线问题。
五、教学过程(一)导入课题前面我们已经学习过直线与圆的位置关系,大家想一想,直线与圆有几种位置关系?其中直线与圆相切是本章的重点知识,也是中考中的重要考点之一,这节课我们就对直线与圆相切这部分内容进行了一个全面复习。
(二)归纳运用1.什么叫做直线与圆相切?由这个定义你能得出切线的哪些性质和判定方法?(和圆只有一个公共点的直线是圆的切线,切线和圆只有一个公共点)2.如果直线和圆相切,那么圆心到直线的距离与半径有什么关系?反之,如果圆心到直线的距离等于半径,那么直线和圆是什么位置关系?(和圆心的距离等于半径的直线是圆的切线,切线和圆心的距离等于圆的半径)例:如图1在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点DE 平分∠ADC,∠E平分∠BCD,则以AB为直线的圆与边CD有怎样的位置关系。
并证明你的结论。
练习:(1)(09.广东)已知⊙O的半径为r,圆心O到直线L的距离为d,当d=r时,直线L与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对(2)如图2已知⊙O的半径为3,点O到L的距离OA=5,将直线L向上沿AO 方向平移m个单位时⊙O与直线L相切,则m等于()A.2 B.4 C.8 D.2或83.在2结论的基础上,我们可以得到切线的判定定理和性质定理,它们各是什么内容?要注意些什么?切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2021年九年级数学中考复习专题之圆:切线的判定与性质(一)一.选择题1.下列说法中,正确的是()A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,m的值为()A.4或﹣4 B.4﹣或4+C.﹣4+或4+ D.4﹣或4+ 3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则4.如图,∠ACB=60°,半径为3的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.3 B.3C.6πD.5.如图,AB是⊙O的直径,=,过点C作BD的垂线交BD的延长线于点E,交BA 的延长线于点F,已知AB=2,∠F=30°,则四边形ABEC的面积是()A.2B.C.D.6.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.7.已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C在⊙D外;③直线CM与⊙D相切.其中正确的有()A.0个B.1个C.2个D.3个8.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线9.如图,在矩形ABCD中,BC=8,以AB为直径作⊙O,将矩形ABCD绕点B旋转,使所得矩形A'BC'D'的边C'D'与⊙O相切,切点为E,边A'B与⊙O相交于点F.若BF=8,则CD长为()A.9 B.10 C.8D.1210.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56 B.72 C.56或72 D.不存在二.填空题11.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.12.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P.当⊙P与矩形ABCD的边相切时,CP的长为.13.如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB 上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为.14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是.15.如图,直线y=x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.三.解答题16.如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.17.如图,圆O的直径AB=12cm,C为AB延长线上一点,点P为中点,过点B作弦BD∥CP,连接PD.(1)求证:CP与圆O相切;(2)若∠C=∠D,求四边形BCPD的面积.18.如图,在△ABC中,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E,延长DE交CA的延长线于点F,延长BA交⊙O于G,且∠BAF=2∠C.(1)求证:DE为⊙O的切线;(2)若tan∠EFC=,求的值.19.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE、DE、BD,BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC,求证:四边形OEDB是菱形.参考答案一.选择题1.解:A、圆的切线垂直于经过切点的半径;故本选项正确;B、经过圆心且垂直于切线的直线必经过切点;故本选项错误;C、经过切点且垂直于切线的直线必经过圆心;故本选项错误;D、经过半径的外端且垂直于这条半径的直线是圆的切线;故本选项错误;故选:A.2.解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=,∴A(0,1),B(,0),∴AB=2;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC~△BAO,∴=,即=,∴BM=4,∴OM=4﹣,或OM=4+.∴m=﹣4,m=4+.故选:C.3.解:如图1,过点N作NC⊥AM于点C,∵直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,⊙O的半径为1,∴CN=AB=2,∵∠1=60°,∴MN==,故A与B正确;如图3,若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOM′,故MN上的高为1,即O到MN的距离等于半径.故C正确;如图2,∵MN是切线,⊙O与l1和l2分别相切于点A和点B,∴∠AMO=∠1=30°,∴AM=;∵∠AM′O=60°,∴AM′=,∴若MN与⊙O相切,则AM=或;故D错误.故选:D.4.解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OP=OD=3,∴CD=3.故选:B.5.解:连接OD、OC、BC,如图:∵AB是⊙O的直径,AB=2,∴∠ACB=90°,OA=OB=AB=1,∵BE⊥FE,∠F=30°,∴∠ABC=90°﹣∠F=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∵=,∴∠AOC=∠COD=60°,∵OA=OC,∴△AOC是边长为1的等边三角形,∴AC=OA=1,∠OAC=60°,∴∠ABC=90°﹣60°=30°,∴BC=AC=,∠CBE=60°﹣30°=30°,∴CE=BC=,BE=CE=,∴四边形ABEC的面积=△ABC的面积+△BCE的面积=×1×+××=;故选:B.6.解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.7.解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故③正确;故选:C.8.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.9.解:连接OE,延长EO交BF于点M,∵C'D'与⊙O相切,∴∠OEC′=90°,又矩形A'BC'D'中,A'B∥C'D',∴∠EMB=90°,∴BM=FM,∵矩形ABCD绕点B旋转所得矩形为A′BC′D′,∴∠C′=∠C=90°,AB=CD,BC=B′C=8,∴四边形EMBC'为矩形,∴ME=8,设OB=OE=x,则OM=8﹣x,∵OM2+BM2=OB2,∴(8﹣x)2+42=x2,解得x=5,∴AB=CD=10.故选:B.10.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二.填空题(共5小题)11.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),12.解:作PE⊥AD于E,PF⊥AB于F,在Rt△ABC中,AC==5,由题意可知,⊙P只能与矩形ABCD的边AD、AB相切,当⊙P与AD相切时,PE=PC,∵PE⊥AD,CD⊥AD,∴PE∥CD,∴△APE∽△ACD,∴=,即=,解得,CP=,当⊙P与AB相切时,PF=PC,∵PF⊥AB,CB⊥AB,∴PF∥BC,∴△APE∽△ACD,∴=,即=,解得,CP=,综上所述,当⊙P与矩形ABCD的边相切时,CP的长或,故答案为:或.13.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,∵AB=,∴AE=BE=AB=4,∴DE=,∴点P是线段AD上运动时,⊙P不可能与AB相切,分两种情况:①当⊙P与AC相切时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴,即,∴;②⊙P与BC相切时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴,即,∴DP=,∴AP=10﹣,综上,AP的长为或.14.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.15.解:∵直线y=x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=3,∴A(3,0),B(0.﹣3),∴OA=3,OB=3,∴AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=2,∴OP=3﹣2或OP=3+2,∴P(3﹣2,0)或P(3+2,0),故答案为(3﹣2,0)或P(3+2,0).三.解答题(共5小题)16.证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.17.(1)证明:连接OP,交BD于点E,∵点P为的中点.∴BD⊥OP,∵BD∥CP,∴∠OEB=∠OPC=90°∴PC⊥OP,∴CP与⊙O相切于点P;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.18.解:(1)连接OD,∵OC=OD,∴∠C=∠ODC,∵∠BAF=2∠C,∠BAF=∠B+∠C,∴∠B=∠C,∴∠B=∠ODC,∴AB∥OD,∵DE⊥AB,∴OD⊥DF,∴DE为⊙O的切线;(2)过O作OH⊥AG于点H,则AH=GH,EF∥OH,∴∠AOH=∠EFA,∵tan∠EFC=,∴tan∠AOH==,∴设AH=3x,则AG=2AH=6x,OH=4x,∴,∴AC=2AO=10x,OD=OA=5x,∵tan∠EFC==,设AE=3y,则EF=4y,∴AF=,∵AE∥OD,∴△AEF∽△ODF,∴,即,∴,∴AE=3y=2x,∴BE=AB﹣AE=10x﹣2x=8x,∴=.19.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BPA,∠PAO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BPA,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)∵OE∥BD,∴∠OEB=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠DBE,∵BF=BC,∠ADB=90°,∴∠CBD=∠EBD,∵∠DEB=∠DBC,∴∠EBD=∠DBE,∴∠DEB=∠OBE,∴ED∥OB,∵ED∥OB,OE∥BD,OE=OB,∴四边形OEDB是菱形.。
2021年北京市中考数学总复习考点30:切线的性质和判定一.选择题(共11小题)1.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.2.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.【解答】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.3.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.5【分析】直接利用切线的性质得出∠PDO=90°,再利用相似三角形的判定与性质分析得出答案.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.4.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.5.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=O C•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.6.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.7.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.8.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【解答】解:连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD∴∠ODB=∠CBD∴OD∥CB,∴即∴CD=.故选:B.9.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.10.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.11.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.3【分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OG可判断圆心O不是AC与BD的交点;然后根据四边形AEFD 为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OG,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.二.填空题(共14小题)12.如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=60°.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.【解答】解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=44°.【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【解答】解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°﹣68°﹣68°=44°,故答案为:44°14.如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为或.【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,【解答】解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.设PQ=PA′=r,∵PQ∥CA′,∴=,∴=,∴r=.如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,∵△A′BT∽△ABC,∴=,∴=,∴A′T=,∴r=A′T=.综上所述,⊙P的半径为或.15.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.16.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=26度.【分析】连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.【解答】解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°﹣∠COD=26°,故答案为:26.17.如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD 的延长线交BC于点C,则∠OCB=50度.【分析】由圆周角定理易求∠BOC的度数,再根据切线的性质定理可得∠OBC=90°,进而可求出求出∠OCB的度°°【解答】解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.18.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为.【分析】根据题意,利用三角形全等和切线的性质、中位线,直角三角形中30°角所对的直角边与斜边的关系、垂径定理可以求得OE的长.【解答】解:连接OA、AD,如右图所示,∵BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,∴∠DAB=90°,∠OAC=90°,∵AB=AC,∴∠B=∠C,在△ACO和△BAD中,,∴△ACO≌△BAD(ASA),∴AO=AD,∵AO=OD,∴AO=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠DAO=60°,∴∠B=∠C=30°,∠OAE=30°,∠DAC=30°,∴AD=DC,∵CD=2,∴AD=2,∴点O为AD的中点,OE∥AD,OE⊥AB,∴OE=,故答案为:.19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD 为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB 于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,=DF×BF=BD×FG,∴S△BDF∴FG===,故答案为.20.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC= 115度.【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.【解答】解:连接OC,∵DC切⊙O于C,∴∠DCO=90°,∵∠D=40°,∴∠COB=∠D+∠DCO=130°,∴的度数是130°,∴的度数是360°﹣130°=230°,∴∠BEC==115°,故答案为:115.21.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=60°.【分析】根据切线的性质得到∠OBA=90°,根据直角三角形的性质计算即可.【解答】解:∵AB是⊙O的切线,∴∠OBA=90°,∴∠AOB=90°﹣∠A=60°,故答案为:60°.22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA=126度.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=72°;∵OA=OD,∴∠ODA=∠A=∠COD=36°,∴∠CDA=∠CDO+∠ODA=90°+36°=126°.23.如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是﹣π.【分析】根据扇形面积公式以及三角形面积公式即可求出答案.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π24.如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形, ∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.25.如图,在矩形ABCD 中,AB=5,BC=4,以CD 为直径作⊙O .将矩形ABCD 绕点C 旋转,使所得矩形A′B′C′D′的边A′B′与⊙O 相切,切点为E ,边CD′与⊙O 相交于点F ,则CF 的长为 4 .【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.三.解答题(共25小题)26.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【分析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.27.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.【分析】(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ACD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.28.如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到=,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到=,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【解答】(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴FN=.29.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.30.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.31.如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.【分析】(1)连接OE.推知CD为⊙O的切线,即可证明DA=DE;(2)利用分割法求得阴影部分的面积.【解答】解:(1)证明:连接OE、OC.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵FC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOE==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.32.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.33.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=34.如图,AB是⊙O的直径,点D在⊙O上(点D不与A,B重合),直线AD 交过点B的切线于点C,过点D作⊙O的切线DE交BC于点E.(1)求证:BE=CE;(2)若DE∥AB,求sin∠ACO的值.【分析】(1)证明:连接OD,如图,利用切线长定理得到EB=ED,利用切线的性质得OD⊥DE,AB⊥CB,再根据等角的余角相等得到∠CDE=∠ACB,则EC=ED,从而得到BE=CE;(2)作OH⊥AD于H,如图,设⊙O的半径为r,先证明四边形OBED为正方形得DE=CE=r,再利用△AOD和△CDE都为等腰直角三角形得到OH=DH=r,CD=r,接着根据勾股定理计算出OC=r,然后根据正弦的定义求解.【解答】(1)证明:连接OD,如图,∵EB、ED为⊙O的切线,∴EB=ED,OD⊥DE,AB⊥CB,∴∠ADO+∠CDE=90°,∠A+∠ACB=90°,∵OA=OD,∴∠A=∠ADO,∴∠CDE=∠ACB,∴EC=ED,∴BE=CE;(2)解:作OH⊥AD于H,如图,设⊙O的半径为r,∵DE∥AB,∴∠DOB=∠DEB=90°,∴四边形OBED为矩形,而OB=OD,∴四边形OBED为正方形,∴DE=CE=r,易得△AOD和△CDE都为等腰直角三角形,∴OH=DH=r,CD=r,在Rt△OCB中,OC==r,在Rt△OCH中,sin∠OCH===,即sin∠ACO的值为.35.如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).【分析】(1)连接OC,根据切线的性质得到OC⊥CD,证明OC∥AD,根据平行线的性质证明;(2)根据圆周角定理得到∠COE=60°,根据勾股定理、弧长公式计算即可.【解答】(1)证明:连接OC,∵直线CD与⊙O相切,∴OC⊥CD,∵点C是的中点,∴∠DAC=∠EAC,∵OA=OC,∴∠OCA=∠EAC,∴∠DAC=∠OCA,∴OC∥AD,∴AD⊥CD;(2)解:∵∠CAD=30°,∴∠CAE=∠CAD=30°,由圆周角定理得,∠COE=60°,∴OE=2OC=6,EC=OC=3,==π,∴蚂蚁爬过的路程=3+3+π≈11.3.36.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.37.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.38.如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH 为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.39.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【分析】(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠B得到ON∥DB,接着根据切线的性质得到ON⊥NE,然后利用平行线的性质得到结论;(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB.【解答】证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵AD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.40.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA 的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【分析】(1)连接DO并延长交PM于E,如图,利用折叠的性质得OC=DC,BO=BD,则可判断四边形OBDC为菱形,所以OD⊥BC,△OCD和△OBD都是等边三角形,从而计算出∠COP=∠EOP=60°,接着证明PM∥BC得到OE⊥PM,所以OE=OP,根据切线的性质得到OC⊥PC,则OC=OP,从而可判定PM是⊙O的切线;(2)先在Rt△OPC中计算出OC=1,然后根据等边三角形的面积公式计算四边形OCDB的面积.【解答】解:(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=×=1,=2××12=.∴四边形OCDB的面积=2S△OCD41.如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再证明OC∥BD,从而得到OC⊥CD,然后根据切线的判定定理得到结论.【解答】证明:∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.42.如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD 的长;(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.【解答】(1)解:连接DB,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.43.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,==∴S扇形OBC(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线44.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==45.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【分析】(1)先判断出∠CAO=∠BAO,进而判断出OD=OE,即可得出结论;(2)先求出OB,再用勾股定理求出OA,最后用三角形的面积即可得出结论.【解答】解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,=AB•OE=OB•OA,由三角形的面积得,S△AOB∴OE==,即:半圆O所在圆的半径为.46.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=2,证四边形ODEG是矩形得OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=48,据此得出BD的长及∠BAD 的度数,利用弧长公式可得答案.【解答】解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,。
20XX年中考数学圆的切线几何公式定理总结
经过半径外端并且垂直于这条半径的直线是圆的切线。
圆的切线
垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
切割线定理圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点,则有pC=pA·pB
割线定理与切割线定理相似两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点
则pA1·pB1=pA2·pB2
圆是轴对称图形,同时圆也是中心对称图形,其对称中心是圆心。
《24.2.2切线的判定和性质》教学设计【学习目标】1、知识与技能(1)能判定一条直线是否为圆的切线。
(2)切线的性质定理的应用。
2、过程与方法(1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力。
(2)通过切线的判定定理和性质定理的学习,提高学生的综合运用能力。
3、情感态度与价值观(1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.(2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.【学习重点】圆的切线的判定定理和性质定理,并能灵活运用。
【学习难点】圆的切线的判定定理灵活运用。
【教学过程】二、探究讨论,发现新知探究切线的判定定理1、通过画图发现:(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径OA.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.反例巩固知识点:图(1)中直线了l经过半径外端,但不与半径垂直;图(2)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.图1 图23、总结切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.4、应用定理,强化训练'例1 如图,直线AB 经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.oCA B5、切线的性质定理如图,已知直线l为⊙O的切线,A为切点,观察并猜想直线l与半径OA有怎样的位置关系?答问题,教师引导学生总结切线的前两种判定方法。
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.用反例加深印象。
师生共同总结切线的三种判定方法。