惠州市2011届高三第三次调研考试数学(理科)试题及答案
- 格式:doc
- 大小:895.00 KB
- 文档页数:12
绝密★启用前 试卷类型:A汕头市2010~2011学年度普通高中毕业班教学质量监测试题理科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-第Ⅰ卷 (选择题 满分40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -12.设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( ) A .{x|-2≤x <1} B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}3.下列函数中,最小值为2的是( ) A .21222+++=x x yB .xx y 12+=C .)220)(22(<<-=x x x yD .1222++=x x y4.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(xx a -的展开式中含2x项的系数是( )A .192B .182C .-192D .-182 5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( ) ①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.57.已知方程20ax bx c ++= ,其中a 、b 、c 是非零向量,且a 、b不共线,则该方程( )A .至多有一个解B .至少有一个解C .至多有两个解D .可能有无数个解8.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函 数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51( B .),5()31,(+∞⋃-∞ C .)5,31(第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共6小题,每小题5分,满分30分)9.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ONE”,“WORLD”,“ONE”,“DREAM”的四张卡片随机排成一排,若卡片按从左到右的顺序排成“ONE WORLD ONE DREAM”,则孩子会得到父母的奖励,那么孩子受奖励的概率为 .12.已知三棱锥P ABC -的四个顶点均在半径为3的球面上,且PA 、PB 、PC 两两互相垂直,则三棱锥P ABC -的侧面积的最大值为 .13.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C = .14.设直角三角形的两条直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有 ①2222h c b a +>+, ②3333h c b a +<+,③4444h c b a +>+,④5555h c b a +<+.其中正确结论的序号是 ;进一步类比得到的一般结论是 .三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.16.(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ; (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.17.(本小题满分14分)已知几何体BCDE A -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)探究在DE 上是否存在点Q ,使得BQ AQ ⊥,并说明理由.18.(本小题满分14分)某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=,在销售淡季近似地符合函数关系:2)(b kx x r +=,其中21210,0b b k b b k 、、且、><为常数; ②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (Ⅰ)填出表格中空格的内容:(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件? 19.(本小题满分14分)已知数列}{n a 满足如图所示的程序框图(Ⅰ)写出数列}{n a 的一个递推关系式; (Ⅱ)证明:}3{1n n a a -+是等比数列, 并求}{n a 的通项公式;(Ⅲ)求数列)}3({1-+n n a n 的前n 项和n T20.(本小题满分14分)已知函数2()2ln .f x x x a x =++ (Ⅰ)若函数()(0,1)f x 在区间求实数a 的取值范围;(Ⅱ)当t ≥1时,不等式(21)2()f t f t -≥-恒成立,求实数a 的取值范围.汕头市2010——2011学年高中毕业班教学质量监测理科数学参考答案及评分意见二、填空题(本大题共6小题,每小题5分,满分30分)9.20; 10.3; 11.121; 12.18; 13.1; 14.②④, *)(N n h c b a n n n n ∈+<+。
惠州市2011届高三第三次调研考试理科综合能力测试试题(2011.01)一、单项选择题:本题共6个小题。
每小题4分,共24分。
每小题给出的四个选项中,只有一个选项最符合题目要求。
选对的得4分,错选或不答的得O分。
1.诗文“落红不是无情物,化作春泥更护花”中所蕴含的生命科学知识是A.自然界的物质循环 B. 生态系统恢复力稳定性强C.生物的变异现象D.生物的种间斗争关系2.下列酶与其作用对应正确的是A.纤维素酶——原生质体B.限制酶——任何磷酸二酯键C.解旋酶——碱基间氢键D.ATP水解酶——肽键3.新物种形成的标志是A.具有一定的形态结构和生理功能 B.产生了地理隔离C.形成了生殖隔离D.改变了基因频率4.超级病菌是一种耐药性细菌,它最可能由普通细菌通过哪种变异形成的A.基因重组B.染色体结构变异C.基因突变D.染色体数目变异5.孟德尔对分离现象的原因提出了假说,下列不属于该假说内容的是A.生物的性状是由遗传因子决定的B.基因在体细胞染色体上成对存在C.配子只含有每对遗传因子中的一个D.受精时雌雄配子的结合是随机的6.在基因工程操作的基本步骤中,没有进行碱基互补配对的是A.人工合成目的基因B.目的基因与运载体结合C.将目的基因导入受体细胞D.目的基因的检测表达二、双项选择题:本题共2个小题。
每小题6分,共12分。
每小题给出的四个选项中,有两个选项最符合题目要求。
全部选对的得6分,只选一个且正确的得3分,错选或不答的得O分24.欲观察到细胞有丝分裂的前、中、后、末几个时期A.应该选一个处于间期的细胞,持续观察它从问期到末期的全过程B.如果视野过暗,可以调节光圈以增加视野的亮度C.如果在低倍物镜下看不到细胞。
可改用高倍物镜继续观察D.如果在一个视野中不能看全各个时期,可移动装片从周围细胞中寻找25.下列是生物学发展史上的几个重要实验,实验中应用了放射性同位素示踪技术的是A. 巴斯德发现酿酒中的发酵是由于酵母细胞的存在B.生长素的发现过程C. 赫尔希和蔡斯的噬菌体侵染细菌实验D.验证光合作用释放的氧全部来自水三、非选择题:本大题共4小题,共64分。
三角函数的概念、同角三角函数的关系和诱导公式题组一一、选择题1.(安徽省百校论坛2011届高三第三次联合考试理)已知3cos()||,tan 222ππϕϕϕ-=<且则等于 ( )A .BCD 答案 D.2.(浙江省金丽衢十二校2011届高三第一次联考文)函数()sin sin(60)f x x x =++ 的最大值是( )A B C .2 D .1答案 A.3.(山东省莱阳市2011届高三上学期期末数学模拟6理)已知)2,2(,31sin ππθθ-∈-=,则)23sin()sin(θππθ--的值是( )A 、922 B 、922- C 、91- D 、91答案 B.4.(湖南省嘉禾一中2011届高三上学期1月高考押题卷)在区间[1,1]-上随机取一个数,cos 2xx π的值介于0到12之间的概率为 ( )A .13B .2πC .12D .23答案 D.5. (湖北省补习学校2011届高三联合体大联考试题理) 已知cos()0,cos()0,2πθθπ+<->下列不等式中必成立的是( )A.tan cot 22θθ> B.sin cos 22θθ> C.tancot22θθ< D.sincos22θθ<答案 A.6.(河南省鹿邑县五校2011届高三12月联考理)函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图像为C,如下结论中正确的是 ( )A .图像C 关于直线6x π=对称B .图像C 关于点,06π⎛⎫⎪⎝⎭对称C .函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数D .由3sin 2y x =的图像向右平移3π个单位长度可以得到图像C 。
答案 C.7. (河南省辉县市第一高级中学2011届高三12月月考理)若cos 2sin αα+=则tan α=A.12-B.2C.12D.-2 答案 B.8. (北京四中2011届高三上学期开学测试理科试题) 已知,则等于( )A .7B .C .D .答案 C.9.(福建省三明一中2011届高三上学期第三次月考理) 已知函数)(sin cos )(R x x x x f ∈=,给出下列四个命题:①若;),()(2121x x x f x f -=-=则 ②)(x f 的最小正周期是π2; ③)(x f 在区间]4,4[ππ-上是增函数; ④)(x f 的图象关于直线43π=x 对称; ⑤当⎥⎦⎤⎢⎣⎡-∈3,6ππx 时,)(x f 的值域为.43,43⎥⎦⎤⎢⎣⎡-其中正确的命题为 ( )A .①②④B .③④⑤C .②③D .③④10.(浙江省温州市啸秋中学2010学年第一学期高三会考模拟试卷)函数()sin cos f x x x=⋅的最小值是A .1-B .12-C .12D .1 答案 B.11.(浙江省嵊州二中2011届高三12月月考试题文) 函数()2cos sin cos y x x x =+的最大值为( )(A )2 (B 1(C (D 1答案 B.12. (山东省日照市2011届高三第一次调研考试文)已知4sin ,sin cos 0,5θθθ=<则θ2sin 的值为 (A)2524-(B)2512- (C)54- (D)2524 答案 A.[来源:学科网]13. (福建省四地六校2011届高三上学期第三次联考试题理)已知22ππθ-<<,且sin cos ,a θθ+=其中()0,1a ∈,则关于tan θ的值,在以下四个答案中,可能正确的是( )A .3-B .3 或13C .13-D .3-或13- 答案 C.14.(甘肃省甘谷三中2011届高三第三次检测试题)tan 690°的值为( )A.D.答案 A.15. (甘肃省甘谷三中2011届高三第三次检测试题)若sin([0,])2θθπ=∈,则tan θ=( )A. 43-B. 43C. 0D. 0或43- 答案 D. 二、填空题16.(重庆市重庆八中2011届高三第四次月考文)在ABC ∆中,如果sin :A sin :B sin C =5:6:8,则此三角形最大角的余弦值是 .17.(重庆市南开中学高2011级高三1月月考文) 若3(0,),cos(),sin 5θππθθ∈+==则 。
一、单选题二、多选题1. 若直线与圆相切,则等于( )A.B.C.D.2. 设为虚数单位,若复数满足,则复数的虚部为( )A.B.C.D.3.公元年,唐代李淳风注《九章》时提到祖暅的“开立圆术”.祖暅在求球的体积时,使用一个原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是立体的高,意思是两个同高的立体,如在等高处的截面积相等,则体积相等.更详细点说就是,介于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等.上述原理在中国被称为“祖暅原理”.打印技术发展至今,已经能够满足少量个性化的打印需求,现在用打印技术打印了一个“睡美人城堡”.如图,其在高度为的水平截面的面积可以近似用函数,拟合,则该“睡美人城堡”的体积约为()A.B.C.D.4.在平面直角坐标系中,若曲线(,为常数)过点,且该曲线在点处的切线与直线平行,则( )A .,B .,C .,D .,5. 已知双曲线的左、右焦点分别为,,以为直径的圆与C 在第一象限的交点为A,直线与C 的左支交于点B ,且.设C 的离心率为e ,则( )A.B.C.D.6. 已知集合,则集合A 的子集个数为( )A .4B .5C .6D .87. 已知直线y=x+1与曲线相切,则α的值为A .1B .2C .-1D .-28. 数列{}中,“”是“{}是公比为2的等比数列”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9. 已知直线,,则( )A.直线过定点B .当时,C .当时,D .当时,之间的距离为10. 已知甲种杂交水稻近五年的产量(单位:t/hm 2)数据为:9.8,10.0,10.0,10.0,10.2,乙种杂交水稻近五年的产量(单位:t/hm 2)数据为:9.6,9.7,10.0,10.2,10.5,则( )A .甲种的样本极差小于乙种的样本极差广东省惠州市2024届高三上学期第三次调研考试数学试题(1)广东省惠州市2024届高三上学期第三次调研考试数学试题(1)三、填空题四、解答题B .甲种的样本平均数等于乙种的样本平均数C .甲种的样本方差大于乙种的样本方差D .甲种的样本60百分位数小于乙种的样本60百分位数11.已知复数,则下列各项正确的为( )A .复数的虚部为B .复数为纯虚数C .复数的共轭复数对应点在第四象限D .复数的模为512.如图,圆柱的轴截面是边长为2的正方形,为圆柱底面圆弧的两个三等分点,为圆柱的母线,点分别为线段上的动点,经过点的平面与线段交于点,以下结论正确的是()A.B .若点与点重合,则直线过定点C .若平面与平面所成角为,则的最大值为D .若分别为线段的中点,则平面与圆柱侧面的公共点到平面距离的最小值为13. 函数的最小值为______.14. 若实数,满足,则的最小值为__________.15. 幂函数在上为单调递增的,则______.16. 2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.(1)求的值;(2)估计甲品牌产品寿命小于200小时的概率;(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.17. 在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).(1)当时,若发送0,则要得到正确信号,试比较单次传输和三次传输方案的概率大小;(2)若采用三次传输方案发送1,记收到的信号中出现2次信号1的概率为,出现3次信号1的概率为,求的最大值.18. 如图,在四面体中,,,,分别为,的中点,过的平面与,分别交于点,.(1)求证:;(2)若四边形为正方形,求二面角的余弦值.19. 函数(1)若方程无实根,求实数的取值范围;(2)记的最小值为.若,,且,证明:.20. 中国北斗卫星导航系统是中国自行研制的全球卫星导航系统.从全球应用北斗卫星的城市中随机选取了40个城市进行调研,下图是这40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:(1)根据频率分布直方图,求产值小于610万元的调研城市个数,并估计产值的中位数;(2)视频率为概率,从全球应用北斗卫星的城市中任取5个城市,求恰有2个城市的产值超过600万元的概率.21. 设函数 .(1)求函数的最小正周期及其对称中心;(2)求函数在上的值域.。
济南外国语学校高中部 高三质量检测数学试题(理科)2010.11本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是 ( )A .1B .0C .-1D .1或-1 【答案】 C【解析】 由M ∩N =N 知N ⊆M ,故a ∈M ,a 2∈M .①当a 2=0时,a =0,此时a =a 2,不符合题意.②当a 2=1时,a =±1,而a =1时,a =a 2,不符合题意;只有a =-1时满足题意. 2、“|x -1|<2成立”是“x (x -3)<0成立”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案B3、若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4]上是减函数,则实数a 的取值范围是 ( )A .a ≥3B .a ≤-3C .a <5D .a ≥-3答案B4、已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为 A .2- B .1- C .1 D .2 答案:C【解析】1222(2008)(2009)(0)(1)log log 1f f f f -+=+=+=,故选C.5、将函数y=sin 2x 的图像向左平移4π个单位,再向上平移1个单位,所得图像的函数解析式是(A )y=cos 2x (B )y=22cos x (C )y=1+sin 24x π⎛⎫+⎪⎝⎭(D )y=22sin x【解析】:将函数s i n 2y x =的图象向左平移4π个单位,得到函数s i n 2()4y xπ=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos 22cos y x x =+=,故选B.6、已知{}n a 为等比数列,22=a ,86=a 则=10a ( ) A .32± B .32 C .32- D .16 答案:B7、函数232+-=x x x y 的单调递增区间是 ( )A.)2,1()1,2( -B.)1,2(-及)2,1(C.)2,2(-D.)2,1()1,2( - 答案:B.8、直线32+=x y 与抛物线2x y =所围成的图形面积是( ) A 20 B 328 C332 D343答案:C解析:直线32+=x y 与抛物线2x y =的交点坐标为(-1,1)和(3,9),则33232231=⎰-dx x x S )-+(=9、设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为(A )6 (B )7 (C )8 (D )23 答案:B解析:画出不等式2x x x +⎧⎪-⎨⎪⎩让目标函数表示直线y 目标函数取到最小值,734mi n =+=z 10、若不等式x 2+2x +a ≥ ( ) A .a ≥0B .a ≥1C .a ≥2D .a ≥3答案:C解析:不等式x 2+2x +a ≥-y 2-2y ,等价于a ≥2)1()1(222222++-+-=----y x y y x x ,所以正确答案为2≥a 11.已知函数)0( log)(2>=x x x f 的反函数为,,且有8)()()(111=⋅---b f a f x f若0>a 且0>b ,则ba 41+的最小值为( )A .2B .3C .6D .9答案:B12、定义在R 上的函数()f x 满足()()4f x f x -=-+,当2x ≥时,()f x 单调递增,如果421>+x x ,且()()12220x x --<,则()()12f x f x +的值为( ) A .恒小于0 B. 恒大于0 C.可能为0 D.可正可负 答案:B解析:()f x 满足()()4f x f x -=-+所以()f x 关于(2,0)对称,由于当2x ≥时,()f x 单调递增,可知()f x 在2<x 时也是增函数。
直线和圆题组一一、选择题1.(北京龙门育才学校2011届高三上学期第三次月考)直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离 答案 B.2.(北京五中2011届高三上学期期中考试试题理)若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ))(A 50<<k )(B 05<<-k )(C 130<<k )(D 50<<k答案 A.3、(福建省三明一中2011届高三上学期第三次月考理)两圆042222=-+++a ax y x 和0414222=+--+b by y x 恰有三条公切线,若R b R a ∈∈,,且0≠ab ,则2211b a +的最小值为 ( )A .91B .94C .1D .3答案 C.3.(福建省厦门双十中学2011届高三12月月考题理)已知点P 是曲线C:321y x x =++上的一点,过点P 与此曲线相切的直线l 平行于直线23y x =-,则切线l 的方程是( ) A .12+=x y B .y=121+-xC .2y x =D .21y x =+或2y x =答案 A.4. (福建省厦门双十中学2011届高三12月月考题理)设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条 D .7条 答案 C.5.(福建省厦门外国语学校2011届高三11月月考理) 已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p = ( ▲ )A 、1B 、2C 、3D 、4答案 B.6.(甘肃省天水一中2011届高三上学期第三次月考试题理)过点M(1,5)-作圆22(1)(2)4x y -+-=的切线,则切线方程为( ) A .1x =-B .512550x y +-=C .1512550x x y =-+-=或D .15550x x y =-+-=或12答案 C.7.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知圆222410x y x y ++-+=关于直线220ax by -+=41(0,0),a b a b>>+对称则的最小值是( )A .4B .6C .8D .9答案 D.8.(广东省惠州三中2011届高三上学期第三次考试理)已知直线x y a +=与圆224x y +=交于A 、B 两点,O 是坐标原点,向量OA 、OB满足||||OA OB OA OB +=-,则实数a 的值是( )(A )2 (B )2- (C 或 (D )2或2- 答案 D.9. (广东省清远市清城区2011届高三第一次模拟考试理)曲线321y x x x =-=-在处的切线方程为( A .20x y -+= B .20x y +-= C . 20x y ++= D .20x y --=答案 C.10.(贵州省遵义四中2011届高三第四次月考理)若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-8邪恶少女漫画/wuyiniao/ 奀莒哂答案 A.11.(黑龙江大庆实验中学2011届高三上学期期中考试理) 若直线y x =是曲线322y x x ax =-+的切线,则a =( ).1A .2B .1C - .1D 或2 答案 D.邪恶少女漫画/wuyiniao/ 奀莒哂12.(黑龙江哈九中2011届高三12月月考理)“3=a ”是“直线012=--y ax ”与“直线046=+-c y x 平行”的 ( )A .充分不必要条件 C .必要不充分条件D .充要条件D .既不充分也不必要条件答案 B.13.(湖北省南漳县一中2010年高三第四次月考文)已知α∥β,a ⊂α,B ∈β,则在β内过点B 的所有直线中A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线 答案 D.14.(重庆市南开中学2011届高三12月月考文)已知圆C 与直线040x y x y -=--=及都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=答案 B. 二、填空题14.(湖北省南漳县一中2010年高三第四次月考文)已知两点(4,9)(2,3)P Q --,,则直线PQ 与y 轴的交点分有向线段PQ的比为 .答案 2.15. (福建省厦门外国语学校2011届高三11月月考理)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线,求椭圆的离心率▲▲.答案 36=e . 16.(甘肃省天水一中2011届高三上学期第三次月考试题理)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a = 答案 0.17. (广东省中山市桂山中学2011届高三第二次模拟考试文) 在极坐标中,圆4cos ρθ=的圆心C 到直线sin()4πρθ+=的距离为 .18.(河南省郑州市四十七中2011届高三第三次月考文)如下图,直线PC 与圆O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E , 4PC =,8PB =,则CE = .答案12519.(黑龙江省哈尔滨市第162中学2011届高三第三次模拟理)已知函数()x f 的图象关于直线2=x 和4=x 都对称,且当10≤≤x 时,()x x f =.求()5.19f =_____________。
惠州市2013届高三第三次调研考试数学试题(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数313ii - 的共轭复数是( ) A .3i -+ B .3i --C .3i +D .3i -2.已知向量p ()23=-,,q ()6x =,,且//p q ,则+p q 的值为( ) ABC .5D .133.已知集合{}11A =-,,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为( ) A .{}1-B .{}1 C .{}11-,D .{}101-,,4.已知幂函数()y f x =的图象过点1(22,,则4log (2)f 的值为( )A .14 B . -14C .2D .-2 5.“0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )A .19、13B .13、19C .20、18D .18、207.已知x y ,满足约束条件50240x y x y z x y y ++≥⎧⎪-≤=+⎨⎪≤⎩,则的最小值为( )A .14-B .15-C .16-D .17- 8.数列{n a } 中,1(1)21nn n a a n ++-=-,则数列{n a }前12项和等于( )A .76B .78C . 80D .82 二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题(第9至13题为必做题,每道试题考生都必须作答) 9.在等比数列{}n a 中,11a =,公比2q =,若{}n a 前n 项和127n S =,则n 的值为 .________.10.阅读右图程序框图. 若输入5n =,则输出k 的值为11.已知双曲线22221x y a b-=的一个焦点与抛线线2y =的焦点重合,且双曲线的离心率等于,则该双曲线的方程为 .12.已知,m n 是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的有 .①m n m n αα若,,则‖‖‖;②αγβγαβ⊥⊥若,,则‖;③mm αβαβ若,,则‖‖‖;④m n m n αα⊥⊥若,,则‖. 13.已知函数()212121x x a x f x a a x ⎧+-⎪=⎨⎪->⎩≤,,,.若()f x 在()0+∞,上单调递增,则实数a 的取值范围为 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图,PA 切O 于点A ,割线PBC 经过圆心O ,1OB PB ==,OA 绕点O 逆时针旋转60︒到OD ,则PD 的长为 .15.(坐标系与参数方程选做题)在极坐标系中,已知两点A 、B 的极坐标分别为(3)3π,,(4)6π,,则△A O B (其中O 为极点)的面积为 .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<),且函数24y f x π⎛⎫=+ ⎪⎝⎭的图像关于直线6x π=对称.(1)求ϕ的值;(2)若2()34f πα-=,求sin2α的值。
2011届高三数学模拟试题(理科) 满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为 ( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π4.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.定义在区间(0,)a 上的函数2()2xx f x =有反函数,则a 最大为 ( )A .2ln 2B .ln 22C .12 D .27.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为( )A .4B .0C .—12D .128.如图,在1,3ABC AN NC∆=中,P 是BN 上的一点, 若211AP mAB AC=+,则实数m 的值为( )A .911B .511C .311D .2119.设二次函数2()4()f x ax x c x R =-+∈的值域为19[0,),19c a +∞+++则的最大值为( )A .3125B .3833C .65D .312610.有下列数组排成一排:121321432114321(),(,),(,,),(,,,),(,,,,),112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321,,,,,,,,,,,,,,,112123423412345则此数列中的第2011项是( )A .757B .658C .559D .460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
惠州市2013届高三第三次调研考试数学试题(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.i 是虚数单位,若(i 1)i z +=,则z 等于( ) A .1 B .32C.22D.122.已知集合{}11A =-,,{}10B x ax =+=,若B A ⊆,则实数a 所有可能取值的集合为( )A .{}1-B .{}1C .{}11-,D .{}101-,,3.若a ∈R ,则“3a = ”是“29a = ”的( )条件A .充分且不必要B .必要且不充分C .充分且必要D .既不充分又不必要 4.下列函数是偶函数的是( )A .y sinx =B .3y x =C .x y e =D .2ln 1y x =+5.已知向量p ()23=-,,q ()6x =,,且//p q ,则p q +的值为( ) A .5 B .13 C .5 D .136.设{n a } 是公差为正数的等差数列,若12315a a a ++=,且12380a a a =,则111213a a a ++等于( )A .120B . 105C . 90D .75 7.已知双曲线22221x y ab-=的一个焦点与抛物线2410y x =的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为( )A .2219yx -= B .221x y -= 5 C .2219xy -= D .22199xy-=8.已知,m n 是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的有( )A . m n m n αα若,,则‖‖‖;B . αγβγαβ⊥⊥若,,则‖;C . m m αβαβ若,,则‖‖‖;D . m n m n αα⊥⊥若,,则‖. 9.已知幂函数()y f x =的图象过点12()22,,则4log (2)f 的值为( )A .14B .-14C .2D .-210.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向旋转一周,点P 所转过的弧A P 的长为l ,弦A P 的长度为d ,则函数()d f l =的图像大致是( )d l Oπ2π2A.dlOπ2π2B.d l Oπ2π2C.dlOπ2π2D.y xOPdl A开始k=k=k+131n n=+150?n>输出k ,n结束是否输入n二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(第11至13题为必做题,每道试题考生都必须作答)11.2sin(),44πα+=则sin2α= .12.已知236x yx yy+≤⎧⎪-≥⎨⎪≥⎩则3z x y=+的最大值为_____.13.阅读右图程序框图.若输入5n=,则输出k的值为_____.(二)选做题(14 ~15题,考生只能从中选做一题;两道题都做的,只计第14题的分。
惠州市2024届高三第三次调研考试理科综合生物(2014-1-4)1.下列目的与材料(或原理)匹配错误..的是试验目的原理、方法或材料A 调查车前草的种群密度样方法B 光合作用中碳的去路同位素标记法C 分别提取各种细胞器差速离心D 视察质壁分别人口腔上皮细胞2.依据下图所示的概念图作出的推断,错误..的是A.若甲图中a和b分别代表乳酸菌和蓝藻,d可以代表原核生物B.乙图能体现酶(c)、蛋白质(a)和固醇类物质(b)的关系C.丙图表示糖(b)和糖原(a)的关系D.丁图可体现出真核细胞(c)、核糖体(a)和线粒体(b)的关系3. 酵母菌在含乳糖的培育基上生长时,细胞中出现了分解乳糖的酶,将其转移到不含乳糖的培育基上时,这些酶就不存在了,下列说法正确的是A.缺乏乳糖时,编码乳糖分解酶的基因消逝了B.在乳糖的诱导下,酵母菌突变产生了编码乳糖分解酶的基因C.在乳糖的诱导下,酵母菌分解乳糖的酶的基因得到表达D.乳糖可能是乳糖分解酶基因的重要组成成分4.右图是受损的DNA分子在人体内的自动切除、修复示意图,以下说法错误..的是A.酶1可能是核酸内切酶B.该修复过程遵循碱基互补配对原则C.图中的结构缺陷可能是多种缘由引起的碱基错配D.该过程可能用到RNA聚合酶、连接酶等5. 左图为人体激素作用于靶细胞的两种机理示意图,说法错误..的是:A.激素B不干脆进入细胞就能起作用B.激素A可能是胰岛素等大分子类激素干脆进入细胞内起作用C.某个靶细胞可能同时存在上述两种作用基理D.由上图可知激素只是一种信号分子,启动和调整相应的生理过程6.神经肌肉接头处也是一种突触结构。
某种蛇毒能与乙酰胆碱受体坚固结合;有机磷农药能抑制胆碱酯酶的活性。
因此,该蛇毒与有机磷农药中毒的症状分别是()A.肌肉松弛、肌肉僵直B.肌肉僵直、肌肉松弛C.肌肉松弛、肌肉松弛D.肌肉僵直、肌肉僵直24.下列物理技术与应用匹协作理的是物理技术在生命科学探讨领域的应用A B型超声波亲子鉴定B 电子显微镜视察细胞中的分子C 电泳技术分别蛋白质混合物X射线衍射技D“看清”生命物质三维结构术25.下面生产运用实例与生物学原理匹配正确的是生产运用实例原理种群的数量变更、生态系统的稳定A 伏季休渔性等生产白菜-甘蓝杂种基因重组B植物C 合理密植与间苗光合作用与呼吸作用D 用黑光灯诱杀害虫基因突变26.回答以下用人工湿地处理生活污水的问题。
广东省惠州市2013届高三第三次调研数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2013•惠州模拟)复数的共轭复数是()A.﹣3+i B.﹣3﹣i C.3+i D.3﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:把的分子、分母同时乘以复数i,得到a+bi,由此能求出复数z的共轭复数.解答:解:=(1﹣3i)i=3+i,所以复数的共轭复数是3﹣i.故选D.点评:本题考查复数的代数运算,是基础题.解题时要认真审题,熟练掌握共轭复数的概念.2.(5分)(2013•惠州模拟)已知向量=(2,﹣3),=(x,6),且,则|+|的值为()A.B.C.5D.13考点:平行向量与共线向量;向量的模;平面向量的坐标运算.专题:平面向量及应用.分析:根据两个向量平行的坐标表示求出x的值,然后运用向量的坐标加法运算求出两个和向量的坐标,最后利用求模公式求模.解答:解:由向量=(2,﹣3),=(x,6),且,则2×6﹣(﹣3)x=0,解得:x=﹣4.所以,则=(﹣2,3).所以=.故选B.点评:本题考查了两个平行的坐标表示,考查了平面向量的坐标运算,考查了向量模的求法,是基础题.3.(5分)(2013•惠州模拟)已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣1} B.{1} C.{﹣1,1} D.{﹣1,0,1}考点:集合的包含关系判断及应用.专题:计算题.分析:根据题中条件:“B⊆A”,得到B是A的子集,故集合B可能是∅或B={﹣1},或{1},由此得出方程ax+1=0无解或只有一个解x=1或x=﹣1.从而得出a的值即可.解答:解:由于B⊆A,∴B=∅或B={﹣1},或{1},∴a=0或a=1或a=﹣1,∴实数a的所有可能取值的集合为{﹣1,0,1}故选D.点评:本题主要考查了集合的包含关系判断及应用,方程的根的概念等基本知识,考查了分类讨论的思想方法,属于基础题.4.(5分)(2013•惠州模拟)已知幂函数y=f(x)的图象过点(,),则log4f(2)的值为()A.B.C.2D.﹣2﹣考点:幂函数图象及其与指数的关系;对数的运算性质;函数的零点.专题:函数的性质及应用.分析:先利用待定系数法将点的坐标代入解析式求出函数解析式,再将x用2代替求出函数值.解答:解:由设f(x)=x a,图象过点(,),∴()a=,解得a=,∴log4f(2)=log42=.故选A.点评:本题考查利用待定系数法求函数解析式、知函数解析式求函数值.5.(5分)(2009•陕西)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:椭圆的应用.专题:常规题型.分析:将方程mx2+ny2=1转化为,然后根据椭圆的定义判断.解答:解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选C.点评:本题考查椭圆的定义,难度不大,解题认真推导.6.(5分)(2013•济宁一模)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为()A.19、13 B.13、19 C.20、18 D.18、20考点:茎叶图;众数、中位数、平均数.专题:计算题;图表型.分析:把两列数据按照从小到大排列,数据有11个.最中间一个数字就是中位数,把两列数据的中位数找出来.解答:解:由茎叶图知甲的分数是6,8,9,15,17,19,23,24,26,32,41,共有11个数据,中位数是最中间一个19,乙的数据是5,7,8,11,11,13,20,22,30,31,40共有11和数据,中位数是最中间一个13,故选A.点评:本题考查茎叶图和中位数,解题的关键是把数据按照从小到大排列,最中间一个或最中间两个数据的平均数就是中位数.7.(5分)(2013•惠州模拟)已知x、y满足约束条件,则Z=2x+4y的最小值为()A.﹣15 B.﹣20 C.﹣25 D.﹣30考点:简单线性规划的应用.。
惠州市2011届高三第三次调研考试文科综合能力测试试题(2011.1)说明:本试卷共**页,41小题,满分300分。
考试用时150分钟。
答案须做在答题卷和答题卡上;须用黑色字迹的钢笔或签字笔作答主观题,答题卡的填涂须用2B铅笔;考试结束后只交答题卷和答题卡。
一、选择题:本大题共35小题,每小题4分,共140分。
在每小题列出的四个选项中,只有一项是符合题目要求的。
1.东南沿海登陆的台风不.会A.带来沿海风暴潮B.诱发地质灾害C.缓解高温酷暑D.引发沙尘暴2.云贵高原在冬季常出现下图所示天气系统,从图中可知A.右图中剖面是东西向B.昆明冬季多晴朗温暖天气C.云贵高原地势自东北向西南倾斜D.昆明与贵阳冬半年均以冷湿天气为主3.读下图某岛略图,从图中提供的信息可判断A.地势中间高四周低,地形以高原为主B.河流流程短,落差小C.图中A地每年有一次的阳光直射机会D.全年晴好天气西南部多于东北部▲ 读山西省近年来的产业结构图,回答4-5题。
4.该省产业结构变化是A.第一产业比重略有回升B.第二产业的比重开始下降C.第二产业的比重持续上升且占据主导地位D.第三产业的比重下降幅度最大5.该省工业主导产业是A.机械制造B.有色冶金C.能源工业D.轻纺工业 右图图①为“某市同一地区不同时期地价曲线图”,图②为“该市城市规模的变化图”,读图完成6-7题。
6.图①中郊区地价变化的原因最有可能是A .中心商务区整体外迁B .城市规模缩小,用地紧张C .郊区基础设施比城区更完善D .郊区交通通达度提高 7.图②反映了该城市 A .城市化水平比较高,城市人口增长趋缓 B .上世纪60年代以前,城市核心区面积增长速度明显高于城乡过渡带 C .城市规模扩大,出现郊区城市化 D .城市核心区规模减小,出现逆城市化根据土地利用结构调整的需要,科研人员对某生态脆弱区的农业土地利用拟定了三种方案(下表)。
回答8-9题。
8.对三种方案的评价准确的是A . A 方案环境效益最好B . B 方案3-8年内的收入最高C . C 方案经济效益年年最佳D . C 方案更有利于当地农业的持续发展 9.该地最有可能位于A .黄土高原B .江汉平原C .四川盆地D .两广丘陵读“我国南、北方水资源、人口及耕地分布对照图,回答10-11题。
广东省惠州市第一中学(惠州市)2015届高三第二次调研考试数学(理)试题(解析版)【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求. 请在答题卡上填涂相应选项.【题文】1.设集合{}|20A x x =+=,集合{}2|40B x x =-=,则AB =( )A .{}2-B .{}2C .{}2,2-D .∅【知识点】集合的基本运算.A1【答案解析】A 解析:由240x -=,解得2x =±,所以{}2,2B =-,又{}2A =-,所以{}2AB =-,故选A.【思路点拨】先解出集合A,B ,再求交集即可。
【题文】2. 复数(1)z i i =⋅+(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【知识点】复数的乘法运算;复数的几何意义。
L4【答案解析】B 解析:∵(1)1i z i i =⋅+=-+∴复数z 在复平面上对应的点的坐标为()1,1-,位于第二象限.故选B.【思路点拨】先利用复数的乘法运算求出Z ,再判断即可。
【题文】3.双曲线2228x y -=的实轴长是( )A .2B .2 2C .4D .4 2 【知识点】双曲线方程及其简单几何性质。
H6【答案解析】C 解析:双曲线方程可变形为22148x y -=,所以24,2,24a a a ===.故选C.【思路点拨】先把双曲线2228x y -=化成标准方程,再求出实轴长。
【题文】4.设向量(1,0)a =,11,22b ⎛⎫=⎪⎝⎭,则下列结论中正确的是( ) A .a b = B .2a b ⋅=C .//a bD .a b -与b 垂直 【知识点】向量的数量积运算;向量的模的运算。
【3年高考2年模拟】第十三章算法初步第一部分三年高考荟萃2011年高考题1.(天津理3)阅读右边的程序框图,运行相应的程序,则输出i的值为A.3 B.4C.5 D.6【答案】B2.(全国新课标理3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120 (B)720 (C)1440 (D)5040【答案】B3.(辽宁理6)执行右面的程序框图,如果输入的n是4,则输出的P是(A)8[(B )5 (C )3 (D )2 【答案】C4. (北京理4)执行如图所示的程序框图,输出的s 值为 A .-3B .-12C .13D .2【答案】D5.(陕西理8)右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分。
当126,9.x x ==p=8.5时,3x 等于A .11B .10C .8D .7【答案】C6.(浙江理12)若某程序框图如图所示,则该程序运行后输出的k 的值是 。
【答案】57.(江苏4)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是【答案】38.(福建理11)运行如图所示的程序,输出的结果是_______。
【答案】39.(安徽理11)如图所示,程序框图(算法流程图)的输出结果是.【答案】1510.(湖南理13)若执行如图3所示的框图,输入11x =,232,3,2x x x ==-=,则输出的数等于 。
【答案】2311.(江西理13)下图是某算法的程序框图,则程序运行后输出的结果是【答案】1012.(山东理13)执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是 【答案】682010年高考题一、选择题1.(2010浙江理)(2)某程序框图如图所示, 若输出的S=57,则判断框内位(A ) k >4? (B )k >5?(C ) k >6? (D )k >7? 【答案】A解析:本题主要考察了程序框图的结构, 以及与数列有关的简 单运算,属容易题2.(2010陕西文)5.右图是求x1,x2,…,x10的乘积S 的程序框图,图中空白框中应填入的内容为 (A)S=S*(n+1) (B )S=S*xn+1 (C)S=S*n (D)S=S*xn 【答案】D解析:本题考查算法 S=S*xn3.(2010辽宁文)(5)如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于(A )720 (B ) 360 (C ) 240 (D ) 120 【答案】B解析: 13456360.p =⨯⨯⨯⨯=4.(2010辽宁理)(4)如果执行右面的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于(A )1m n C - (B) 1m n A - (C) m n C (D) m n A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力 【解析】第一次循环:k=1,p=1,p=n-m+1;第二次循环:k=2,p=(n-m+1)(n-m+2);第三次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3) ……第m次循环:k=3,p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n此时结束循环,输出p=(n-m+1) (n-m+2) (n-m+3)…(n-1)n=m n A5.(2010浙江文)4.某程序框图所示,若输出的S=57,则判断框内为(A) k>4? (B) k>5?(C) k>6? (D) k>7?【答案】A解析:本题主要考察了程序框图的结构,以及与数列有关的简单运算,属容易题6.(2010天津文)(3)阅读右边的程序框图,运行相应的程序,则输出s的值为(A)-1 (B)0 (C)1 (D)3【答案】B【解析】本题主要考查条件语句与循环语句的基本应用,属于容易题。
惠州市2023届高三第三次调研考试试题数 学(答案在最后)全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答单项及多项选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、单项选择题:本题共8小题,每小题满分5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。
1.已知集合{0,1,2}A =,11,B x ⎧⎫=⎨⎬⎩⎭,且B A ⊆,则实数x =( ) A .12 B .1 C .12或1 D .0 2.数列{}n a 为等差数列,4a 、2019a 是方程2430x x -+=的两个根,则{}n a 的前2022项和为( ) A .1011 B .2022 C .4044 D .80883.“2m >”是“方程22121x y m m +=-+表示双曲线”的( )条件 A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 4.已知实数0a b c >>>,则下列结论一定正确的是( )A .a a b c >B .1122a c⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .11a c <D .22a c >5.已知互不重合的三个平面α、β、γ,其中a αβ=,b βγ=,c γα=,且a b P =,则下列结论一定成立的是( )A .b 与c 是异面直线B .a 与c 没有公共点C .b c ∥D .bc P =6.若函数()xf x a =(0a >且1a ≠)在R 上为减函数,则函数log (||1)a y x =-的图象可以是( )A .B .C .D .7.在“2,3,5,7,11,13”这6个素数中,任取2个不同的数,这两数之和仍为素数的概率是( ) A .15 B .310 C .25 D .128.已知0,2x π⎛⎫∈ ⎪⎝⎭,且sin ax x bx <<恒成立,则b a -的最小值为( ) A .1 B .2π C .12π- D .21π- 二、多项选择题:本题共4小题,每小题满分5分,共20分。
惠州市2013届高三第二次调研考试数学(理科)参考答案与评分标准一.选择题:共8小题,每小题5分,满分40分1.【解析】1.提示:因为(1)1z i i i =+=-+,所以(1)1z i i i =+=-+对应的点在复平面的第二象限. 故选B . 2.【解析】由M N ≠∅ 可知39m -=-或33m -=,故选A .3.【解析】31336()2s a a ==+且312a a d =+,14a =,2d ∴=.故选C 4.【解析】由//a b ,得cos 2sin 0αα+=,即1tan 2α=-,所以tan()34πα-=-,故选B5.【解析】注意,a b 的正负号.故选D . 6.【解析】椭圆的右焦点为(2,0)F,22p∴=,即4p =,故选D 7.【解析】前四年年产量的增长速度越来越慢, 知图象的斜率随x 的变大而变小,后四年年产量的增长速度保持不变,知图象的斜率不变,,故选B .8.【解析】由题可知()11x f x e =->-,22()43(2)11g x x x x =-+-=--+≤,若有()()f a g b =,则()(1,1]g b ∈-,即2431b b -+->-,解得22b <<A .二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只选做一题. 9.(10.12 11.3512.9 13. ()∞+,1 14.159.【解析】根据二次根式和对数函数有意义的条件,得12660000112log 0log 62x xx x x x x >⎧>⎧>⎧⎪⎪⇒⇒<≤⎨⎨⎨-≥≤⎩⎪⎪≤=⎩⎩。
10.【解析】232()x x -的展开式中的常数项即223222132()()T C x x-+=-。
11.【解析】连接1,DF D F ,则//DF AE ,所以DF 与1D F 所成的角即为异面直线所成的角,设边长为2,则1DF D F ==1DD F 中13cos 5D FD ==.12.【解析】2222,2(),2x x x x h x x x⎧>=⎨≤⎩,由数形结合可知,当24x <<时, ()2h x x =所以有(3)9h =13.【解析】目标函数ax y z -=可变为直线y ax z =+,斜率为a ,仅在点()3,5处取得最小值,只须1a >14.【解析】直线的普通方程为y x =,曲线的普通方程()22(1)24x y -+-=AB ∴=15.【解析】先用切割线定理求出BC 的长度,然后距离d =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)由题意得cos 1m n A A =-= ………2分2sin()16A π-= , 1sin()62A π-= ………4分由A 为锐角 , 得(,)663A πππ-∈-,,663A A πππ-== ………6分(2)由(1)可得1cos 2A = ………7分 所以()cos 22sin f x x x =+ 212sin 2sin x x =-+ 2132(sin )22x =--+ ………9分因为x R ∈,则sin [1,1]x ∈-,当1sin 2x =时,()f x 有最大值32. 当sin 1x =-时,()f x 有最小值3-, ………11分故所求函数()f x 的值域是3[3,]2-. ………12分17.(本小题满分12分)解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有39C 种不同的选法,选出的3种商品中,没有日用商品的选法有35C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3539537114242C P C =-=-=……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。
徐州市2011届高三年级第三次调研考试数学Ⅰ答案及评分标准一、填空题:1. 1i - 2.(4,3,7)-- 3.0 4.50 5.16 6.13 7.502 8.23 910.10 11.32π 12.4y =或4091640x y --= 13.3π 14. [)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦二、解答题:15. (1)1cos(2)1cos(2)133()sin 2222x x f x x π2π--+-=++………………………………2分 11(sin 2cos2)2x x =+-)14x π-+,………………………………4分 当2242x k ππ-=π+,即3,8x k k π=π+∈Z 时,……………………………………6分()f x1.………………………………………………………………8分 (2)由222242k x k ππππ--π+≤≤,即3,88k x k k πππ-π+∈Z ≤≤,又因为0x π≤≤,所以所求()f x 的增区间为3[0,],[,π]88π7π.……………………14分16.(1)连接EC ,交BF 于点O ,取AC 中点P ,连接,PO PD ,可得PO ∥AE ,且12PO AE =,而DF ∥AE ,且12DF AE =,所以DF ∥PO , 且DF PO =,所以四边形DPOF 为平行四边形,所以FO ∥PD ,即BF ∥PD ,又PD ⊂平面ACD ,BF ⊄平面ACD ,所以BF ∥平面ACD .……………………………………………8分(2)二面角A EF C --为直二面角,且AE EF ⊥,所以AE ⊥平面BCFE , 又BC ⊂平面BCFE ,所以AE BC ⊥,又BC BE ⊥,BE AE E = , 所以BC ⊥平面AEB ,所以BC 是三棱锥C ABE -的高,同理可证CF 是四棱锥C AEFD -的高,……………………………………………10分 所以多面体ADFCBE 的体积111110222(12)2232323C ABE C AEFD V V V --=+=⨯⨯⨯⨯+⨯+⨯⨯=.………………14分B C F D E A OP17. (1)连接RA ,由题意得,RA RP =,4RP RB +=,所以42RA RB AB +=>=,…………………………………………………………2分由椭圆定义得,点R 的轨迹方程是22143x y +=.……………………………………4分 (2)设M 00(,)x y ,则00(,)N x y --,,QM QN 的斜率分别为,QM QN k k , 则002QM y k x =-,002NQ y k x =+,………………………………………………………6分 所以直线QM 的方程为00(2)2y y x x =--,直线QN 的方程00(2)2y y x x =-+,…8分 令(2)x t t =≠,则001200(2),(2)22y y y t y t x x =-=--+,……………………………10分 又因为00(,)x y 在椭圆2200143x y +=,所以2200334y x =-, 所以222022********(3)(2)34(2)(2)444x t y y y t t x x --⋅=-==----,其中t 为常数.……14分 18.(1)因为29y x=,所以229y x '=-,所以过点P 的切线方程为222()99y x t t t -=--,即22499y x t t=-+,…………2分令0x =,得49y t=,令0y =,得2x t =.所以切线与x 轴交点(2,0)E t ,切线与y 轴交点4(0,)9F t .………………………4分①当21,41,912,33t tt ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤即4192t ≤≤时,切线左下方的区域为一直角三角形, 所以144()2299f t t t =⨯⨯=.…………………………………………………………6分 ②当21,41,912,33t tt ⎧⎪>⎪⎪⎨⎪⎪⎪⎩≤≤≤ 即1223t <≤时,切线左下方的区域为一直角梯形,22144241()()12999t t f t t t t --=+⋅=,……………………………………………………8分 ③当21,41,912,33t tt ⎧⎪⎪⎪>⎨⎪⎪⎪⎩≤≤≤即1439t <≤时,切线左下方的区域为一直角梯形, 所以221499()(2)12224t t f t t t t -=+⋅=-. 综上229142,,439441(),,9924112,.923t t t f t t t t t ⎧-<⎪⎪⎪=⎨⎪-⎪<⎪⎩≤≤≤≤……………………………………………………10分 (2)当1439t <≤时, 29()24f t t t =- 29444()4999t =--+<,……………………………12分当1223t <≤时, 241()9t f t t -=21144(2)999t =--+<,………………………………14分 所以max 49S =.…………………………………………………………………………16分19.(1)由2()ln f x x a x =-,得22()x a f x x-'=,………………………………………2分由1()g x x a ='()g x =.又由题意可得(1)(1)f g ''=,即222a a a --=,故2a =,或12a =.………………………………………………4分 所以当2a =时,2()2ln f x x x =-,1()2g x x =;当12a =时,21()ln 2f x x x =-,()2g x x =6分(2)当1a >时,21()()()2ln 2h x f x g x x x x =-=--212(1)(1)'()22x x h x x x x -+=--+=1)=⎣⎦,………………………………………8分由0x >0>,故当(0,1)x ∈时,()0h x '<,()h x 递减, 当(1,)x ∈+∞时,()0h x '>,()h x 递增, 所以函数()h x 的最小值为13(1)12ln1122h =--+=.…………………10分 (3)12a =,21()ln 2f x x x =-,()2g x x =当11[,)42x ∈时, 21()ln 2f x x x =-,2141'()2022x f x x x x -=-=<, ()f x 在1142⎡⎤⎢⎥⎣⎦,上为减函数,111()()ln 20242f x f =+>≥,………………………12分当11[,)42x ∈时,()2g x x ='()20g x ==>, ()g x 在1142⎡⎤⎢⎥⎣⎦,上为增函数,1()()12g x g =≤,且1()()04g x g =≥.……14分要使不等式()()f x m g x ⋅≥在11,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,当14x =时,m 为任意实数;当11(,]42x ∈时,()()f x m g x ≤,而min1()()21()()2f f xg x g ⎡⎤=⎢⎥⎣⎦.所以(2ln(4e)4m ≤.……………………………………………………………16分 20.⑴由条件知:11-=n n q a a ,102q <<,01>a ,所以数列{}n a 是递减数列,若有k a ,m a ,n a ()k m n <<成等差数列,则中项不可能是k a (最大),也不可能是n a (最小),………………………………2分 若 k n km n k m q q a a a --+=⇔+=122,(*) 由221m k q q -<≤, 11>+-kh q,知(* )式不成立,故k a ,m a ,n a 不可能成等差数列. ………………………………………………4分⑵(i)方法一: ⎥⎦⎤⎢⎣⎡++-=--=----++45)21()1(21121121q q a q q q a a a a k k k k k ,……6分 由)1,41(45)21(2∈++-q 知, 121k k k k k a a a a a ++---<<< , 且>>>--++++3221k k k k k a a a a a … ,………………………………………………8分 所以121+++=--k k k k a a a a ,即0122=-+q q , 所以12-=q ,………………………………………………………………………10分方法二:设12k k k m a a a a ++--=,则21m k q q q ---=,…………………………………6分由211,14q q ⎛⎫--∈ ⎪⎝⎭知1m k -=,即1m k =+, ……………………………………8分以下同方法一. …………………………………………………………………………10分 (ii) nb n 1=,………………………………………………………………………………12分 方法一:n S n 131211++++= ,)131211()31211()211(1n T n +++++++++++=n n n n n n )1(3221--++-+-+= )1433221()131211(nn n n -++++-++++= )]11()411()311()211[(nnS n -++-+-+--=)]13121()1[(n n nS n +++---=)]131211([nn nS n ++++--=n n S n nS +-=(1)n n S n =+-,所以2011201120122011T S =-.…………………………………………………16分方法二:11111312111++=++++++=+n S n n S n n 所以 1(1)(1)1n n n S n S ++-+=,所以1(1)1n n n n S nS S ++-=+,12112+=-S S S , 123223+=-S S S , … … 1)1(1+=-++n n n S nS S n ,累加得n T S S n n n +=-++11)1(,所以1(1)1(1)(1)()1n n n n n T n S n n S n n S b n +=+--=+-=++--1(1)()11n n S n n =++--+ (1)n n S n =+-, 所以2011201120122011T S =-. ……………………………………………………16分徐州市2011届高三年级第三次调研考试数学Ⅱ(附加题)答案及评分标准21.【选做题】A .选修4-1:几何证明选讲(1)因为EF ∥CB ,所以BCE FED ∠=∠,又BAD BCD ∠=∠,所以BAD FED ∠=∠,又EFD EFD ∠=∠,所以△DEF ∽△EFA .……………………………………6分 (2)由(1)得,EF FDFA EF=,2EF FA FD =⋅. 因为FG 是切线,所以2FG FD FA =⋅,所以1EF FG ==.…………………10分B .选修4—2:矩阵与变换(1)1005⎡⎤=⎢⎥⎣⎦M .………………………………………………………………………2分 设(,)x y ''是所求曲线上的任一点,1005x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦, 所以,5,x x y y '=⎧⎨'=⎩所以,1,5x x y y '=⎧⎪⎨'=⎪⎩代入4101x y -=得,421x y ''-=,所以所求曲线的方程为124=-y x .……………………………………………4分 (2)矩阵M 的特征多项式1()(1)(5)005f λλλλλ-==--=-,所以M 的特征值为5,121==λλ.………………………………………………6分当11=λ时,由111λ=M αα,得特征向量110⎡⎤=⎢⎥⎣⎦α;当52=λ时,由222λ=M αα,得特征向量201⎡⎤=⎢⎥⎣⎦α.………………………10分C .选修4-4:坐标系与参数方程(1)228150x y y +-+=.…………………………………………………………4分 (2)当34απ=时,得(2,1)Q -,点Q 到1C, 所以PQ1.………………………………………………10分D .选修4—5:不等式选讲 由2()a b a bf x a +--≥,对任意的,a b ∈R ,且0a ≠恒成立,而223a b a ba b a baa+--++-=≤,()3f x ≥,即113x x -++≥,解得32x -≤,或32x ≥,所以x 的范围为33,22x x x ⎧⎫-⎨⎬⎩⎭≤或≥. …………10分22.(1)以1,,CA CB CC 分别为x y z ,,因为3AC =,4BC =,14AA =,所以(300)A ,,, (0,4,0)B ,(000)C ,,,1(0,0,4)C =, 所以1(3,0,4)AC =-,因为AD AB λ= ,所以点(33,4,0)D λλ-+,所以(33,4,0)CD λλ=-+,因为异面直线1AC 与CD 所成角的余弦值为925,所以 19|cos ,|25AC CD <>==,解得12λ=.……………4分 (2)由(1)得1(044)B ,,,因为 D 是AB 的中点,所以3(20)2D ,,,所以3(20)2CD = ,,,1(044)CB = ,,,平面11CBB C 的法向量 1n (1,0,0)=, 设平面1DB C 的一个法向量2000(,,)x y z =n ,则1n ,2n 的夹角(或其补角)的大小就是二面角1D CB B --的大小,由2210,0,CD CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 得0000320,2440,x y y z ⎧+=⎪⎨⎪+=⎩令04x =,则03y =-,03z =, 所以2n (4,3,3)=-,121212cos ||||⋅<>==⋅,n n n n n n , 所以二面角1D B C B --. …………………………………10分 23.(1)要想组成的三位数能被3整除,把0,1,2,3,…,9这十个自然数中分为三组:0,3,6,9;1,4,7;2,5,8.若每组中各取一个数,含0,共有1112332236=C C C A 种; 若每组中各取一个数不含0,共有11133333=162C C C A 种; 若从每组中各取三个数,共有322233223=30A +C A A 种.所以组成的三位数能被3整除,共有36+162+30=228种.………………………6分 (2)随机变量ξ的取值为0,1,2,ξ的分布列为:所以ξ的数学期望为77130121515155E ξ=⨯+⨯+⨯=.……………………………10分。
广东省惠州市2024届高三上学期第三次调研考试数学试题和答案详细解析(题后)一、单选题1. 已知集合,则()A.B.C.D.2. 设复数z满足,z在复平面内对应的点为,则()A.B.C.D.3. 对于数列,“”是“数列为等差数列”的()A.充分非必要条件;B.必要非充分条件;C.充要条件;D.既非充分又非必要条件.4. 将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.B.C.D.5. 将最小正周期为的函数的图象向左平移个单位长度,得到函数的图象,则下列关于函数的说法正确的是()A.对称轴为,B.在内单调递增C.对称中心为,D.在内最小值为6. 设是双曲线的左、右焦点,过点作双曲线的一条渐近线的垂线,垂足为.若,则双曲线的离心率为()A.B.C.D.7. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如将有三条棱互相平行且有一个面为平行四边形的五面体称为刍甍,今有一刍甍,底面为平行四边形,面,记该刍甍的体积为,三棱锥的体积为,,,若,则()A.1B.C.D.8. 设定义在上的函数与的导函数分别为和,若,,且为奇函数,则下列说法中一定正确的是()A.是奇函数B.函数的图象关于点对称C.点(其中)是函数的对称中心D.二、多选题9. 下列说法正确的是()A.若,则B.若,则C.若,则D.若,则10. 德国数学家狄利克雷(Dirichlet,1805-1859),是解析数论的创始人之一.他提出了著名的狄利克雷函数:,以下对的说法正确的是()A.B.的值域为C.存在是无理数,使得D.,总有11. 在中,,则下列说法正确的是()A.B.C.的最大值为D.12. 在四面体中,,,,,分别是棱,,上的动点,且满足均与面平行,则()A.直线与平面所成的角的余弦值为B.四面体被平面所截得的截面周长为定值1C.三角形的面积的最大值为D.四面体的内切球的表面积为三、填空题13. 某电池厂有A,B两条生产线,现从A生产线中取出产品8件,测得它们的可充电次数的平均值为210,方差为4;从B生产线中取出产品12件,测得它们的可充电次数的平均值为200,方差为4.则20件产品组成的总样本的方差为____________.(参考公式:已知总体分为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:,,;,,.记总的样本平均数为,样本方差为,则;)14. 若为偶函数,则___________.(填写符合要求的一个值)15. 如图,在三棱锥中,已知平面,,,则向量在向量上的投影向量为___________(用向量来表示).16. 已知N为抛物线上的任意一点,M为圆上的一点,,则的最小值为__________.四、解答题17. 如图,在四棱锥中,底面满足,,底面,且,.(1)求证:平面;(2)求平面与平面的夹角的余弦值.18. 在中,角A,B,C所对的边分别为a,b,c,已知(1)求角;(2)是的角平分线,若,,求的面积.19. 魔方是民间益智玩具,能培养数学思维,锻炼眼脑的协调性,全面提高专注力、观察力、反应力.基于此特点某小学开设了魔方兴趣班,共有100名学生报名参加,在一次训练测试中,老师统计了学生还原魔方所用的时间(单位:秒),得到相关数据如下:时间人数年级低年级2812144高年级102216102(1)估计这100名学生这次训练测试所用时间的第78百分位数;(2)在这次测试中,从所用时间在和内的学生中各随机抽取1人,记抽到低年级学生的人数为,求的分布列和数学期望.20. 已知数列满足:,且.(1)求数列的通项公式;(2)已知数列满足, 定义使为整数的k叫做“幸福数”,求区间内所有“幸福数”的和.21. 如图,已知半圆与x轴交于A,B两点,与y轴交于E点,半椭圆的上焦点为,并且是面积为的等边三角形,将满足的曲线记为“”.(1)求实数、的值;(2)直线与曲线交于M、N两点,在曲线上再取两点S、T(S、T分别在直线两侧),使得这四个点形成的四边形的面积最大,求此最大面积;(3)设点,P是曲线上任意一点,求的最小值.22. 已知函数(1)若,函数的极大值为,求a的值;(2)若对任意的,在上恒成立,求实数的取值范围.答案详解1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.。
惠州市2011届高三第三次调研考试数学试题(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式: 2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅⋅+-. 一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在复平面内,复数12z i=+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知条件:1p x ≤,条件1:1q x<,则q p ⌝是成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 3. 某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ) A.y =2x -2 B.y =(12)x C.y =log 2x D.y =12(x 2-1)4. 右图是2010年在惠州市举行的全省运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,45. 若△ABC 的周长等于20,面积是103,A =60°,则BC 边的长是 ( )8 9 4 4 6 4 7 37 9俯视图侧视图A .5B .6C .7D .86. 若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b 的最小值为( )A .8B .12C .16D .207. 已知整数以按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )A .()10,1B .()2,10C .()5,7D .()7,58. 在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2πf x x ax b =+-+有零点的概率为( )A .1-8π B .1-4π C .1- 2π D .1-34π 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.一简单组合体的三视图及尺寸 如右图示( 单位:cm)则该组合体的表面积为 _______ 2cm .10.已知△ABC 中,点A 、B 、C 的坐标依次是A(2,-1),B(3,2),C(-3,-1),BC 边上的高为AD ,则AD →的坐标是:_______.11.在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中, x 的一次项系数是10-,则实数a 的值为 .12. 给出如图所示的程序框图,那么输出的数是________. 13. 已知ABC ∆的三边长为c b a ,,,内切圆半径为r(用的面积表示ABC S ABC ∆∆),则ABC S ∆)(21c b a r ++=; 类比这一结论有:若三棱锥BCD A -的内切球半径为R ,则三棱锥体积=-BCD A V .NM CABO(二)选做题(14~15题,考生只能从中选做一题;两道题都做的,只记第14题的分) 14.(坐标系与参数方程选做)在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 . 15.(几何证明选讲选做题)如图,点B 在⊙O 上, M 为直径AC 上一点,BM 的延长线交⊙O 于N , 45BNA ∠= ,若⊙O的半径为,则MN 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)已知函数()sin()f x A x ωϕ=+(0,0,,)2A x ωϕπ>><∈R 的图象的一部分如下图所示.(1)求函数()f x 的解析式;(2)当2[6,]3x ∈--时,求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值.17.(本题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (1)若某位顾客消费128元,求返券金额不低于30元的概率; (2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望18.(本题满分14分)2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n .FE DCBA GFDECBA(1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a n b ,求数列{}n c 的前n 项和n S .19.(本题满分14分)已知梯形ABCD 中,AD∥BC,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF∥BC,AE = x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD⊥平面EBCF (如图). (1)当x=2时,求证:BD⊥EG ;(2)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x , 求()f x 的最大值;(3)当()f x 取得最大值时,求二面角D-BF-C 的余弦值.20.(本题满分14分)已知椭圆C :)0( 12222>>=+b a b y a x 的离心率为23,过坐标原点O 且斜率为21的直线l 与C 相交于A 、B ,102||=AB .⑴求a 、b 的值;⑵若动圆1)(22=+-y m x 与椭圆C 和直线 l 都没有公共点,试求m 的取值范围.21.(本题满分14分)已知函数1163)(23--+=ax x ax x f ,1263)(2++=x x x g ,和直线m :9+=kx y . 又0)1(=-'f . (1)求a 的值;(2)是否存在k 的值,使直线m 既是曲线()y f x =的切线,又是()y g x =的切线;如果存在,求出k 的值;如果不存在,说明理由.(3)如果对于所有2-≥x 的x ,都有)(9)(x g kx x f ≤+≤成立,求k 的取值范围.惠州市2011届高三第三次调研考试数学试题(理科)答案一1.【解析】答案:D z =12+i =2-i (2+i )(2-i )=25-15i .故选D. 2.【解析】B ⌝p :1x >,q :110x x<⇔<或1x >,故q 是⌝p 成立的必要不充分条件,故选B.3.【解析】选D 直线是均匀的,故选项A 不是;指数函数1()2x y =是单调递减的,也不符合要 求;对数函数12log y x =的增长是缓慢的,也不符合要求;将表中数据代入选项D 中,基本符合要求. 4.【解析】C 去掉最高分和最低分后,所剩分数为84,84,86,84,87,可以计算得平均数和方差.5.【解析】答案:C 依题意及面积公式S =12bcsinA ,得103=12bcsin60°,得bc =40.又周长为20,故a +b +c =20,b +c =20-a ,由余弦定理得:222220222222cos 2cos60()3(20)120a b c bc A b c bc b c bc b c bc a =+-=+-=+-=+-=--,故a 解得a =7.6.【解析】答案:C 由题意知,圆心坐标为(-4,-1),由于直线过圆心,所以4a +b =1,从而1a +4b =(1a +4b )(4a +b)=8+b a +16ab ≥8+2×4=16(当且仅当b =4a 时取“=”).7.【解析】C ; 根据题中规律,有()1,1为第1项,()1,2为第2项,()1,3为第4项,…,()5,11为第56项,因此第60项为()5,7.8.【解析】B ;若使函数有零点,必须必须()()22224π0a b ∆=--+≥,即222πa b +≥.在坐标轴上将,a b 的取值范围标出,有如图所示当,a b 满足函数有零点时,坐标位于正方形内圆外的部分.于是概率为321144πππ-=-.二.填空题(本大题每小题5分,共30分,把答案填在题后的横线上)9.12800 10.(-1,2) 11.1 12.750013.)1(3ABC ABD ACD BCD R S S S S ∆∆∆∆+++ 14.215.29.【解析】该组合体的表面积为:222212800S S S cm ++侧视图主视图俯视图=。
10.【解析】设D (x ,y ),则AD →=()x -2,y +1, BD →=()x -3,y -2,BC →=()-6,-3,∵AD →⊥BC →,BD →∥BC →,∴⎩⎨⎧-6()x -2-3()y +1=0-3()x -3+6()y -2=0得⎩⎪⎨⎪⎧x =1y =1,所以AD →=()-1,2.答案:(-1,2)11.【解析】1;由二项式定理,()()5210355C C rrr rrr r a T xa x x --⎛⎫=-=-⋅ ⎪⎝⎭. 当1031r -=时,3r =,于是x 的系数为()3335C 10a a -=-,从而1a =. 12.【解析】由题知,s =3×1+3×3+3×5+…+3×99=7500.13.【解析】:连接内切球球心与各点,将三棱锥分割成四个小棱锥,它们的高都等于R ,底面分别为三棱锥的各个面,它们的体积和等于原三棱锥的体积。
答案:)1(3ABC ABD ACD BCD R S S S S ∆∆∆∆+++14.【解析】2直角坐标方程 x+y ﹣2=0,d=215.【解析】∵45BNA ∠= ∴90BOA ∠=,∵OM=2,BO=∴BM=4,∵BM·MN=CM·MA=(+2)(-2)=8,∴MN=2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)解:(1)由图像知2A =,2284T T ωπ=⇒==,∴4ωπ=,得()2sin()4f x x ϕπ=+. 由对应点得当1x =时,1424ϕϕπππ⨯+=⇒=.∴()2sin()44f x x ππ=+;……………5分(2)2sin()2sin[(2)]2sin()2cos()44444444y x x x x ππππππππ=++++=+++=sin()424x x πππ+=,……………9分∵2[6,]3x ∈--,∴3[,]426x πππ∈--,………………10分 ∴当46x ππ=-,即23x =-时,y当4x π=-π,即4x =-时,y的最小值-.………………12分17.(本题满分12分)解:设指针落在A,B,C 区域分别记为事件A,B,C.则111(),(),()632P A P B P C ===. ………………3分(1)若返券金额不低于30元,则指针落在A 或B 区域.111()()632P P A P B ∴=+=+=………………6分即消费128元的顾客,返券金额不低于30元的概率是12. (2)由题意得,该顾客可转动转盘2次. 随机变量X 的可能值为0,30,60,90,120.………………7分111(0);224111(30)2;23311115(60)2;263318111(90)2;369111(120).6636P X P X P X P X P X ==⨯===⨯⨯===⨯⨯+⨯===⨯⨯===⨯= ………………10分所以,随机变量X 的分布列为:其数学期望115110306090120404318936EX =⨯+⨯+⨯+⨯+⨯= ………13分18.(本题满分14分)解:(1)由27,125252==+a a a a .且0>d 得9,352==a a …………… 2分2325=-=∴a a d ,11=a ()*∈-=∴N n n a n 12 …………… 4分 在n n b T 211-=中,令,1=n 得.321=b 当2≥n 时,T n =,211n b -11211---=n n b T ,两式相减得n n n b b b 21211-=-,()2311≥=∴-n b b n n …………… 6分 ()*-∈=⎪⎭⎫⎝⎛=∴N n b nn n 3231321. …………… 8分 (2)()nn n n n c 3243212-=⋅-=, ……………… 9分 ⎪⎭⎫ ⎝⎛-++++=∴n n n S 312353331232 ,⎪⎭⎫ ⎝⎛-+-+++=+132312332333123n nn n n S , …………… 10分⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛++++=∴+132312313131231232n n n n S =2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎪⎭⎫⎝⎛-⨯++-1131231131191231n n n=11344343123131312+++-=⎪⎭⎫⎝⎛---+n n n n n , ………………13分 …………12分nn n S 3222+-=∴ …………… 14分 19.(本题满分14分)(1)方法一:∵平面AEFD ⊥平面EBCF ,,2,//π=∠AEF AD EF∴AE ⊥EF ,∴AE ⊥平面EBCF ,AE ⊥EF ,AE ⊥BE , 又BE ⊥EF ,故可如图建立空间坐标系E-xy z .2,2=∴=EB EA ,又G 为BC 的中点,BC=4, 2=∴BG .则A (0,0,2),B (2,0,0),G (2,2,0),D (0,2,2),E (0,0,0),BD =(-2,2,2),EG = (2,2,0),BD EG ⋅=(-2,2,2) (2,2,0)=0,∴BD EG ⊥.………………4分方法二:作DH ⊥EF 于H ,连BH ,GH ,由平面AEFD ⊥平面EBCF 知:DH ⊥平面EBCF , 而EG ⊂平面EBCF ,故EG ⊥DH .AEHD EF AD DH AE EF AE EBC AEH BC EF ∴∴⊥∴=∠=∠∴,//.//,,2,// π为平行四边形,,,//,2BC EH BC EH AD EH =∴==∴且2,2===∠BC BE EBC π,∴四边形BGHE 为正方形,∴EG ⊥BH ,BH ⋂DH =H ,故EG ⊥平面DBH ,而BD ⊂平面DBH ,∴ EG ⊥BD .………4分 (或者直接利用三垂线定理得出结果)(2)∵AD ∥面BFC ,GFDECBAHy所以 ()f x =BCF D V -=V A-BFC =AE S BCF ⨯⨯∆31x x )4(42131-⨯⨯= 2288(2)333x =--+≤,即2x =时()f x 有最大值为83. ………8分(3)设平面DBF 的法向量为1(,,)n x y z =,∵AE=2, B (2,0,0),D (0,2,2),F (0,3,0),∴(2,3,0),BF =- ………10分BD =(-2,2,2),则 110n BD n BF ⎧=⎪⎨=⎪⎩, 即(,,)(2,2,2)0(,,)(2,3,0)0x y z x y z -=⎧⎨-=⎩,2220230 x y z x y -++=⎧⎨-+=⎩取3,2,1x y z ===,∴1(3,2,1)n =BCF AE 面⊥ ,∴面BCF 一个法向量为2(0,0,1)n =,………12分 则cos<12,n n>=121214||||n n n n =,………13分 由于所求二面角D-BF-C.………14分 20.(本题满分14分) ⑴依题意, l :2xy =……1分,不妨设设) , 2(t t A 、) , 2(t t B --(0>t )……2分, 由102||=AB 得40202=t ,2=t ……3分,所以⎪⎪⎩⎪⎪⎨⎧=-==+23 1282222a b a ac b a ……5分,解得4=a ,2=b ……6分.H _ EMFD BACG⑵由⎪⎩⎪⎨⎧=+-=+1)( 14162222y m x y x 消去y 得01248322=++-m mx x ……7分,动圆与椭圆没有公共点,当且仅当014416)124(34)8(222<-=+⨯⨯--=∆m m m 或5||>m ……9分,解得3||<m 或5||>m ……10分。