北师版七年级数学上期末复习经典试题及答案
- 格式:doc
- 大小:471.83 KB
- 文档页数:17
七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。
北师大版七年级上册数学期末考试试题一、单选题1.2的相反数是( )A .2B .-2C .12 D .12- 2.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.数据680 000 000元,用科学记数法表示正确的是( )A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元4.下列各题运算正确的是( )A .2a+b=2abB .3x 2﹣x 2=2C .7mn ﹣7mn=0D .a+a=a 25.为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是( )A .2000名学生的视力是总体的一个样本B .25000名学生是总体C .每名学生是总体的一个个体D .样本容量是2000名6.根据图中提供的信息,可知每个杯子的价格是( )A .51元B .35元C .8元D .7.5元7.把两块三角板按如图所示那样拼在一起,那么∠ABC 的度数是( )A .120°B .125°C .130°D .135°8.若关于x 的方程|2|(3)30m m x ---=是一元一次方程,则m 值是( )A.1或2B.1 或3C.1D.39.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b<0B.a+b>0C.|a|>|b|D.ab>010.某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他()A.不赚不赔B.赔了12元C.赔了18元D.赚了18元二、填空题11.买单价m元的圆珠笔2支,付款10元(m﹤5),应找回_________元.12.若单项式﹣3x2my3与2x4yn是同类项,则m+n=_____.13.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是___.14.钟表上的时针和分针都绕其轴心旋转,从8点到8点40分,时针转了_____度,分针转了_____度,8点40分时针与分针所成的角是_____度.15.若x=1是方程2(a﹣x)=x的解,则a=_____.16.若A、B、C三点在同一直线上,且AB=5cm,BC=3cm,那么AC=_____cm.17.要锻造一个直径为8 cm,高为4 cm的圆柱形毛坯,至少应截取直径为4 cm的圆钢__________cm.18.已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…,根据前面各式的规律,以下等式(n为正整数),∠1+3+5+7+9+…+(2n-1)=n2;∠1+3+5+7+9+…+(2n+3)=(n+3)2;∠1+3+5+7+9+…+2013=10072;∠101+…+2013=10072-502其中正确的有______个.三、解答题19.画出如图由11个小正方体搭成的几何体从不同角度看得到的图形.20.计算:(1)(513638-+)×(﹣24). (2)﹣12018+4﹣(﹣2)3+3÷(﹣35). 21.解一元一次方程(1)4x+10=6(x ﹣2) (2)341125x x -+-=. 22.先化简,再求值:(1)2x+7+3x -2,其中x =2;(2)222322(2)m mn m mn n ----,其中m =﹣2,n =3.23.如图,点C 是线段AB 上一点,M 是线段AC 的中点,N 是线段BC 的中点.(1)如果AB =10cm ,AM =3cm ,求CN 的长;(2)如果MN =6cm ,求AB 的长.24.如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .试求∠COE 的度数.25.A ,B 两地相距448km ,一列慢车从A 地出发,速度为60km/h ,一列快车从B 地出发,速度为80km/h ,两车相向而行,慢车先行28min ,快车开出多长时间后两车相遇?26.元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件仍盈利20元,这批夹克每件的成本价是多少元?27.图∠是一个三角形,分别连接这个三角形三边的中点得到图∠;再分别连接图∠中间小三角形三边的中点,得到图∠.(1)图∠有个三角形;图∠有个三角形.(2)按上面的方法继续下去,第5个图形中有个三角形;第n个图形中有个三角形?(用含有n的式子表示结论)28.我县各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为°;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.参考答案1.B【详解】2的相反数是-2.故选:B.2.B【详解】解:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.故选B.3.B【详解】680 000 000元=6.8×108元.故选:B.【点睛】考点:科学记数法—表示较大的数.4.C【分析】根据合并同类项法则依次分析各项即可得到结果.【详解】A.2a与b不是同类项,无法合并,本选项正确;B.222-=,本选项正确;x x x32C.7mn-7nm=0,本选项正确;D.a+a=2a,本选项正确;故选C.考点:本题考查的是合并同类项【点睛】解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.A【分析】根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,2000名学生的视力是样本,2000是样本容量,每个学生的视力是总体的一个个体.故选A .【点睛】考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).6.C【分析】要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.【详解】解:设一杯为x ,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C .7.A【分析】∠ABC 等于30度角与直角的和,据此即可计算得到.【详解】∠ABC=30°+90°=120°.故选:A .【点睛】本题考查了角度的计算,理解三角板的角的度数是关键.8.C【分析】只含有一个未知数,且未知数的次数是1的整式方程是一元一次方程,根据定义解答.【详解】解:∠方程|2|(3)30m m x---=是一元一次方程, ∠20m -=,且30m -≠,∠m=1,故选:C .【点睛】此题考查一元一次方程的定义,熟记定义并应用解决问题是解题的关键.9.A【分析】根据点在数轴上的位置得到a >0,b <0,|a|<|b|,由此判断即可.【详解】解:∠a >0,b <0,|a|<|b|,∠a+b <0,ab <0,所以B ,C ,D 不正确,A 正确;故选:A .【点睛】此题考查了利用数轴确定式子的符号,正确理解点在数轴上的位置得到a >0,b <0,|a|<|b|是解题的关键.10.C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】设在这次买卖中第一件原价是x ,则可列方程:(1+25%)x =135,解得:x =108,比较可知,第一件赚了27元;设第二件原价是y ,第二件可列方程:(1﹣25%)y =135,解得:y =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.11.()102m -【分析】根据题意可得:买圆珠笔2支为2m 元,即可求解.【详解】解:∠圆珠笔的单价m 元,∠买圆珠笔2支为2m 元,∠付款10元(m ﹤5),应找回()102m -元.故答案为:()102m -【点睛】本题主要考查了列代数式,明确题意,准确得到数量关系是解题的关键. 12.5【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值,代入代数式即可得出答案.【详解】∠单项式﹣3x 2my 3与2x 4yn 是同类项,∠2m =4,n =3,解得m =2,n =3,∠m+n =5.故答案为:5.【点睛】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项所含字母相同,并且相同字母的指数也相同.13.5【分析】根据题意,先求出2x y +的值,再利用等式的性质求出24x y +的值,最后求出241x y ++的值即可.【详解】解:∠213x y ++=∠22x y +=∠244x y +=∠2415x y ++=【点睛】本题主要考查了等式的性质,熟练掌握等式的性质是解答此题的关键.14. 20 240 20【分析】根据分针每分钟走6度,时针每分钟走0.5度,乘以走的时间即可求解【详解】钟表上的时针和分针都绕其轴心旋转,钟表一圈有360度、60分钟、12个小时,所以分针转动的速度等于360606÷= 度/分钟,时针转动的速度等于36012600.5÷÷= 度/分钟.由题意可知,时针和分针都走了40分钟,所以时针转了0.54020⨯= 度,分针转了640240⨯= 度,8点时时针与分针所形成的角是120度,所以8点40分时针与分针所形成的角是()3602402012020--+= 度.故答案为:20;240;20【点睛】本题考查钟面角,需注意一开始时针与分针的位置不一定重合15.32【分析】把x=1代入已知方程,列出关于a 的方程,通过解该方程即可求得a 的值.【详解】解:根据题意,得2(a ﹣1)=1,解得,a =32. 故答案是:32. 【点睛】本题考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.8或2##2或8【分析】此题没有指明点C 的具体位置故应该分情况进行分析从而求解.【详解】解:当点B 位于A ,C 中间时,AC =AB +BC =8cm ;当点C 位于A ,B 中间时,AC =AB−BC =2cm .故答案为:8或2.【点睛】本题主要考查两点间的距离的知识点,注意分类讨论思想的运用.17.16【分析】设截取直径为4cm 的圆钢xcm ,则根据体积相等可列方程并求解即可.【详解】设截取直径为4cm 的圆钢xcm ,则根据体积相等得方程:22442x ππ⨯=, 解得x=16.故答案为:16.【点睛】本题考查了一元一次方程的应用,找到其中隐含的相等关系:圆钢的体积=锻造后圆柱的体积,是解题的关键.18.3【分析】观察所给等式得到从1开始的连续的奇数的和等于奇数的个数的平方,则1+3+5+7+9+…+(2n -1)=n 2,1+3+5+7+9+…+(2n+3)=(n+2)2,1+3+5+7+9+…+(2×50-1)=502,1+3+5+7+9+…+(2×1007-1)=10072,则可对∠∠∠直接判断;通过求差可对∠进行判断.【详解】解:1+3+5+7+9+…+(2n -1)=n 2,所以∠正确;1+3+5+7+9+…+(2n+3)=(n+2)2,所以∠错误1+3+5+7+9+…+2013=1+3+5+7+9+…+(2×1007-1)=10072,所以∠正确;∠1+3+5+7+9+…+99=1+3+5+7+9+…+(2×50-1)=502,∠101+…+2013=10072-502,所以∠正确.故答案为3.【点睛】本题考查了规律型:数字的变化类:探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.19.见解析;【分析】利用组合体从不同的角度观察得出答案即可.【详解】解:如图所示:.【点睛】此题主要考查了三视图的画法,正确根据观察角度得出图形是解题关键.20.(1)﹣21(2)6【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值.(1) 原式513(24)(24)(24)638=⨯--⨯-+⨯-2089=-+-21=-;(2) 原式51483()3=-+++⨯-385=+-6=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(1)x =11(2)x =﹣9【分析】(1)方程去括号,移项合并,将x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.(1)去括号得:410612x x +=-,移项得:461210x x -=--,合并得:222x -=-,解得:11x =;(2)去分母得:5(3)2(41)10x x --+=,去括号得:5158210x x ---=,移项得:581017x x -=+,合并得:327x -=,解得:9x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.22.(1)5x+5,15(2)2222m mn n ++,10【分析】(1)原式合并同类项得到最简结果,把x 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.(1)解:2x+7+3x -2=5x+5,当x=2时,原式=10+5=15;(2)解:222322(2)m mn m mn n ---- 22232242m mn m mn n =--++2222m mn n =++,当m=-2,n=3时,原式=4-12+18=10.【点睛】此题考查了整式的加减-化简求值,关键是掌握计算顺序,注意去括号时符号的变化.23.(1)CN =2(cm);(2)AB =12(cm).【分析】(1)根据点C 为中点求出AC 的长度,然后根据AB 的长度求出BC 的长度,最后根据点N 为中点求出CN 的长度;(2)根据中点的性质得出AC=2MC ,BC=2NC ,最后根据AB=AC+BC=2MC+2NC=2(MC+NC)=2MN得出答案.【详解】解:(1)∠M是线段AC的中点,∠CM=AM=3cm,AC=6cm.又AB=10cm,∠BC=4cm.∠N是线段BC的中点,∠CN=12BC=12×4=2(cm);(2)∠M是线段AC的中点,N是线段BC的中点,∠NC=12BC,CM=12AC,∠MN=NC+CM=12BC+12AC=12(BC+AC)=12AB,∠AB=2MN=2×6=12(cm).24.75°.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【详解】解:∠∠AOB=90°,OC平分∠AOB,∠∠COB=12∠AOB=45°,∠∠COD=90°,∠∠BOD=45°,∠∠BOD=3∠DOE,∠∠DOE=15°,∠∠BOE=30°,∠∠COE=∠COB+∠BOE=45°+30°=75°.【点睛】本题考查了角平分线定义和角的有关计算,掌握角平分线定义是解题的关键. 25.快车出发后3小时两车相遇【分析】利用两车行驶的距离和448,进而求出即可.【详解】设快车出发后x小时两车相遇,根据题意可得:2860×60+(60+80)x=448,解得:x=3,答:快车出发后3小时两车相遇.【点睛】此题主要考查了一元一次方程的应用,得出正确等量关系是解题关键.26.这批夹克每件的成本价是100元【分析】设成本价为x 元,根据提价打折之后盈利为20元,列出方程式,求解即可.【详解】设成本价为x元,依题意得:x(1+50%)×80%﹣x=20,解得:x=100,答:这批夹克每件的成本价是100元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.27.(1)5,9(2)17;1+4(n﹣1)【分析】(1)观察图形得到图∠中三角形的个数为1,图∠中三角形的个数为1+4,图∠中三角形的个数为1+4×2;(2)由(1)得到后面图形中的三角形个数比它前面它们的三角形个数多4,于是得到第n 个图形中三角形的个数为1+4(n﹣1),则可计算出n=5时三角形的个数.(1)图∠中三角形的个数为1,图∠中三角形的个数为1+4=5,图∠中三角形的个数为1+4×2=9;(2)图∠中三角形的个数为1+4×4=17;第n个图形中三角形的个数为1+4(n﹣1).故答案为5,9;17;1+4(n﹣1).【点睛】本题考查了规律型﹣图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.28.(1)50(2)补图见解析(3)115.2(4)全校“其他”部分的学生人数为600人【分析】(1)根据条形图可得跳绳人数为15人,根据扇形图可得跳绳人数占30%,然后利用1530%÷可得总人数;(2)首先计算出跳远人数和其它人数,然后再补全图形即可;(3)利用360︒乘以“排球”部分在总体中所占的比例即可;(4)利用样本估计总体的方法,用3000乘以调查的“其他”部分的人数所占百分比.(1)解:1530%50÷=(名).故答案为:50;(2)跳远人数:5018%9⨯=(名),其它人数:501516910---=(名).如图所示:(3)“排球”部分所对应的圆心角度数为:360°×1650=115.2°.故答案为:115.2;(4)10300060050⨯=(名).答:全校“其他”部分的学生人数为600名.。
北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。
510、若 1x1= 2 ,lyl = 8,且 xVy贝 Ux + y =学记数法表示应为()A. 0.25 107B. 2.5 107C. 2.5 106D. 25 1055、小明调查了本班同学最喜欢的球类运动情况,并作出了统计图, A. 从图中可以直接看出全班总人数B. 从图中可以直接看出喜欢足球运动的人数最多C. 从图中可以直接看出喜欢各种球类运动的具体人数D. 从图中可以直接看出喜欢各种球类运动的人数的百分比6、请你认真观察和分析图中数字变化的规律,由此得到图中所缺的数字应为( )A.32B.29C.25D.23填空题(每小题3分,共27 分)7、我市某天最高气温是 11 C ,最低气温是零下 3 C,那么当天的最大温差是 ___________ &若x= 4是关于x 的方程 5 X — 3m= 2的解,则.19、如果 m —n=,那么一3 (n —m) =(上)部分学校期终调研测试试卷七年级数学(北师大版)(满分120分)一选择题(每小题3分,共18分)1、1 的倒数是311A 3B -C -3D—332、在丨 -2 I , - I 01 , (-2) 5, - I -2 I , - (-2 )这5个数中负数共有A 1个B 2个C 3个D 4个3、右图是某一立万体的侧面展开图则该立万体是B.c.4、青藏高原是世界上海拔最高的高原,它的面积约为 O OF 面说法正确的是(13、标价为x 元的某件商品,按标价八折出售仍盈利b 元,已知该件商品的进价是a 元,则x 14、 已知线段 AB= 10cm ,点D 是线段AB 的中点,直线 AB 上有一点C 并且BC = 2cm ,则线段 DC =.15、 当乂 = 1 ,y=— 1时,代数式ax + by — 3的值为0,那么当x=— 1 ,y= 1时, 代数式ax + by — 3的值为.三解答题(本大题 8个小题,共75分)116 ( 8 分)计算:—13—( 1— 0.5 )X _2—(— 3) 2:.31 1117 ( 9 分)先化简,再求值: 一X( — 4 x + 2 x — 8) — ( — x — 1),其中x=—.4 2 2 5x 1 2x 118 ( 9分)解方程:注」—丝」=1.3 619 ( 9分)下图是由一些相同的小立方块搭成的几何体,请画出这个几何体的三视图20 (9分)在下列事件中,哪些是不确定事件,哪些是确定事件?若为确定事件,请判断是必 然事件还是不可能事件。
北师大版七年级数学上册期末复习练习题(含答案)一、单选题1.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D 2.下列各对算式结果相等的是( )A .52和23B .25-和()55-C .()20181-和()20171--D .52-和52- 3.定义一种新运算a ⊙b =(a +b )×2,计算(﹣5)⊙3的值为( ) A .﹣7 B .﹣1 C .1 D .﹣4 4.下列各组是同类项的一组是( )A .xy 2与-12x 2yB .-2a 3b 与12ba 3C .a 3与b 3D .3x 2y 与-4x 2yz 5.在数轴上与原点的距离等于 2 的点表示的数是( )A .2B .﹣2C .﹣1 或 3D .﹣2 或 2 6.在有理数0,│-(-313)│,-│+1000│,-(-5)中最大的数是( ) A .0 B .-(-5) C .-│+1000│ D .│-(-313)│ 7.方程2x 40-=的解是( )A . x 2=-B . x 0=C . x 2=D .1 x 2= 8.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,取A 2C 、B 2C 的中点A 3、B 3,依次取下去…利用这一图形,能直观地计算出233333++++4444n =( )A .1B .144n n -C .11-4nD .414n n + 9.计算|﹣3|﹣(﹣4)=( )A .﹣1B .1C .﹣7D .710.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )A .5B .6C .7D .811.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,就业形势依然严峻,中央财政拟投入433亿元用于促进就业433亿用科学记数法表示应为( )A .B .C .D .12.(2014•武汉五月调考)下列运算正确的是( )A .﹣6×(﹣3)=﹣18B .﹣5﹣68=﹣63C .﹣150+250=400D .8÷(﹣16)=﹣0.5二、填空题13.若a 是有理数,则|a+1|-2的最小值是_____,此时a 2016=_____.14.若142m x y -与22n x y -的和是单项式,则n m =_______。
北师版七年级数学上期末复习经典试题总结及答案1.-0.5的绝对值是0.5,相反数是0.5,倒数是-2.2.一个数的绝对值是4,则这个数是4或-4,数轴上与原点的距离为5的数是5或-5.3.-2x与3x-1互为相反数,则x=1.4.(1)设a、b互为相反数,则2013(a+b)-cd的值是2013a-2013b-cd。
2)已知a、b互为相反数,c、d互为倒数,且m=3,则2a-4m^2+2b-(cd)2005=-24.5.已知ab≠0,则a/b+b/a=(a^2+b^2)/(ab)。
6.(1)已知a+3+(b-1)^2=9,则3a+b=3.2)如果|a-1|+(b+2)^2/2=2012,则a+b的值是2013.7.若x-2+(y+5)2=25,则y=-5±√(17/3)。
8.(1)如果3x/(1-2k)是关于x的一元一次方程,则k=1/2.2)如果3y/(3-2y)是关于y的一元一次方程,则m=9/2.9.(1)已知x=3是方程ax-6=a+10的解,则a=-1.2)若x=2是方程3x-4=2mx+1的解,则m=-1/3.10.将弯曲的河道改直,可以缩短航程,是因为:两点之间,最短的距离是直线距离。
11.XXX将一根木条固定在墙上只用了两个钉子,他这样做的依据是三角形两角之和等于第三角。
12.如图所示。
∠AOB是平角。
∠AOC=30°。
∠BOD=60°。
OM、ON分别是∠AOC、∠BOD的平分线。
∠MON等于75°。
13.如图,图中共有10条线段,共有20个三角形。
14.如图3,∠AOD=80°,∠AOB=30°,OB是∠AOC的平分线,则∠AOC的度数为60°,∠COD的度数为100°.15.计算51°36' = 51.6°。
16.25.14°=25°8'24";下午1点24分,时针与分针所组成的夹角是72°。
北师大版七年级上册数学期末复习典型试题一、填空题: 1、-0.5 的绝对值是,相反数是,倒数是。
2、一个数的绝对值是 4,则这个数是 ,数轴上与原点的距离为5 的数是。
3、—2x 与3x —1 互为相反数,则 。
x4、(1)设 、 互为相反数, 、 互为倒数,则 2013( )- 的值是_____________。
a b c d a bcd(2)已知a 、b 互为相反数,c 、d 互为倒数,且 m 3 ,则2a 4m 2b (cd )=_________。
2 2005 a b5、已知 0,则=___________。
ab a b 6、(1)已知a 3 (b 1)2 0,则3a b 。
a b 2012(2)如果| a 1| (b 2)2 0 则的值是______________.。
,2 (3)若 x 2 y5 0 ,则 = x y 3x yx y 2 3 7、(1)单项式 - 的系数是 2 ,次数是;多项式 2xy 1的2 5次数。
(2)单项式3的系数是___________,次数是___________.2 xy38、(1)如果3x 1 2kk 0 4是关于x 的一元一次方程,则k ____。
1(2)如果3y 9-2mm 0 关于 y 的一元一次方程,则 m = .29、(1)已知x=3 是方程ax-6=a+10 的解,则a=_____________。
x(2)若 =2 是方程3x 4 a 的解,则 1 的值是 。
x a2011 2 a 2011 10、将弯曲的河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是____.12、如图所示, ∠AOB 是平角, ∠AOC=30 , ∠BOD=60 , OM 、ON 分别是∠AOC 、∠BOD 的平分0 0 线, ∠MON 等于_________________.14. 如图,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为______,∠COD 的度数为________.13、如图,图中共有 条线段,共有个三角形。
北师大版数学七年级上册期末测试卷(含答案)七年级数学上册期末试卷一、选择题(每小题3分,共30分)1.(3分)(-2)^3表示()A。
2乘以-3B。
2个-3相加C。
3个-2相加D。
3个-2相乘2.(3分)下列各式中,与3÷4÷5运算结果相同的是()A。
3÷(4÷5)B。
3÷(4×5)C。
3÷(5÷4)D。
4÷3÷53.(3分)数轴上表示-5和3的点分别是A和B,则线段AB的长为()A。
-8B。
-2C。
2D。
84.(3分)将正方体展开需要剪开的棱数为()A。
5条B。
6条C。
7条D。
8条5.(3分)用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A。
圆锥B。
五棱柱C。
正方体D。
圆柱6.(3分)2019年9月25日,北京大兴国际机场正式投入运营。
预计2022年实现年旅客吞吐量xxxxxxxx次。
数据xxxxxxxx科学记数法表示为()A。
4.5×10^6B。
45×10^6C。
4.5×10^7D。
0.45×10^87.(3分)如图,填在下面每个正方形中的四个数之间都有相同的规律,则m的值为()A。
107B。
118C。
146D。
1668.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A。
折线图B。
条形图C。
扇形图D。
不能确定9.(3分)下列调查中,适合用普查方式收集数据的是()A。
要了解我市中学生的视力情况B。
要了解某电视台某节目的收视率C。
要了解一批灯泡的使用寿命D。
要保证载人飞船成功发射,对重要零部件的检查10.(3分)已知,每本练本比每根水性笔便宜2元,小刚买了6本练本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A。
6(x+2)+4x=18B。
北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.下列方程中,属于一元一次方程的是( ). A .23x y +=B .21x >C .720222020x +=D .241x =2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .764.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .555.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10096.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1 B .2 C .3 D .4 7.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定8.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .329.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b10.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损11.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=- D .532x x -=12.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >013.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .814.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >016.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2217.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定18.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+19.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >020.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 23.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -24.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快25.方程114xx--=-去分母正确的是().A.x-1-x=-1 B.4x-1-x=-4 C.4x-1+x=-4 D.4x-1+x=-1 26.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量27.如图,一个底面直径为30πcm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A.24cm B.1013cm C.25cm D.30cm 28.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个29.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0 30.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.9【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0). 【详解】解:A 、含有两个未知数,不是一元一次方程,选项错误; B 、不是方程是不等式,选项错误;C 、符合一元一次方程定义,是一元一次方程,正确;D 、未知项的最高次数为2,不是一元一次方程,选项错误. 故选:C . 【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=,∴2020a的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.4.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.5.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.6.C解析:C 【解析】 【分析】根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3, ∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11. 故选C . 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.7.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.8.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.9.D解析:D 【解析】 【分析】根据合并同类项的法则即可求出答案. 【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确. 故选D . 【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.10.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元). 设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.11.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.12.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.13.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211132a ==--, 312131()2a ==--, 413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.18.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.19.C解析:C【解析】【分析】先根据数轴判定a 、b 、a+b 、a-b 的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.20.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.23.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.24.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.解析:C 【解析】1144(1)4414xxx xx x--=---=--+=-方程左右两边各项都要乘以4,故选C26.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.27.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm,底面直径等于30πcm,∴底面周长=3030ππ⋅=cm,∴BC=20cm,AC=12×30=15(cm),∴AB2222201525AC BC+=+=(cm).答:它需要爬行的最短路程为25cm.故选:C.本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.28.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..。
北师大版七年级上册数学期末考试试卷及答案一、选择题1.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >02.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个3.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-704.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b = D .如果122a b =,那么a b = 5.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定6.下列方程中,属于一元一次方程的是( ). A .23x y += B .21x > C .720222020x += D .241x = 7.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55° 8.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .9 9.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><10. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm11.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°12.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.若()221x y -++=0,则x+y=_____.15.运动场的跑道一圈长400m .甲练习骑自行车,平均每分骑350m ;乙练习跑步,平均每分跑250m .两人从同一处同时同向出发,经过_________分钟首次相遇.16.如图,“汉诺塔”是源于印度一个古老传说的益智玩具,这个玩具由A ,B ,C 三根柱子和若干个大小不等的圆盘组成.其游戏规则是:①每次只能移动一个圆盘(称为移动1次);②被移动的圆盘只能放入A ,B ,C 三根柱子之一;③移动过程中,较大的圆盘始终..不能..叠在较小的圆盘上面;④将A 柱上的所有圆盘全部移到C 柱上.完成上述操作就获得成功.请解答以下问题:(1)当A 柱上有2个圆盘时,最少需要移动_____次获得成功; (2)当A 柱上有8个圆盘时,最少需要移动_____次获得成功. 17.计算(0.04)2018×[(﹣5)]2018的结果是_____.18.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.19.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).20.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.21.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.22.如图,用大小相等的小正方形拼成有规律的图形,第1个图中有1个正方形,第2个图中含有5个正方形,第3个图中含有14个正方形…,按此规律拼下去,第6个图中含正方形的个数是___________个.三、解答题23.将一三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°; (2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由;(4)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.24.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ; (2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.25.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值.(3)当0<t <6时,探究72COM BONMON∠+∠∠的值,在t 满足怎样的条件是定值,在t满足怎样的条件不是定值.26.(阅读材料)数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示.这样能够运用数形结合的方法解决一些问题,例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|31|2-=; 在数轴上,有理数5与2-对应的两点之间的距离为|5(2)|7--=; 在数轴上,有理数2-与3对应的两点之间的距离为|23|5--=; 在数轴上,有理数8-与5-对应的两点之间的距离为|8(5)|3---=;……如图1,在数轴上有理数a 对应的点为点A ,有理数b 对应的点为点,,B A B 两点之间的距离表为||-a b 或||b a -,记为||||||AB a b b a =-=-.(解决问题)(1)数轴上有理数10-与5-对应的两点之间的距离等于______,数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为______,若数轴上有理数x 与5-对应的两点,A B 之间的距离||2AB =,则x 等于_______.(拓展探究)(2)如图2,点,,M N P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x .①若点P 在点,M N 两点之间,则||||PM PN +=______;②若||2||PM PN =,即点P 到点M 的距离等于点P 到点N 的距离的2倍,求x 的值. 27.把一副三角板的直角顶点O 重叠在一起.()1如图1,当OB 平分COD ∠时,求AOC ∠和AOD ∠度数; ()2如图2,当OB 不平分COD ∠时,①直接写出AOC ∠和BOD ∠满足的数量关系; ②直接写出AOD ∠和BOC ∠的和是多少度?()3当AOC ∠的余角的4倍等于AOD ∠时,求BOC ∠是多少度?28.李老师准备购买一套小户型商品房,他去售楼处了解情况得知.该户型商品房的单价是5000元/2m ,面积如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售房部为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元/2m ,其中厨房可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及方案一、方案二中购买一套该户型商品房的总金额;(2)当x =2时,通过计算说明哪种方案更优惠?优惠多少元?(3)李老师因现金不够,于2019年10月在建行借了18万元住房贷款,贷款期限为10年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月应还的贷款本金数额为1500元(每月还款数额=每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率),假设贷款月利率不变,请求出李老师在借款后第n (1120n ≤≤,n 是正整数)个月的还款数额.(用n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案. 【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确; ③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误; 故选B . 【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.C解析:C 【解析】 【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案. 【详解】解:根据题意,客车从A 地到B 地的路程为:70S x = 卡车从A 地到B 地的路程为:60(1)S x =+ 则7060(1)x x =+ 故答案为:C . 【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.4.A解析:A 【解析】 【分析】根据等式的性质,可得答案. 【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B 错误;C.左边除以2,右边加2,故C 错误;D.左边除以2,右边乘以2,故D 错误; 故选A . 【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.6.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.8.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..9.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.10.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.11.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.12.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a,b,c中应有奇数个负数,进而可将a,b,c的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a,b,c的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题13.16【解析】【分析】【详解】∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2,∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m -2n=2-2×(-7)=1解析:16【解析】【分析】【详解】∵x=8是偶数,∴代入-12x+6得:m=-12x+6=-12×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=16,故答案是:16.【点睛】本题考查了求代数式的值,能根据程序求出m 、n 的值是解此题的关键.14.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.4【解析】【分析】设经过x分钟后首次相遇,当相遇时,甲的路程-乙的路程=跑道一圈的长度,根据这个等量关系列方程求解即可.【详解】设经过x分钟后首次相遇,350x-250x=400,解得解析:4【解析】【分析】设经过x分钟后首次相遇,当相遇时,甲的路程-乙的路程=跑道一圈的长度,根据这个等量关系列方程求解即可.【详解】设经过x分钟后首次相遇,350x-250x=400,解得:x=4.所以经过4分钟后首次相遇.故答案为:4.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系是解题关键.16.28-1【解析】【分析】(1)先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上即可得出结果;(2)根据题目已知条件分别得出当A柱上有2个圆盘时最少需要移动的次数,解析:28-1【解析】【分析】(1)先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上即可得出结果;(2)根据题目已知条件分别得出当A柱上有2个圆盘时最少需要移动的次数,当A柱上有3个圆盘时最少移动的次数,从而推出当A柱上有8个圆盘时需要移动的次数.【详解】解:(1) 先将小圆盘放在B柱上,大圆盘放在C柱上,再将B柱上的小圆盘放在C柱上,最少需要:22-1=3次,(2) 当A柱上有2个圆盘时,最少需要22-1=3次,当A柱上有3个圆盘时,最少需要23-1=7次,以此类推当A柱上有8个圆盘时,最少需要28-1次.故答案为:(1)3;(2) 28-1.【点睛】本题主要考查的是归纳推理,根据题目给出的已知信息,得出一般规律是解题的关键.17..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考解析:201815. 【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】 原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.18.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x ,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1 解析:1699【解析】【分析】 根据无限循环小数都可以转化为分数的方法,先设0.16=x ①,得到16.16=100x ②,由②-①得16=99x ,进而解得x=1699,即可得到0.16=1699. 【详解】解:设0.16=x ①,则16.16=100x ②,,②-①得16=99x ,解得x=1699, 即0.16=1699, 故答案为:1699. 【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.19.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系. 20.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,… 以此类推,第n 次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.21.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键.22.91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个解析:91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点睛】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题23.(1)145°,45°;(2)40°;(3)∠AOC 与∠BOD 互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补.(4)OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.24.(1)9;(2)a的值为10或-10;(3)见解析,c的值为6或60 7【解析】【分析】(1)依据|a-b|=15,a,b异号,即可得到a的值;(2)分点A在原点左、右两侧两种情况讨论,依据OA=2OB,即可得到a的值;(3)分点C在点B左、右两侧两种情况进行讨论,依据O为AC的中点,OB=3BC,设未知数列方程即可得到所有满足条件的c的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C 在点B 右侧时,如图,设BC=x ,由O 为AC 的中点,OB =3BC ,则OB=3x ,OA=OC=4x ,∴AB=3x+4x=15,解得x=157, ∴OC=4x=607, 则c =607, 综上所述,c 的值为6或607. 【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.25.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°, ∴72COM BON MON ∠+∠∠=()()7901529012159012t t t t ︒︒︒︒︒︒︒-++++ =810812790t t ︒︒︒-+(不是定值), ②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.26.(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【解析】(1)根据数轴上A 、B 两点之间的距离||||||AB a b b a =-=-,代入数值运用绝对值可求数轴上任意两点间的距离;由||2AB =可列出关于x 的方程,解方程即可得解; (2)点P 在点M 、N 两点之间时,||||PM PN +即为M 、N 两点之间的距离;由动点P 的位置不同分情况进行讨论求解.【详解】解:(1)由阅读材料可知:①数轴上有理数10-与5-对应的两点之间的距离为()1055---= ②数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为()55x x --=+ ③∵||2AB =∴52x +=∴52x +=,52x +=-∴3x =-或7x =-;(2)①∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x ,点P 在点M 、N 两点之间 ∴()||||426PM PN MN +==--=;②∵||2||PM PN =∴422x x -=+I .当点P 在点N 左侧时,如图:∴()422x x -=--∴8x =-II .当点P 在点M 、N 之间时,如图:∴()422x x -=+∴0x =III .当点P 在点M 右侧时∴()422x x -=+∴8x =-(不合题意舍去)∴综上所述,8x =-或0x =.故答案是:(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【点睛】本题考查了数轴与绝对值的概念的应用,读懂题目信息,理解绝对值的几何意义是解题的27.(1)45°,135°;(2)①AOC BOD ∠=∠,②180AOD BOC ∠+∠=︒;(3)36°.【解析】【分析】(1)根据角平分线的定义,求出45COB ∠=︒,由直角等于90°,可得AOC ∠的度数,则90AOD AOC ∠=∠+︒,计算即得;(2)①因为AOC ∠和BOD ∠是同一个角BOC ∠余角,所以相等;②因为AOD AOC BOC BOD ∠=∠+∠+∠,利用两个直角的和180°可得. (3)根据余角的定义,列出等量关系,看成解一元一次方程即得.【详解】(1)当OB 平分COD ∠时,90AOB COD ︒∠=∠=45BOC BOD ︒∴∠=∠=904545BOC AOB COB ︒︒︒∴∠=∠-∠=-=4590135AOD AOC COD ︒︒︒∴∠=∠+∠=+=;故答案为:45°,135°;(2)①90AOC COB BOD COB ∠+∠=∠+∠=︒,AOC BOD ∴∠=∠;②AOC CO O AOD B B D ∠+∠+∠∠=,90AOC COB BOD COB ∠+∠=∠+∠=︒ 9090180AOC COB COB BOD AOD BOC ∴∠+∠+∠+∠=︒+︒==∠+∠︒故答案为:AOC BOD ∠=∠;180AOD BOC ∠+∠=︒;(3)()490AOD AOC ︒∠=-∠()90490AOC AOC ︒︒∴+∠=-∠54AOC ︒∴∠=9036BOC AOC ︒︒∴∠=-∠=,故答案为:36°.【点睛】考查了角平分线的定义和性质,余角的定义,同角的余角相等,利用等量关系列出方程式求解.熟记概念内容是解题的关键.28.(1)该户型商品房的面积为(48+2x )平方米,方案一:(22000010000x +)元;方案二:(2280009500x +)元;(2)方案一比方案二优惠7000元;(3)(2407.57.5n -)元.【解析】【分析】(1)该户型商品房的面积=客厅的面积+卧室面积+厨房面积+卫生间面积,代入计算即可; 方案一:(总面积﹣厨房的12)×单价,方案二:总面积×单价×95%;(2)分别代入计算,然后比较即可;(3)由题意得:本金1500+月利息,代入计算.【详解】(1)该户型商品房的面积为:4734242482x x ⨯+⨯+⨯+=+(平方米)方案一购买一套该户型商品房的总金额为:1482245000220000100002x x ⎛⎫+-⨯⨯⨯=+ ⎪⎝⎭(元) 方案二购买一套该户型商品房的总金额为:(482)500095%2280009500x x +⨯⨯=+(元)(2)当2x =时,方案一总金额为:22000010000240000x +=(元)方案二总金额为:2280009500247000x +=(元)方案一比方案二优惠7000元.(3)根据题意得:李老师在借款后第n (1120n ≤≤,n 是正整数)个月的还款数额为 1500[1800001500(1)]0.5%2407.57.5n n +--⨯=-(元)【点睛】本题考查了列代数式,正确利用“每月还款数额=每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率“这些公式是解答本题的关键.。
北师大版七年级上册数学期末考试试题一、单选题1.比-1小的数是( ) A .0 B .12C .-0.5D .-2 2.若气温升高5C ︒时,记作5C +︒,则气温下降10C ︒时,记作( ) A .10C +︒ B .10C -︒ C .5C -︒ D .5C +︒ 3.下列各式,正确的是( )A .2a+3b=5abB .x+2x=3x 2C .2(a+b)=2a+bD .-(m-n)=-m+n 4.下列调查最适合用普查的是( )A .了解七年级1班每位学生身高情况B .检测一款新手机的待机时长C .了解全国中学生最喜爱的图书种类D .调查全市人民对政府服务的满意程度 5.一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( ) A .5 B .6 C .7 D .8 6.若x =1是关于x 的方程2x+a =0的解,则a 的值为( ) A .﹣1 B .﹣2 C .1 D .27.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒ 8.下列说法正确的是( ) A .0是最小的有理数B .若有理数m >n ,则数轴上表示m 的点一定在表示n 的点的左边C .一个有理数在数轴上表示的点离原点越远,这个有理数就越大D .既没有最小的正数,也没有最大的负数.9.如图,用同样大小的棋子按以下规律摆放,若第n 个图中有2022枚棋子,则n 的值是( )A .675B .674C .673D .67210.如图1所示,在一个边长为a 的正方形纸片上剪去两个小长方形,得到一个如图2的图案所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为( )A .23a b -B .410-a bC .24a b -D .48a b - 二、填空题11.数轴上,将表示5-的点向右移动3个单位后,对应点表示的数是________. 12.若方程213x -=和方程42x a -=的解相同,则=a _________.13.用一个平面去截一个几何体,得到的截面是一个三角形,这个几何体可能是_____(写出一个即可);14.如果3x 2myn 与﹣5x 4y 3是同类项,则代数式m-n 的值为_______. 15.计算:1039036'︒-︒=__________.16.如图,把一张边长为15cm 的正方形纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm 变为6cm 后,长方体纸盒容积变小了____3cm .17.如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 中点,点P 是AC 中点,点Q 是BC 中点,则下列说法:①PQ MB =;①1()2PM AM MC =-;①1()2PQ AQ AP =+;①1()2MQ MB MC =+.其中正确的是_______.18.如图,在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么①AOB =_____.三、解答题19.计算:22840.255(3)5⎡⎤-÷-⨯--⎣⎦20.如图,是由6个大小相同的小立方体块搭建的几何体,请你在下方的指定方格中画出这个几何体从不同方向分别看到的图形:21.解方程 ()()1112533412x x -=--22.先化简,再求值:()()222212442232xy xy x y xy x y --+-,其中x 1,y 2==-.23.某工厂计划用100张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A B C ,,三种方法中的一种剪裁,其中方法A :一张白板纸裁成5个侧面;方法B :一张白板纸裁成4个侧面与3个底面;方法C :一张白板纸裁成3个侧面与6个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按方法A 剪裁的有x 张白板纸,按方法B 剪裁的有y 张白板纸.(1)按方法C 剪裁的有_______张白板纸.(用含,x y 的代数式表示)(2)将100张白板纸裁剪完后,一共可以裁出多少个侧面与多少个底面?(用含,x y 的代数式表示,结果要化简)(3)当2107x y +=时,最多可以制作该种型号的长方体纸箱多少个?24.如图1,正方形ABCD 和长方形EFGH 的周长相等,且各有一条边在数轴上,点,,,B C F G 对应的数分别是13,5,2,8--.正方形ABCD 以每秒2个单位长度的速度向右移动,同时长方形EFGH 以每秒1个单位长度的速度向左移动.设正方形ABCD 和长方形EFGH 重叠部分的面积为S ,移动时间为t .(1)长方形EFGH 的面积是______.(2)当S 是长方形EFGH 面积的一半时,求t 的值.(3)如图2,当正方形ABCD 和长方形EFGH 运动到点B 和点F 重合时,停止运动,将正方形ABCD 绕点B 顺时针旋转,旋转角度为()0180αα<<︒,点M N 、分别在线段GB 、线段EB 的延长线上,BP 平分CBE ∠,判断ABP ∠和CBN ∠之间的数量关系,用等式表示,并说明理由.25.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()1学校这次调查共抽取了名学生;()2求m的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为;()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.26.已知如图,在数轴上有A,B两点,所表示的数分别为10-,4-,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B在数轴上表示的数分别为和;(用含t 的代数式表示)(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.参考答案1.D2.B3.D4.A5.C6.B7.C8.D9.C10.D11.-2【详解】解:由题意得:-5+3=-2,①对应点表示的数是-2;故答案为-2.12.6【详解】解方程2x−1=3,得:x=2,把x=2代入4x−a=2,得:4×2−a=2,解得:a=6.故答案为:6.13.圆锥.【详解】用一个平面去截一个几何体,得到的截面是一个三角形, 这个几何体可能是圆锥、棱柱、正方体等,任选一个作答.故答案为:圆锥.14.-1【详解】解:①3x 2myn 与﹣5x 4y 3是同类项, ①24,3m n == , 解得:2,3m n == , ①231m n -=-=-. 故答案为:-1 15.1224'︒【详解】1039036'102609036=1224'''︒-︒=︒-︒︒ 故答案为: 1224'︒ 16.142【详解】 解:当剪去的正方形边长从4cm 变为6cm 后,长方体的纸盒容积从(15-4×2)2×4=196cm 3变为(15-6×2)2×6=54cm 3.故长方体的纸盒容积变小了196-54=142cm 3. 故答案为:142.17.①①①【分析】根据线段中点的定义得到12AM BM AB ==,12==AP CP AC ,12==CQ BQ BC ,然后根据线段之间的和差倍分关系逐个求解即可. 【详解】解:①M 是AB 中点, ①12AM BM AB ==, ①P 是AC 中点, ①12==AP CP AC , ①点Q 是BC 中点, ①12==CQ BQ BC ,对于①:11()=22=+=+=PQ PC CQ AC BC AB BM ,故①正确; 对于①:11()22=-=-=PM AM AP AB AC BC ,11()22=-=-=PM AM AP AB AC BC ,故①正确;对于①:11+=(+)22==PQ PC CQ AC BC AB ,而[]111111()=()()()222222+++=+=+=+>AQ AP AP PQ AP AP PQ AC PQ AC BM AB , 故①错误;对于①:111()()222+=+=MB MC MA MC AC ,11111()()22222=+=-+=--+=-=MQ MC CQ AC AM BC AB BC AB BC AB BC AC ,故①正确;故答案为:①①①.18.141°【分析】首先计算出①3的度数,再计算①AOB 的度数即可. 【详解】解:由题意得:①1=54°,①2=15°,①①3=90°﹣54°=36°, ①①AOB =36°+90°+15°=141°. 故答案为:141°.19.9-【分析】根据有理数的加减乘除及乘方的运算法则计算即可. 【详解】解:原式1=16(59)458-⨯-⨯-=10+1-=9.20.见解析【分析】直接利用三视图的画法得出符合题意的答案. 【详解】解:三视图如图所示:21.x=2.【分析】先在等式的两边乘以最小公分母12,然后通过去括号,移项、合并同类项,化未知数的系数为1解方程. 【详解】解:由原方程去分母,得 4(2x-5)=3(x-3)-1, 去括号,得 8x-20=3x-9-1, 移项、合并同类项,得 5x=10,化未知数的系数为1,得 x=2.【点睛】此题考查了一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、合并同类项、系数化为1等. 22.2244xy x y -,-24【详解】解:原式=222222+246xy xy x y xy x y -+-=2244xy x y -, 当x=1,y=-2时,原式=4×1×(-2)-4×1×(-2)2=-8-16=-24.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算. 23.(1)100-x-y(2)一共可以裁出的侧面个数为(2x+y+300)个,一共可以裁出的底面个数为(600-6x-3y )个(3)最多可以制作该种型号的长方体纸箱101个【分析】(1)根据题意用100张白板纸减去按方法A 剪裁的x 张白板纸,再减去按方法B 剪裁的有y 张白板纸即可;(2)由题意把x 张白板纸,y 张白板纸,(100-x-y )张白板纸可以裁剪出的侧面个数和底面个数分别相加即可;(3)由题意把2x+y=107代入(2)中求出的侧面和底面的代数式,即可解答.(1)解:由题意得:按方法C剪裁的有(100-x-y)张白板纸,故答案为:100-x-y.(2)由题意得:x张白板纸可以裁剪出5x个侧面,y张白板纸可以裁剪出4y个侧面,3y个底面,(100-x-y)张白板纸可以裁剪出3(100-x-y)个侧面,6(100-x-y)个底面,所以:一共可以裁出的侧面个数为:5x+4y+3(100-x-y)=2x+y+300(个),一共可以裁出的底面个数为:3y+6(100-x-y)=600-6x-3y(个),答:一共可以裁出的侧面个数为(2x+y+300)个,一共可以裁出的底面个数为(600-6x-3y)个.(3)①2x+y=107,①一共可以裁出的侧面个数为:2x+y+300=107+300=407(个),一共可以裁出的底面个数为:600-6x-3y=600-3(2x+y)=279(个),①四个侧面和两个底面恰好能做成一个纸箱,①最多可以制作该种型号的长方体纸箱101个,答:最多可以制作该种型号的长方体纸箱101个.【点睛】本题考查认识立体图形,整式的加减,列代数式,代数式求值,根据题目的已知条件并结合图形求出一共可以裁出的侧面个数和底面个数是解题的关键.24.(1)60(2)t的值为4312或234(3)①ABP=12①CBN或2①ABP+①CBN=360゜,理由见解析.【分析】(1)由数轴上两点间的距离求出BC=8,FG=6,进而可得正方形ABCD的周长为32,再根据正方形ABCD和长方形EFGH周长相等,即可求EF长,进而求其面积;(2)分情况讨论:①当点F在正方形BC边上时;①当点F在正方形BC边左边时两种情况即可;(3)分情况讨论:0゜<α<90゜及90゜<α<180゜,由旋转的性质及角的和差关系、角平分线的性质即可求得两角间的关系.(1)①四边形ABCD是正方形,BC=-5-(-13)=8,①正方形ABCD的周长为32,①四边形EFGH是长方形,FG=8-2=6,①长方形EFGH的周长为2(EF+FG)= 2(EF+6),①正方形ABCD和长方形EFGH周长相等,①2(EF+6)=32,①EF=10,①S长方形EFGH=10×6=60,故答案为:60(2)①当点F在正方形BC边上时,如图:①正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,①CC1=2t,FF1=t,CF=2-(-5)=7,①F1C1= CC1+ FF1- CF=2t+t-7=3t-7,①重叠部分的面积=F1C1·C1D1=12×60=30,且C1D1=8,①F1C1=154,①3t -7=154,①t=4312;①当点F在正方形BC边左边时,如图:正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,①BB2=2t,GG2=t,BG=8-(-13)=21,①B2G2= BG - BB2- GG2=21-3t,①重叠部分的面积=B2G2·A2B2=30,且A2B2=8,①B2G2=154,①21-3t=154,①t=234,故t的值为4312或234;(3)①ABP=12①CBN或2①ABP+①CBN=360゜理由如下:①当0゜<α<90゜时由旋转的性质得:①ABE=①CBG=α①BP平分CBE,①①EBP=12①CBE,①①ABE=180º-①ABC-①CBN=90º-①CBN,①①ABP=①EBP-①ABE=12①CBE-90º+①CBN=12(180º-①CBN)-90º+①CBN=12①CBN,即①ABP=12①CBN①当90゜< α <180゜时,如图由旋转的性质得:①ABE=①CBG=α①11190(36090)90225222 ABP CBP ABC EBC ABEα∠=∠+∠=∠+︒=︒-︒-∠+︒=︒-,①CBN=①CBG−①NBG=α−90゜①2①ABP+①CBN=360゜综上所述,①ABP=12①CBN或2①ABP+①CBN=360゜25.(1)100;(2)m=20,补图见解析;(3)36°;(4)250.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名).故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,①“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.26.(1)6;4(2)510t-;34t-(3)3t=(4)12t=或112t=【分析】(1)根据数轴上两点间的距离等于右边的数减去左边的数求出AB的长,且求出1秒后AB的长即可;(2)根据路程=时间×速度分别表示出A,B运动的距离,用原来表示的是加上运动的距离,即可表示出A,B表示的数;(3)根据A,B表示的数相同列出方程,求出方程的解即可得到t的值;(4)存在,分两种情况分别求出t的值即可.(1)解:运动前线段AB的长为(﹣4)﹣(﹣10)=6;运动1秒后线段AB的长为(﹣1)﹣(﹣5)=4;故答案为:6;4.(2)解:运动t秒后,用t表示A,B分别为5t﹣10,3t﹣4;故答案为:5t﹣10,3t﹣4.(3)解:根据题意得:5t ﹣10=3t ﹣4, 解得:3t =;答:当3t =时,点A 与点B 恰好重合.(4)解: 存在.当A 没追上B 时,可得由题意:()()345105t t ---= , 解得:12t =;当A ,B 错开后,可得()()510345t t ---=, 解得:112t =,①t 的值为12或112秒时,线段AB 的长为5.。
北师大版七年级上册数学期末考试试题一、单选题1.下列几何图形中,是棱锥的是( )A .B .C .D .2.有理数2021-的相反数是( ) A .2021- B .12021-C .2021D .120213.下列各式:222,1,,m xy x y -+,其中单项式有( ) A .1个 B .2个 C .3个 D .4个4.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是( ) A .了解每一名学生吃零食情况 B .了解每一名女生吃零食情况C .了解每一名男生吃零食情况D .每班各抽取7男7女,了解他们吃零食情况 5.冬季某天我国三个城市的最高气温分别是-13℃,1℃,-3℃,它们任意两城市中最大的温差是( )A .12℃B .16℃C .10℃D .14℃ 6.已知23-x 与38互为倒数,则x 等于( ) A .10 B .278C .78 D .-107.平面上有A 、B 、C 三点,经过任意两点画一条直线,可以画出直线的数量为( ) A .1条B .3条C .1条或3条D .无数条8.观察下列图形:他们是按一定规律排列的,依照此规律,第n (n 为正整数)个图形共有的点数是( )A .51n -B .54n +C .61n +D .64n + 9.下列立体图形中,从上面观察你所看到的形状图不是圆的是( )A .B .C .D .10.如图,是一个正方体纸盒的展开图,若在其中三个正方形A ,B ,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A ,B ,C 中的三个数依次是( )A .1,﹣3,0B .0,﹣3,1C .﹣3,0,1D .﹣3,1,0 二、填空题11.用一个平面截下列几何体:℃长方体,℃六棱柱,℃球,℃圆柱,℃圆锥,截面能得到三角形的是__________(填写序号即可)12.去年由于中美贸易战的影响,华为受到美国政府的制裁,禁止美国高科技公司向华为供货,而华为在这种压力下迎难而上,华为总裁任正非宣布正在生产不含任何美国零件的5G 基站,明年预计最少生产1500000个.将1500000用科学记数法可表示为________. 13.若33n x y 和2m x y -是同类项,则n m-=_______________________.14.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的有________人.15.若关于x 的方程3x -5=2x +a 的解与方程4x +b =7的解都是1,则ab=________.16.如果℃1=4°18′,℃2=3°79′,℃3=4.4°,那么℃1,℃2,℃3的大小顺序是________________.(用“<”连接)17.一根长为2020厘米的塑料管,第1次截去全长的12,第2次截去剩下的13,第3次截去剩下的14,如此下去,直到第2019次截去剩下的12020,则最后剩下的塑料管长为__________厘米.18.a 、b 、c 三个数在数轴上的位置如图所示,则化简a b a c ---的结果是_____.三、解答题19.计算:2021111(1)9()8(2)12()342-+⨯--÷--⨯-.20.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.21.已知代数式22122A x xy y =+-,2232B x xy y =--,2283C x xy y =-+-,求12()2A B C --.22.已知下列有理数:0,2(2)-,-|-4|,-32,-(-1). (1)计算:2(2)-= ,-|-4|= ; (2)这些数中,所有负数的和的绝对值是 ; (3)把下面的直线补充成一条数轴,在数轴上描出表示0,-32,-(-1)这些数的点,并把这些数标在对应点的上方.23.阳光水果店花费615元从市场购进甲、乙两种苹果,其中甲种苹果的重量是乙种苹果重量的2倍还多15千克,甲、乙两种苹果的进价和售价如下表:(1)水果店购进两种苹果各多少千克?(2)水果店第二次又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果售价不变,乙种苹果打折销售.第二次购进的两种苹果都售完后获得的利润为735元,求第二次乙种苹果按原价打几折销售?24.某校组织全校2000名学生进行了时事知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整).根据所给信息,回答下列问题.a;(1)频数分布表中,(2)补全频数分布直方图;(3)学校将对分数在90.5~100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.25.数学课上,李老师出示了如下框中的题目.如图1,在℃AOB的内部有一条射线OC把℃AOB分成两个角,射线OM、ON分别平分℃AOC、℃BOC,试探究℃MON与℃AOB之间的数量关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:℃请你在下表中填上当℃AOB为60°、90°、120°时℃MON的大小:℃探索发现:无论℃AOB的度数是多少,℃MON与℃AOB的数量关系是不变的,请你直接写出结论:℃MON℃AOB.(2)特例启发,解答题目:如图2,如果℃AOB=α,请你求℃MON的大小(用α表示).(3)拓展结论,设计新题:如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是℃EBM的平分线,求℃CBD的度数.26.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,运动时间为t秒(t>0),M为AP的中点.(1)当点P在线段AB上运动时,当t为多少时,PB=2AM?(2)当P在AB延长线上运动时,N为BP的中点.℃说明线段MN 的长度不变,并求出其值;℃在P 点的运动过程中,是否存在这样的t 的值,使M 、N 、B 三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t 的值;若没有,请说明理由.参考答案1.D 2.C 3.C 4.D 5.D 6.A 7.C 8.D 9.C 10.A 11.℃℃℃【详解】℃℃上面取一个顶点,底面取两个顶点,截取,℃沿顶点截取到底面. 所以选℃℃℃. 12.61.510⨯【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:1500000=1.5×106, 故答案为:61.510⨯.【点睛】此题考查科学记数法的表示方法,关键要正确确定a 的值以及n 的值. 13.-1【分析】由同类项的定义中相同字母的指数相同,可先求得m 和n 的值,从而求出n-m 的值.【详解】解:根据题意可得:n=2,m=3, ℃n-m=2-3=-1. 故答案为:-1.【点睛】本题考查同类项的定义,此类问题注意运用同类项的定义中,相同字母的指数相同这一点进行解题. 14.165【分析】用七年级总人数乘以视力不良的学生所占的百分比即可. 【详解】解:()30040%15%165⨯+=(人), 即七年级学生视力不良的有165人, 故答案为:165.【点睛】本题考查了扇形统计图,能够从统计图中获取有用信息是解题的关键. 15.43-【分析】先将x=1分别代入方程3x -5=2x +a 与方程4x +b =7中求出a ,b 的值,再求ab的值. 【详解】解:将x=1代入3x -5=2x +a 得: 3-5=2+a 解得:a=-4,将x=1代入4x +b =7得: 4+b =7 解得:b=3, 所以43a b =-. 故答案为:43-.【点睛】本题考查了一元一次方程的解及代数式求值,解决本题的关键是熟练掌握一元一次方程的解法. 16.℃1<℃2<℃3【分析】利用角的进制计算.然后比较大小.【详解】解℃4.4°=4°24″ 因而3°79′<4°18′<4.4° ℃℃2<℃1<℃3 故答案为℃2<℃1<℃3【点睛】本题考查了角度比较大小,可以先把度数统一成度、分的形式,先比较度,度数相同的再比较分. 17.1【分析】每次截完之后,都把剩下的塑料管看作新的单位1,依次计算即可,需要注意计算的技巧;【详解】解:根据题目意思,列出以下算式: 1111202011112342020⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭= 123201920202342020⨯⨯⨯⨯⨯=1(厘米) 故答案为:1.【点睛】本题考查有理数的乘法,解决此题的关键是理解题目的意思列出正确的式子. 18.2a b c --【分析】先根据各点在数轴上的位置判断出a 、b 、c 的符号及大小,再去绝对值符号,合并同类项即可.【详解】解:℃由图可知,b <a <0<c ,|a|<c , ℃a-b >0,a-c <0, ℃原式=a-b+a-c=2a-b-c . 故答案为:2a-b-c .【点睛】本题考查的是绝对值的化简,熟知绝对值的性质和化简方法是解答此题的关键. 19.3【分析】根据()1n-运算、有理数加减乘除混合运算分别求解即可 【详解】解:2021111(1)9()8(2)12()342-+⨯--÷--⨯-121341244⎛⎫=--+-⨯- ⎪⎝⎭=1343--++=3.【点睛】本题考查含有乘方的有理数加减乘除混合运算,掌握运算法则及运算顺序是解决问题的关键. 20.见解析【分析】主视图应该有3列,看到的正方形的个数分别是2、3、4,左视图应该有2列,看到的正方形的个数分别是2、4,据此解答即可【详解】解:正面和左面看到的几何体的形状图如图所示:【点睛】本题考查了简单组合体的三视图,属于常考题型,掌握解答的方法是解题的关键. 21.221122x xy y --- 【分析】将A ,B 及C 代入所求式子中,去括号合并得到最简结果.【详解】原式=2222221324322422x xy y x xy y x xy y +--+++-+ =221122x xy y --- 【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 22.(1)4;-4; (2)112(3)见解析【分析】(1)根据乘方的意义、绝对值的意义和相反数的定义计算; (2)先确定负数,再求它们的和,然后和的绝对值即可; (3)利用数轴,标出表示3个数对应的点. (1)(-2)2 =4,-|-4|=-4,故答案为:4;-4; (2)-(-1)=1,所以负数为-|-4|、-32,则所有负数的和的绝对值=311422--=,故答案为:112;(3)23.(1)购进甲种水果75千克,乙种水果30千克;(2)第二次乙种苹果按原价打8折销售.【分析】(1)设水果店购进乙种苹果x 千克,则购进甲种水果()215x +千克,根据两种水果进价共615元,列出方程()85215615x x ++=,求解即可;(2)设第二次乙种苹果按原价的y 折销售,根据“第二次购进的两种苹果都售完后获得的利润为735元”列出方程,求解即可.【详解】解:(1)设水果店购进乙种苹果x 千克,则购进甲种水果()215x +千克, 根据题意可得:()85215615x x ++=, 解得30x =,℃购进甲种水果2301575⨯+=(千克),乙种水果30千克; (2)设第二次乙种苹果按原价的y 折销售, 第二次购进甲种水果75千克,乙种水果90千克, 第二次甲种水果售价10元/千克,乙种水果售价1510y⋅元/千克, 根据题意可得:()105751589073510y ⎛⎫-⨯+⨯-⨯= ⎪⎝⎭,解得8y=,答:第二次乙种苹果按原价打8折销售.【点睛】本题考查一元一次方程的应用,根据题意列出方程是解题的关键. 24.(1)80 (2)见解析 (3)740人【分析】(1)根据各组频数之和为400即可求出a 的值; (2)求出a 的值即可补全频数分布直方图; (3)样本中获奖学生数占调查人数的148400,因此估计总体2000人的148400是获奖的人数.(1)解:根据频数分布表可得a=400−148−104−48−20=80,故答案为:80;(2)解:由(1)知80a=,则补全的频数分布直方图如图所示;(3)解:样本中获奖学生数占调查人数的148400,∴全校2000名学生进行时事知识竞赛,估算获奖人数为1482000740400⨯=(人);答:全校2000名学生中获奖的大约有740人.【点睛】本题考查频数分布表及频数分布直方图的意义和绘制方法,掌握频数之和等于样本容量是解决问题的前提,样本估计总体是统计常用的方法.25.(1)℃30°,45°,60°;℃12;(2)℃MON=12α;(3)℃CBE+℃EBD=90°.【分析】(1)℃℃根据角平分线的定义即可得到结论;(2)由角平分线的定义即可得到结论;(3)先根据折叠的性质得到℃CBA=℃CBE=12℃ABE,再根据平分线的定义得到℃EBD=℃DBM=12℃MBE,则℃CBE+℃EBD=12(℃ABE+℃MBE)=12℃ABM,然后根据平角定义进行计算.【详解】(1)℃℃℃MOC=12℃AOC,℃NOC=12℃BOC,℃℃MON=℃MOC+℃NOC=12℃AOC+12℃BOC=12℃AOB,当℃AOB=60°时,℃MON=12×60°=30°,当℃AOB=90°时,℃MON=12×90°=45°,当℃AOB=120°时,℃MON=12×120°=60°;℃由℃知,℃MON=12℃AOB,(2)由(1)℃知,℃MON=12℃AOB,℃℃MON=12α;(3)℃A点落在E点处,BC为折痕,℃℃CBA=℃CBE=12℃ABE,℃D是℃EBM的平分线,℃℃EBD=℃DBM=12℃MBE,℃℃CBE+℃EBD=12(℃ABE+℃MBE)=12℃ABM=12×180°=90°.【点睛】本题考查了角度的计算:会计算角度的和、差、倍、分.也考查了折叠的性质.26.(1)6秒(2)℃见解析,12;℃存在,t的值为36或18【分析】(1)根据PB=2AM建立关于t的方程,解方程即可;(2)℃当P在AB延长线上运动时,点P在B点右侧,根据线段中点的定义得出PM=12AP=t,PN=12BP=12(2t−24)=t−12.再根据MN=PM−PN即可求解;℃易知N不能是BM的中点,分M是NB的中点,B是MN的中点两种情况讨论求解.(1)℃M是线段AP的中点,℃AM=12AP=t,PB=AB-AP=24-2t,℃PB=2AM,℃24-2t=2t,解得t=6;℃当t=6秒时,PB=2AM ;(2)℃当P在AB延长线上运动时,点P在B点右侧,℃M是线段AP的中点,℃PM=12AP=t,℃N是线段BP的中点,℃PN=12BP=12(2t-24)=t-12,℃MN=PM-PN=t-(t-12)=12,℃MN的长度是一个常数,℃MN的长度不变,其值为12;℃由题意可知,N不可能是BM的中点.如果M是NB的中点,那么BM=MN=12 BN,℃t-24 =12,解得t=36,符合题意;如果B是MN的中点,那么BM=BN=12MN,℃24-t=12×12,解得t=18,符合题意;综上,在P点的运动过程中,存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,此时t为36或18.。
北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×222.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 3.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块4.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定5.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .96.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .57.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 8.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .459.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -10.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 11.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .11112.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.15.一个三角形内有n 个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有99个点时,此时有_____个小三角形.16.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________.17.某品牌服装店以200元的进价购进一批体恤衫,销售时标价为300元,为了减少商品库存,让利于顾客,准备打折销售,但要保证利润率不低于20%,则至多可大打_______________折.18.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.19.已知一个角的补角是它余角的10倍,则这个角的度数是_______________ 20.若25m n a b 与569a b -是同类项,则m n +的值是____.21.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________22.如图所示,把一根绳子对折后得到的图形为线段AB ,从点P 处把绳子剪断,已知AP :BP =4:5,若剪断后的各段绳子中最长的一段为80cm ,则绳子的原长为________ cm .三、解答题23.下面是林林同学的解题过程:解方程212136x x ++-=. 解:去分母,得:2(21)26x x +-+= 第①步 去括号,得:4226x x +-+= 第②步 移项合并,得:32x = 第③步 系数化1,得:23x =第④步 (1)上述林林的解题过程从第________步开始出现错误; (2)请你帮林林写出正确的解题过程. 24.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 25.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2. ①求线段OP 的长.②点M 在线段AB 上,若点M 距离点P 的长度为4cm ,求线段AM 的长.26.如图,点 A ,C 是数轴上的点,点 A 在原点上,AC=10.动点 P ,Q 网时分别从 A ,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度,点 M 是 AP 的中点,点 N 是 CQ 的中点.设运动时间为t 秒(t>0)(1) 点C 表示的数是______ ;点P 表示的数是______,点Q 表示的数是________(点P .点 Q 表示的数用含 t 的式子表示) (2) 求 MN 的长;(3) 求 t 为何值时,点P 与点Q 相距7个单位长度?27.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______. 28.阅读理解: (阅读材料)在数轴上,通常用“两数的差”来表示“数轴上两点的距离”如图1中三条线段的 长度可表示为:422,4(2)6,2(4)2AB CB DC =-==--==---=,⋅⋅⋅结论:数轴上任意两点表示的数为分别,()a b b a >,则这两个点间的距离为b a -(即:用较大的数去减较小的数)(理解运用)根据阅读材料完成下列各题:(1)如图2, ,A B 分别表示数1,7-,求线段AB 的长;(2)若在直线AB 上存在点C ,使得14CB AB =,求点C 对应的数值. (3),M N 两点分别从,A B 同时出发以3个单位、2个单位长度的速度沿数轴向右运动,求当点,M N 重合时,它们运动的时间; (4)在(3)的条件下,求当12MN AB =时,它们运动的时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可. 【详解】 解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误. 故选C 【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.A解析:A 【解析】 【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.3.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.4.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.5.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..6.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.7.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.8.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.A解析:A【解析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.10.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.11.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.12.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题 13.16 【解析】 【分析】 【详解】 ∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=1 解析:16【解析】【分析】【详解】∵x=8是偶数,∴代入-12x+6得:m=-12x+6=-12×8+6=2,∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=16,故答案是:16.【点睛】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.14.8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是解析:8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是2,4,8,6四个一循环,所以2015÷4=503…3,则22015的末位数字是8.故答案为8.【点睛】题考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.15.199【解析】【分析】观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.【详解】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则解析:199【解析】【分析】观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.【详解】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),当n=99时,y=3+2(99-1)=199,故答案为:199;【点睛】本题考查了规律型中的图形变化问题,解题关键是结合图形,从特殊推广到一般,建立函数关系式.16.5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(2x2+3y)=3=6x2+9y,∴6x2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.17.8【解析】【分析】设打x 折,得出售价是300×元,利润是(300×-200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】解:设打解析:8【解析】【分析】设打x 折,得出售价是300×10x 元,利润是(300×10x -200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】 解:设打x 折,根据题意得:则300×10x -200≥200×20%, 解得:x≥8,则最多可打8折.故答案为:8.【点睛】 本题考查一元一次不等式组的应用,正确理解利润率的含义,理解利润=进价×利润率,列出不等式是解题关键.18.6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为1解析:6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为6,第6次输出的结果为3,∵(2019-2)÷2=1008…1,∴第2019次输出的结果为6,故答案为:6.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.19.【解析】【分析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.20.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.21.-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.22.绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP:BP=4:5,剪断后的各段绳子中最长的一段为80cm,∴2AP=80cm,∴AP=40cm,∴PB=50cm,∴绳子的原长=2AB=2(AP+PB)=2×(40+50)=180(cm);(2)当点B是绳子的对折点时,将绳子展开如图.∵AP:BP=4:5,剪断后的各段绳子中最长的一段为80cm,∴2BP=80cm,∴BP=40cm,∴AP=32cm.∴绳子的原长=2AB=2(AP+BP)=2×(32+40)=144(cm).综上,绳子的原长为144cm或180cm.【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.三、解答题23.(1)①;(2)2x =,过程见解析【解析】【分析】(1)找出林林错误的步骤,分析原因即可;(2)写出正确的解题过程即可.【详解】(1)上述林林解题过程从第①步开始出现错误,错误的原因是去括号没变号; 故答案为:①;(2)去分母得:()()22126x x +-+=,去括号得:4226x x +--=,移项合并得:36x =,解得:2x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤和运算法则是解本题的关键.24.-x 2y ;3.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=﹣2x 2y ﹣(2xy -2xy ﹣x 2y )= ﹣2x 2y ﹣2xy +2xy +x 2y =﹣x 2y .当x =3,y 13=-时,原式=2133⎛⎫-⨯- ⎪⎝⎭=3. 【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.25.①OP =6cm ;②AM =16cm 或24cm .【解析】【分析】①根据线段中点的性质,可得AB 的长,根据比例分配,可得BP 的长,根据线段的和差,可得答案;②分两种情况:M 有P 点左边和右边,分别根据线段和差进行计算便可.【详解】解:①∵点O 是线段AB 的中点,OB =14cm ,∴AB =2OB =28cm ,∵AP :PB =5:2.∴BP =287AB =cm ,∴OP =OB ﹣BP =14﹣8=6(cm );②如图1,当M 点在P 点的左边时,AM =AB ﹣(PM +BP )=28﹣(4+8)=16(cm ),如图2,当M 点在P 点的右边时,AM =AB ﹣BM =AB ﹣(BP ﹣PM )=28﹣(8﹣4)=24(cm ).综上,AM =16cm 或24cm .【点睛】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.26.(1)10,3,+10t t (2)10t - (3)32或172 【解析】【分析】(1)根据动点P 、Q 的运动轨迹可得3AP t =,CQ t =,即可解答.(2)根据中点平分线段长度和线段的和差关系即可解答.(3)由(1)可得210PQ t =-+,代入求解即可.【详解】(1)∵点 A ,C 是数轴上的点,点 A 在原点上,AC=10∴点C 表示的数是10∵动点 P ,Q 网时分别从 A ,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度∴3AP t =,CQ t =∴点P 表示的数是3t ,点Q 表示的数是10t +故答案为:10,3,+10t t .(2)∵点 M 是 AP 的中点,点 N 是 CQ 的中点,3AP t =,CQ t = ∴1311,2222MP AP t CN CQ t ====,103PC AC AP t =-=- ∴311031022MN MP PC CN t t t t =++=+-+=-. (3)∵点P 表示的数是3t ,点Q 表示的数是10t + ∴103210PQ AQ AP t t t =-=+-=-+∵点P 与点Q 相距7个单位长度 ∴2107t -+=解得32t =或172t =. 【点睛】本题考查了线段的动点问题,掌握数轴的性质、中点平分线段长度、线段的和差关系、解一元一次方程的方法是解题的关键.27.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=; ③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =;②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =, 综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤, ①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠, 即6010220t t ︒︒︒+=⨯,解得2t =;②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在;③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠,即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++-解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键.28.(1) 线段AB 的长为8;(2)14CB AB =时,点对应的数值为5或9;(3)运动时间为8秒时,,M N 重合;(4)运动时间为4或12小时,12MN AB =. 【解析】【分析】(1) 由题意,直接观察数轴和定义代入即可求出线段AB 的长;(2)根据题意设点C 对应的数值为x ,分当点C 在点B 左侧时以及当点C 在点B 右侧时列方程求解即可;(3)根据题意设运动时间为t 秒时,M N 重合用含t 的代数式表示出M 、N 进行分析;(4)由题意设运动时间为t 秒时,12MN AB =,分当点M 在点N 左侧时以及当点M 在点N右侧时进行分析求解.【详解】解:(1)由题意得,线段AB 的长为:7(1)8--=,答:线段AB 的长为8.(2)设点C 对应的数值为x(ⅰ)当点C 在点B 左侧时,7CB x =- 因为14CB AB = 所以1784x -=⨯ 解得5x =(ⅱ)当点C 在点B 右侧时7CB x =- 因为14CB AB = 所以17=84x -⨯ 解得=9x 答:14CB AB =时,点对应的数值为5或9. (3)设运动时间为t 秒时,,M N 重合 M 点对应数值表示为13t -+,N 点对应数值表示为72t +由题意得1372t t -+=+解得8t =答:运动时间为8秒时,,M N 重合.(4)设运动时间为t 秒时,12MN AB =, (ⅰ)当点M 在点N 左侧时,由(3)有172(13)82t t +--+=⨯ 解得:4t =(ⅱ)当点M 在点N 右侧时 113(72)82t t -+-+=⨯ 12t =答:运动时间为4或12小时,12MN AB =. 【点睛】本题考查一元一次方程的实际运用,利用数形结合的思想和数轴上求两点之间距离的方法解决问题.。
北师大版七年级数学上册期末测试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)181________.2.绝对值不大于4.5的所有整数的和为________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x y x y +=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x ++-=2.解不等式组:()41710853x x x x ⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .4.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、A5、B6、C7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、03、-2≤m<34、55、2或﹣8.6、5三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、不等式组的所有非负整数解为:0,1,2,3.3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)50;72;(2)详见解析;(3)330.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
北师大版七年级上册数学期末考试试卷及答案doc一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<2.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a3.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种 4.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -= 5.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 6.已知232-m a b 和45n a b 是同类项,则m n -的值是( ) A .-2 B .1C .0D .-17.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b 8.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .45 9.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .410.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( )….A .4n+1B .3n+1C .3nD .2n+111.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个12.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b ()//b a 把绳子再剪一次时,绳子就被剪为9段;若用剪刀在虚线,a b 之间把绳子再剪若干次(剪刀的方向与a 平行).按上述规律用剪刀一共剪2020次时绳子的段数是________.14.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a ,b 的代数式表示) .15.关于x 的方程23x kx -=的解是整数,则整数k 可以取的值是_____________. 16.一个角的余角比这个角的12少30°,则这个角的度数是_____.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.18.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.19.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 20.将一列有理数1,2,3,4,5,6,---按如图所示有序排列,如:“峰1”中的封顶C 的位置是有理数4;“峰2”中C 的位置是有理数-9,根据图中的排列规律可知,2008应排在,,,,A B C D E 中的__________位置.21.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =……(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =____________.22.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m na a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.三、解答题23.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师博营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,-3(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?24.如图,AB CD ⊥,垂足为O ,EF 经过点O ,130∠=︒.求2∠、3∠的度数.25.计算及解方程(1)8+(–10)+(–2)–(–5); (2)()100215434-⨯--⨯--.(3)6363(5)x x -+=--; (4)2123148y y ---=. 26.(2+3+3分)阅读材料:我们知道,4x ﹣2x+x=(4﹣2+1)x=3x ,类似地,我们把(a+b )看成一个整体,则4(a+b )﹣2(a+b )+(a+b )=(4﹣2+1)(a+b )=3(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222362a b a b a b ---+-.(2)已知224x y -=,求23621x y --的值;(3)已知a ﹣2b=3,2b ﹣c=﹣5,c ﹣d=10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值. 27.如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;()2若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合; ()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.28.如图,C 是线段AB 上一点,5AC cm =,点P 从点A 出发沿AB 以3/cm s 的速度匀速向点B 运动,点Q 从点C 出发沿CB 以1/cm s 的速度匀速向点B 运动,两点同时出发,结果点P 比点Q 先到3s .()1求AB 的长;()2设点P Q 、出发时间为ts ,①求点P 与点Q 重合时(未到达点B ), t 的值; ②直接写出点P 与点Q 相距2cm 时,t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.A解析:A 【解析】 【分析】根据周长的计算公式,列式子计算解答. 【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-, ∵ 四边形ABCD 是长方形, ∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-, 同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -, ∴C 1 -C 2=0. 故选A . 【点睛】本题考查周长的计算,“数形结合”是关键.3.D解析:D 【解析】 【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案. 【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上, ∴动点的不同运动方案为: 方案一:0→-1→0→1→2→3; 方案二:0→1→0→1→2→3; 方案三:0→1→2→1→2→3; 方案四:0→1→2→3→2→3; 方案五:0→1→2→3→4→3; 共计5种. 故选:D . 【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.4.B解析:B 【解析】 【分析】根据同类项的定义和合并同类项的法则解答. 【详解】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误; B 、原式=0,故本选项正确;C 、a 3与3a 2不是同类项,不能合并,故本选项错误;D 、原式=a 2,故本选项错误. 故选B . 【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.解析:B 【解析】 【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可. 【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B . 【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.6.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.7.D解析:D 【解析】 【分析】根据合并同类项的法则即可求出答案. 【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确. 故选D . 【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题8.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()---=39018020x xx=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.10.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.11.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.12.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题13.【解析】 【分析】根据题意分析出n=1时,绳子的段数由原来的1根变为了5根,即多出了4段;n=2时,绳子为1+8段,多出了4×2段;即每剪一次,就能多出4段绳子,所以,剪n 次时,多出4n 条绳子, 解析:8081【解析】 【分析】根据题意分析出n=1时,绳子的段数由原来的1根变为了5根,即多出了4段;n=2时,绳子为1+8段,多出了4×2段;即每剪一次,就能多出4段绳子,所以,剪n 次时,多出4n 条绳子,即绳子的段数为1+4n .据此规律即可求解. 【详解】∵n=1时,绳子为5段; n=2时,绳子为1+8段; ;∴剪n 次时,绳子的段数为1+4n ;+⨯=(段).剪2020次时,绳子的段数是:1420208081故答案为:8081.【点睛】本题主要考查了图形类的规律探索,关键是运用数形的思想分析出每剪一次,就能多出4段绳子.14.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b,∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b)= a+98b.故答案为:a+98b.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.15.【解析】【分析】先求出含有参数k的方程的解,并列举出它是整数的所有可能性,再求出k的整数值.【详解】解:先解方程,,,,要使方程的解是整数,则必须是整数,∴可以取的整数有:、,则整数解析:1,3,5±【解析】【分析】先求出含有参数k的方程的解,并列举出它是整数的所有可能性,再求出k的整数值.解:先解方程,23x kx -=,()23k x -=,32x k =-, 要使方程的解是整数,则32k-必须是整数, ∴2k -可以取的整数有:±1、3±,则整数k 可以取的值有:±1、3、5.故答案是:±1、3、5.【点睛】本题考查方程的整数解,解题的关键是理解方程解的定义.16.80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =x ﹣30°,解得:x =80°.即解析:80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =12x ﹣30°, 解得:x =80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键. 17.6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.解:由题意可得,第1次输出的结果为24,第2次输出的结果为1解析:6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为6,第6次输出的结果为3,∵(2019-2)÷2=1008…1,∴第2019次输出的结果为6,故答案为:6.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.18.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.19.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.20.B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A ,B ,C ,D ,E 中的哪个位置.【详解】解:由图可知,奇数为负值解析:B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A ,B ,C ,D ,E 中的哪个位置.【详解】解:由图可知,奇数为负值,偶数为正值,每个峰中有5个数据,∵(2008-1)÷5=2007÷5=401…2,∴2008应排在B 的位置,故答案为:B .【点睛】此题考查图形的变化类,解答本题的关键是明确题意,发现数字的变化特点,利用数形结合的思想解答.21.-【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【详解】解:S1=,S2=-S1-1=--1=-,S3==-,解析:-1a a+ 【解析】【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【详解】解:S 1=1a ,S 2=-S 1-1=-1a -1=-1a a+,S 3=21S =-1a a +,S 4=-S 3-1=1111a a a -=-++ ,541S S ==-(a+1),S 6=-S 5-1=(a+1)-1=a ,S 7=611S a = ,…,∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-1a a+. 故答案为:-1a a +. 【点睛】此题考查规律型中数字的变化类,根据数值的变化找出S n 的值,每6个一循环是解题的关键.22.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅ 101101101101a ++++=10150a ⨯=5050a = 故答案为:5050a .【点睛】本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.三、解答题23.(1)将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)沈师傅在上午8:00~9:15一共收入130元.【解析】【分析】(1)根据题意,列出有理数数的加法算式,即可求解;(2)先求各个有理数的绝对值,再求和,最后除以行驶的时间,即可求解; (3)分别求出起步费以及超过3千米的收费总额,再求和,即可求解.【详解】(1)由题意得:(+8)+(−6)+(+3)+(−7)+(+8)+(+4)+(−9)+(−4)+(+3)+(-3)=-3(千米),答:将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)由题意得:|+8|+|−6|+|+3|+|−7|+|+8|+|+4|+|−9|+|−4|+|+3|+|-3|=55(千米), 上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;55÷1.25=44(千米/小时),答:上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)一共有10位乘客,则起步费为:8×10=80(元),超过3千米的收费总额为:[(8−3)+(6−3)+(3−3)+(7−3)+(8−3)+(4−3)+(9−3)+(4−3)+(3−3)+(3−3)]×2=50(元),80+50=130(元),答:沈师傅在上午8:00~9:15一共收入130元.【点睛】本题主要考查有理数的绝对值与有理数的加法运算的实际应用,根据题意,列出算式,是解题的关键.24.60°,30°【解析】【分析】根据对顶角相等可得∠3=∠1=30°,根据邻补角互补可得∠EOB=150°,再由垂直可得∠BOD=90°,根据∠2=90°-∠1即可算出度数.【详解】解:由题意可知,AB 与EF 相交于点O ,3130∴∠=∠=︒AB CD ⊥90BOD =∴∠︒即2390∠+∠=︒260∴∠=︒;【点睛】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.25.(1)1;(2)-9;(3)x=-6;(4)y=72 【解析】【分析】(1)根据有理数的减法法则进行变形,再运用加法法则进行计算即可得到答案;(2)先进行乘方运算和去绝对值,然后再进行乘法运算,最后进行加减运算即可得到答案;(3)先去括号,然后移项,化系数为1,从而得到方程的解;(4)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)解:8+(–10)+(–2)–(–5)=8-10-2+5=1;(2)()100215434-⨯--⨯--=-1×5-(-12)-16=-5+12-16=-9;(3)6363(5)x x -+=--去括号,得-6x+3=6-3x+15移项,得-6x+3x=6+15-3合并同类项,得-3x=18系数化为1,得x=-6(4)2123148y y ---= 去分母,得2(2y-1)-(2y-3)=8去括号,得4y-2-2y+3=8移项,得4y-2y=8+2-3合并同类项,得2y=7系数化为1,得y=72【点睛】本题考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解答此题的关键.26.(1)2()a b --;(2)-9;(3)8【解析】【分析】(1)利用整体思想,把2()a b -看成一个整体,进行合并即可得到结果; (2)原式可化为3(x 2-2y )-21,把x 2-2y=4整体代入即可;(3)依据a-2b=3,2b-c=-5,c-d=10,即可得到a-c=-2,2b-d=5,整体代入进行计算即可.【详解】(1)∵()()()()2222236236((2))a b a b a a b a b b ---+-=---=-+; 故答案为:2()a b --;(2)∵224x y -=, ∴原式=3(x 2-2y )-21=12-21= -9;(3)∵a-2b=3,2b-c=-5,c-d=10,∴()()222a b b c a c -+-=-=-,()()225c d b c b d -+-=-=∴原式=-2+5-(-5)=8.故答案为(1)2()a b --;(2)-9;(3)8.【点睛】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.27.(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【解析】【分析】(1)根据b 为最大的负整数可得出b 的值,再根据A 在B 左边两个单位长度处,C 在B 右边5个单位处即可得出a 、c 的值;(2)根据折叠的性质结合a 、b 、c 的值,即可找出与点B 重合的数;(3)根据运动的方向和速度结合a 、b 、c 的值,即可找出t 秒后点A 、B 、C 分别表示的数,利用数轴上两点间的距离即可求出AB 、AC 、BC 的值;(4))将(3)的结论代入52BC AB -中,可得出52BC AB -的值不会随着时间的变化而变化,即为定值,此题得解.【详解】(1)b 是最大的负整数,∴1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处∴3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合∴()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动∴t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t = 又3a =-,1b =-,c 4=∴点A 表示的数为23t --,点B 表示的数为31t -,点C 表示的数为54t +, ∴25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =∴()()52=525225102541021BC AB t t t t -⨯+-+=+--=∴52BC AB -的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.28.(1)AB 的长为12cm ;(2)①52t =;②32t =或72t = 【解析】【分析】(1)设AB 的长,根据题意列出方程,求解即得;(2)①当P ,Q 重合时,P 的路程=Q 的路程+5,列出方程式即得; ②点P 与点Q 相距2cm 时,分P 追上Q 前,和追上Q 后两种情况,分别列出方程式求解即得.【详解】解:()1设AB xcm =,由题意得()533x x --= 解得12x =AB∴的长为12cm,()2①由题意得35=+t t解得52 t= 5 2t∴=时点P与点Q重合,故答案为:52;②P追上Q前,3t+2=t+5,解得32t=,P追上Q后,3t-2=t+5,解得72t=,综上:32t=或72t=.【点睛】考查一元一次方程的应用,利用路程=速度⨯时间的关系式,找到变量之间的等量关系列出方程,求解,注意追及问题分情况讨论的情况.。
七年级上学期北师版期末真题卷1:数学1.下列四个数中,最小的数是()A.−3B.0C.−1D.72.在本学期第一章的数学学习中,我们曾经辨认过从正面、左面、上面三个不同的方向观察同一物体时看到的形状图.如图是马老师带领的数学兴趣小组同学搭建的一个几何体,这个几何体由6个大小相同的正方体组成,你认为从左面看到的几何体的形状应该为()A B C D3.学习了数据的调查方式后,悠悠采取以下调查数据的方式展开调查,你认为他的调查方式选取合适的为()A.为了解一批防疫物资的质量情况,选择普查B.为了解郑州市居民日平均用水量,选择普查C.为了解郑州市中小学生对新冠病毒传播途径的知晓率,选择抽样调查D.为了解运载火箭零件的质量情况,选择抽样调查4.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()期末复习与测试A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段5.2020年12月12日,国家主席习近平在气候雄心峰会上强调:到2030年单位国内生产总值二氧化碳排放量将比2005年下降65%以上,森林积蓄量将比2005年增加60亿立方米等,为全球应对气候变化做出更大贡献.其中60亿立方米用科学记数法表示正确的为().A.6×108立方米B.0.6×109立方米C.60×108立方米D.6×109立方米6.郑州市实施垃圾分类以来,为了调动居民参与垃圾分类的积极性,学府小区开展了垃圾分类积分兑换奖品活动,随机抽取了若干户12月份的积分情况,并对抽取的样本进行了整理,得到下列不完整的统计表:期末复习与测试根据以上信息可得().A.a=0.2B.a=0.3C.a=0.4D.a=0.57.用一个平面去截四棱柱,截面形状不可能是()A.三角形B.四边形C.六边形D.七边形8.如图,轩轩将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?为解决这个)问题,轩轩设正方形的边长为x cm,则依题意可得方程为(ArrayA.4x=5(x−4)B.4(x−4)=5xC.4x=5(x+4)D.4(x+4)=5x9.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示).观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中a b 的值为().A.0B.−1C.−2D.−310.轩轩在数学学习中遇到一个有神奇魔力的“数值转换机”,按如图所示的程序计算.若开始输入的值x 为正整数,最后输出的结果为41,则满足条件的x 值最多有()个.A.1B.2C.3D.411.若将一个圆等分成三个扇形,则其中一个扇形圆心角的度数为°.12.举例说明代数式8a 3的意义:.13.已知关于x 的方程2(x −1)−6=0与3a −x 3=1的解互为相反数,则a =.14.小王是丹尼斯百货负责A 品牌羊毛衫的销售经理,一件A 品牌羊毛衫的进价为600元,加价50%后进行销售.临近年末,小王发现还有积货,所以决定打折出售,结果每件仍获利120元,则A 品牌羊毛衫应按折销售.15.如图1,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段长度是另外一条长度的2倍,则称点C 是线段AB 的“好点”.如图2,已知AB =16cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设运动的时间为t(s),当t =s 时,Q 为线段AB 的“好点”.16.计算:−23÷4+|−3|×(−1)2020.17.在期末复习期间,悠悠碰到了这样一道习题:如图所示是一个正方体表面展开图,正方体的每个面上都写着一个整式,且相对两个面上的整式的和都相等.请根据展开图回答下列问题:(1)与A 相对的面是 ;与B 相对的面是 ;(填大写字母)(2)悠悠发现A 面上的整式为:x 3+2x 2y +1,B 面上的整式为:−12x 2y +x 3,C 面上的整式为:13x 2y −x 3,D 面上的整式为:−2(x 2y +1),请你计算:F 面上的整式.期末复习与测试18.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A∶0⩽t<10;B∶10⩽t<20;C∶20⩽t<30;D∶30⩽t<40;E∶t⩾40;通过调查得到的一组数据:D C C A D A B A D BB E D D E D BC C EE C B D E E D D E DB BC CD CE D D AB D DCD DE D C E【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表期末复习与测试【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.19.请用自己的年龄编一道问题,设出未知数,列方程并解答.(题目中不能出现真实姓名)用火柴棒按图中的方式搭图形:20.按图示规律填空:(1)a= ,b= ;(2)按照这种方式搭下去,则搭第n个图形需要火柴棒的根数为 ;(用含n的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2021个图形需要的火柴棒根数.期末复习与测试21.如图,已知∠AOB=120°,△COD是等边三角形(三条边都相等,三个角都等于60°的三角形),.OM平分∠BOC(1)如图1,当∠AOC=30°时,∠DOM= ;(2)如图2,当∠AOC=100°时,∠DOM= ;(3)如图3,当∠AOC=α(0°<α<180°)时,求∠DOM的度数,请借助图3填空.解:因为∠AOC=α,∠AOB=120°,所以∠BOC=∠AOC−∠AOB=α−120°,因为OM平分∠BOC,所以∠MOC= ∠BOC= (用α表示),因为△COD为等边三角形,所以∠DOC=60°,所以∠DOM=∠MOC+∠DOC= (用α表示).(4)由(1)(2)(3)问可知,当∠AOC=β(0°<β<180°)时,直接写出∠DOM的度数.(用β来表示,无需说明理由)22.寒风凛凛、爱心涌动,临近传统佳节,我市某学校部分师生冒着严寒为50km外的夕阳红敬老院送去过节物资,并为老人们表演节目.学校司机小李开车以60km/h的速度带着师生和物资从学校出发,同时志愿者小王开车以90km/h的速度从敬老院出发,前去迎接小李车上的部分学生到敬老院给老人们表演节目,小王接到学生以后立刻返回敬老院(学生下车和上车的时间不计),学校期末复习与测试司机小李开车行驶多长时间时两车相距5km?写出答案,并说明理由.参考答案与解析⼀、选择题1.【答案】A【解析】−3<−1<0<7,所以,最小的数是−3,故选:A.2.【答案】B【解析】从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:B.3.【答案】C【解析】A.为了解一批防疫物资的质量情况,适合采用抽样调查方式,故本选项不符合题意;期末复习与测试B.为了解郑州市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.为了解郑州市中小学生对新冠病毒传播途径的知晓率,适合采用抽样调查方式,故本选项符合题意;D.为了解运载火箭零件的质量情况,适合采用全面调查方式,故本选项不合题意;故选:C.4.【答案】B【解析】A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.5.【答案】D【解析】因为60亿=6000000000,所以60亿用科学记数法表示为6.0×109.故选:D.6.【答案】C【解析】a=24=0.4,6+12+24+18故选:C.7.【答案】D【解析】四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.8.【答案】A【解析】设正方形的边长为x cm,则第一个长条的长为x cm,宽为4cm,第二个长条的长为(x−4)cm,宽为5cm,依题意得:4x=5(x−4).故选:A.9.【答案】C【解析】观察图1和图2,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,期末复习与测试∴图3中满足:b+2+3=0+2+4=5+a+3,∴a=−2,b=1,即a b=−2,故选:C.10.【答案】D【解析】由题意可得,当输入x时,3x−1=41,解得:x=14,即输入x=14,输出结果为41,当输入x满足3x−1=14时,解得x=5,即输入x=5,结果为14,再输入14可得结果为41,同理:3x−1=5,x=23x−1=2,x=1∵x为正整数,∴x的值可取1或2或5或14,故选:D.⼆、填空题11.【答案】120【解析】将一个圆等分成三个扇形,则其中一个扇形圆心角的度数为360°÷3=120°,故答案为:120.12.【答案】如一个正方体的棱长是a ,一个正方体的体积是a 3,那么8个正方体的体积是8a 3.(答案不唯一,合理即可)【解析】如一个正方体的棱长是a ,一个正方体的体积是a 3,那么8个正方体的体积是8a 3.故答案为:如一个正方体的棱长是a ,一个正方体的体积是a 3,那么8个正方体的体积是8a 3.13.【答案】−13【解析】解方程2(x −1)−6=0得:x =4,解方程3a −x 3=1得:x =3a −3,∵两个方程的解互为相反数,∴4+(3a −3)=0,解得:a =−13,故答案为:−13.14.【答案】八【解析】设A 品牌羊毛衫应按x 折销售,依题意有600×(1+50%)×0.1x =600+120,解得x =8.故A 品牌羊毛衫应按八折销售.故答案为:八.15.【答案】8或163【解析】∵动点P 运动速度快,∴动点P 先到达终点,∴动点P 到达终点需要16÷2=8(s),当到达8秒时,运动停止.①当点Q 在AB 中点时,AB =2AQ =2BQ ,此时,AQ =BQ =12AB =8,∴t =8;②当AQ =2BQ 时,BQ =13AB =163,∴t =163;③当BQ =2AQ 时,期末复习与测试BQ =23QB =323,此时t =323>8,不合题意,舍去;综上所述,t =8s 或163s .故答案为:8或163.三、解答题16.【答案】原式=−8÷4+3×1=−2+3=1.【解析】先算乘方,再算乘除,最后算加减.17.【答案】(1)由正方体表面展开图的“相间、Z 端是对面”可得,“A ”与“D ”是对面,“B ”与“F ”是对面,“C ”与“E ”是对面,故答案为:D ,F ;(2)由题意得,A +D =B +F ,即(x 3+2x 2y +1)+[−2(x 2y +1)]=(−12x 2y +x 3)+F ,所以F =12x 2y −1.【解析】(1)根据正方体表面展开图的特征进行判断即可;(2)根据相对的面的整式的和相等进行计算即可.18.【答案】(1)补全条形统计图如图1∶(2)由题可知:帮父母做家务所用时长不低于半小时(包含半小时)人数为28人,所以2850×100%=56%.期末复习与测试因为七年级总人数占全校总人数的40%,而七年级学生人数为400人,所以全校共有400÷40%=1000人,由样本中得到:帮父母做家务所用时长在半小时以上(包含半小时)的人数所占的百分比为56%,所以全校学生中帮父母做家务所用时长在半小时以上(包含半小时)人数约1000×56%=560人,答:全校学生中帮父母做家务所用时长在半小时以上(包含半小时)人数约560人;(3)感恩父母,从我做起,从身边小事做起(合理即可).【解析】(1)根据表中数据补全条形统计图即可;(2)根据七年级共有400名学生,可得出全校人数,求出帮父母做家务所用时长不低于半小时(包含半小时)人数占调查人数的百分比,即可估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数;(3)感恩父母,从我做起,从身边小事做起(合理即可).19.【答案】我今年12岁,我的年龄比小明的年龄4倍少24,小明的年龄是多少?设小明的年龄x岁,根据题意可得:4x−24=12,解得x=9.故小明的年龄是12岁.【解析】利用年龄之间的关系编一道实际问题即可.期末复习与测试20.【答案】(1)按图示规律填空:故答案为:17,21;(2)由(1)可得出规律:4n+1,即照这样的规律摆下去,搭第n个图形需要4n+1根火柴棒;故答案为:4n+1;(3)当n=2021时,4×2021+1=8085,所以第2021个图形需要的火柴棒是8085根.【解析】先计算出前几个图形的火柴数量,然后总结规律,可推广得到答案.21.【答案】(1)∵∠AOC=30°,∠AOB=120°,∴∠BOC=120°−30°=90°,∵OM平分∠BOC,∴∠COM=90°÷2=45°,∴∠MOD=60°−45°=15°.故答案为:15°.(2)∵∠AOC=100°,∠AOB=120°,∴∠BOC =120°−100°=20°,∵OM 平分∠BOC ,∴∠COM =20°÷2=10°,∴∠MOD =60°−10°=50°.故答案为:50°.(3)因为∠AOC =α,∠AOB =120°,所以∠BOC =∠AOC −∠AOB =α−120°,因为OM 平分∠BOC ,所以∠MOC =12∠BOC =12α−60°(用α表示),因为△COD 为等边三角形,所以∠DOC =60°,所以∠DOM =∠MOC +∠DOC =12α(用α表示).故答案为:12,12α−60°,12α.(4)当∠AOC =β(0°<β<180°)时,∠DOM =12β.【解析】(1)首先求出∠BOC =90°,利用角平分线可得∠COM =45°,再利用角的和差可得答案;(2)同(1)的思路;(3)首先求出∠BOC =α−120°,利用角平分线可得∠COM =12α−60°,再利用角的和差可得答案;(4)根据(3)的思路可得答案.22.【答案】①在两车相遇之前,设从出发到两车相距5km 时的时间为t 1h ,由题可知:60t 1+90t 1+5=50.解得t 1=310;②在两车相遇之后到两车相距5km 时,设当两车相遇时所需时间为x h ,由题可知60x +90x =50,解得x =13,设当两车相遇之后到两车相距5km 时所需时间为t 2h ,由题可知:90t 2−60t 2=5.解得:t 2=16,所以此时学校司机小李开车行驶的时间为13+16=12(h);③当小王回到敬老院,小李距离敬老院5km 时,设小李行驶t 3h 两车相距5km ,由题可知:60t 3+5=50.解得:t 3=34,综上所述,学校司机小李开车行驶310h 或12h 或34h 时,两车相距5km .【解析】应该分三种情况分别计算:①两车相遇之前相距5km ,②两车相遇之后到两车相距5km ,期末复习与测试③当小王回到敬老院,小李距离敬老院5km.期末复习与测试。
北师大版七年级上册数学期末复习典型试题一、填空题:1、-0.5的绝对值是 ,相反数是 ,倒数是 。
2、一个数的绝对值是4,则这个数是 ,数轴上与原点的距离为5的数是 。
3、—2x 与3x —1互为相反数,则=x 。
4、(1)设b a 、互为相反数,d c 、互为倒数,则2013(b a +)-cd 的值是_____________。
(2)已知a 、b 互为相反数,c 、d 互为倒数,且3=m ,则20052)(242cd b m a -+-=_________。
5、已知bbaa ab +≠,则0=___________。
6、(1)已知0)1(32=-++b a ,则=+b a 3 。
(2)如果2|1|(2)0a b -++=,则()2012b a +的值是______________.。
(3)若()0522=++-y x ,则y x= 。
7、(1)单项式 -22xy π的系数是 ,次数是 ;多项式 125323+--xy y x 的次数 。
(2)单项式32xy π-的系数是___________,次数是___________. 8、(1)如果123304kx k 是关于x 的一元一次方程,则k____。
(2)如果0m 21y32m-9=+关于y 的一元一次方程,则m = . 9、(1)已知x=3是方程ax-6=a+10的解,则a=_____________。
(2)若x =2是方程a xx -=-243的解,则201120111a a +的值是 。
10、将弯曲的河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是 ____.12、如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, OM 、ON 分别是∠AOC、∠BOD 的平分线, ∠MON 等于_________________. 13、如图,图中共有 条线段,共有 个三角形。
14. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为______,∠COD 的度数为________.15、计算51°36ˊ=________° 16、25.14°= ___° ____′____″;下午1点24分,时针与分针所组成的_________度。
二、选择题1、 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为( ) A. 81310⨯ B. 81.310⨯ C. 91.310⨯ D. 91.32.设x 是有理数,那么下列各式中一定表示正数的是( )。
A 、2008xB 、x+2008C 、|2008x |D 、|x| + 2008 3、绝对值大于3且小于5的所有整数的和是( ) A. 7 B. -7 C. 0 D. 54、(1)如果p m y x 2与qn y x 3是同类项,则( )A. m =q ,n =pB. mn =pqC. m +n =p +qD. m =n ,p =q (2)若832253y xxy n m--与的和是单项式,则m 、n 的值分别是( )A .m =2,n =2B .m =4,n =1C .m =4,n =2D .m =2,n =3 5、下面合并同类项正确的是( )A 、3x +2x 2=5x 3B 、2a 2b -a 2b =1C 、-ab -ab =0D 、-y 2x +x y 2=0 6、(1)已知代数式x +2y 的值是3,则代数式2x +4y +1的值是( ) A. 1 B. 4 C. 7 D. 不能确定 (2)已知232=+x x ,则多项式2394x x +-的值是( )。
A .0B .2C .4D .67、 将方程421312+-=-x x 去分母,得( ) A.)2(31)12(4+-=-x x B. )2(12)12(4+-=-x x C.)2(36)12(+-=-x x D. )2(312)12(4+-=-x x 8、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) AFE D CB1912题图 13题图 14题图A .17124110=--+x x B.17124110=--+x x C.10710241010=--+x x D.1710241010=--+x x 9、(1)如图是一个简单的数值运算程序,当输入的x 的值为-1时,则输出的值为( )A .-5B .-1C .1D .5(2)按照下图所示的操作步骤,若输入x 的值为-2,则输出的值为 。
(3)右上图是一数值转换机,若输入的x 为-5,则输出的结果为。
(4)如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是 .10 )(A ) (B ) (C ) (D )11、如左图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是 ( )12、沿圆柱体上面直径截去一部分的物体如图所示,它的俯视图是( )输入输出×4-2>10是否输 出 ×(-3) 输入x-2 输入x 平方 乘以3 输出减去513、 A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是 ( )A. 2B. 2或10C. 2.5D. 2或2.514、(1)元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A 、1600元B 、1800元C 、2000元D 、2100元(2)商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为( )。
A. 330元B. 210元C. 180元D.150元(3)一件商品按成本价提高20%后标价,又以9折销售,售价为270元。
设这件商品的成本价为x 元,则可列方程:_______________.15、某种产品,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
A .80元B .85元C .90元D .95元16、文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另—台亏本20%, 则本次出售中,商场 ( )A.不赚不赔 B .赚160元 C .赚80先 D. 赔80元17、某校七年级学生总人数为500,其男女生所占比例如图17所示,则该校七年级男生人数为( ) A 、48 B 、52 C 、240 D 、260 18、如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a +C .2(69)cm a +D .2(615)cm a +19、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少男生52%女生48%图3图17cab第19题图应为( )A .c b a 23++B .c b a 642++C .c b a 4104++D .c b a 866++ 25.(7分)已知多项式(2mx 2+5x 2+3x +1)―(5x 2―4y 2+3x)化简后不含x 2项.求多项式2m 3―[3m 3―(4m―5)+m]的值. 三、图形题:1、用小立方块搭一个几何体,它的主视图与俯视图如下图所示,则它最少需 个立方块 ,最多需 个立方块主视图 俯视图 2、(本题4分) 如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:3、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图4、(5分) 按要求画出图形并填空: ⑴点C 在直线AB 上,点P 在直线AB 外; ⑵过点P 画射线PD,且与直线AB 交于点D ; ⑶P 、C 两点间的距离是线段 的长度。
5、画四边形ABCD ,在四边形内找一点O ,使得线段AO 、BO 、CO 、DO 的和最小。
(画出即可,不写作法)21136、如图已知点C 为AB 上一点,AC =12cm, CB =32AC ,D 、E 分别为AC 、AB 的中点求DE 的长。
7、已知线段AB=6cm ,点C 在线段AB 上,且CA=4cm ,O 是AB 的中点,则线段OC 的长度是多少?四、解方程:①6)5(34=--x x ②5(x+8)-5=6(2x -7) ③142312-+=-x x ④335252--=--x x x五、计算:①)9()11(3---+ ②1108(2)()2--÷-⨯-第20题图B C D E③-22-(-2)2+(-3)2×(-32)-42÷|-4| (4)(-43+61-83)×12+(-1)2011六、先化简,再求值:(1)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x(2))3123()31(221y x y x x +-+--,其中x =-1,y =2 ;七、应用题:1、我校初一所有学生参加2011年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?2、星星果汁店中的A 种果汁比B 种果汁贵1元,小彬和同学要了3 杯B 种果汁、2杯A 种果汁,一共花了16元。
A 种果汁、B 种果汁的单价分别是多少元?3、 某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?4、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?5、“春节期间”,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?6、小红爸爸上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的(1(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?7、某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分;第二种是包月制,69元/月(限一部个人住宅电话上网)。