大学物理第六章静电场习题答案
- 格式:doc
- 大小:607.00 KB
- 文档页数:7
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
第6章 真空中的静电场 习题答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E23220)(41 cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。
⎰+=23220)(4dq R x xE x πε 232210)(24R x R x +⋅=πλπε232201)(2R x xR +=ελ 下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ方向沿x 轴正方向。
关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。
下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。
直线段受到的电场力大小为 方向沿x 轴正方向。
4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。
求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。
解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。
第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )d εqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。
解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )d εqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。
由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。
6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。
若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。
因而正确答案为( A )。
6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。
设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。
因而正 确答案为(A )。
6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。
作业6 静电场六它们的静电能之间的关系是[ ]。
.A 球体的静电能等于球面的静电能 .B 球体的静电能大于球面的静电能 .C 球体的静电能小于面的静电能.D 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能 答案:【B 】解:设带电量为Q 、半径为R ,球体的电荷体密度为ρ。
由高斯定理,可以求得两种电荷分布的电场强度分布022επQ E r S d E S==⋅⎰⎰,2002r Q E επ=对于球体电荷分布:03223402031>==ερεπρπr rr E ,(R r <);2022r Q E επ=,(R r >)。
对于球壳电荷分布:0/1=E ,(R r <);20/22rQ E επ=,(R r >)。
可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分布无电场。
静电场能量密度2021E εω=两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电荷分布,也是场分布,故也有静电能。
所以球体电荷分布时,球内的静电场能量,大于球面电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布时,球外的静电场能量。
2.1C 和2C 两空气电容器串联起来接上电源充电,然后将电源断开,再把一电介质板插入1C 中,如图6-1所示,则[ ]。
.A 1C 两端电势差减少,2C 两端电势差增大.B 1C 两端电势差减少,2C 两端电势差不变 .C 1C 两端电势差增大,2C 两端电势差减小 .D 1C 两端电势差增大,2C 两端电势差不变答案:【B 】解:电源接通时,给两个串联的电容器充电。
充电量是相同的,是为Q 。
则两个电容器的电压分别为11C Q U =,22C Q U = 电源断开后,1C 插入电介质,两个电容器的电量不变,仍然都是Q 。
但1C 的电容增大,因此1C 两端的电压降低;而2C 不变,因此,2C 两端的电压不变。
第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=v v v v 合y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l = cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。
解:(1)如图所示,在带电直线上取线元,其上电量在点产生场强为20)(d π41d x a xE P -=λε2220)(dπ4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l ,9100.5-⨯=λ1m C -⋅,5.12=a 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Qλε 方向如图所示 由于对称性可知⎰=l Qx E 0d ,即只有分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l ,5d 2=代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
解:取平面S ’与半球面S 构成闭合曲面,因其内部无电荷,根据高斯定理有d d d 0e S S S E S E S E S Φ'=⋅=⋅+⋅=⎰⎰⎰⎰⎰⎰v v vv v v Ò22d d cos eS S S E S E S R E R E Φπππ'=⋅=-⋅=-=⎰⎰⎰⎰v vv v6-6 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点,现将立方体置于电场强度()12E E kx i E j +v v v=+(k ,E 1,E 2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量。
解:由题意知场强E 的方向在Oxy 平面内,即0OABC DEFG ΦΦ==()22121()OAFE OAFE E S E i E j a i E a Φ=⋅=⋅-=-v v v v v+()22121()BCDG BCDG E S E ka i E j a i E ka a Φ=⋅=+⋅=+⎡⎤⎣⎦v v v v v+()22122(-)OCDE OCDE E S E kx i E j a j E a Φ=⋅=+⋅=-⎡⎤⎣⎦v v v v v + ()22122ABGFABGF E S E kx i E j a j E a Φ=⋅=+⋅=⎡⎤⎣⎦v v v v v +整个立方体表面222231122()e E a E ka a E a E a ka Φ=-++-+=*6-7 一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2,求电场分布。
解:由对称性分析可知,电场成球对称分布。
可应用高斯定理1d S E S q ε⋅=∑⎰⎰v v Ò过场点作与球壳同心的球形高斯面,有2d 4 πS E S r E ⋅=⎰⎰v v Òr<R 1时,0q =∑,24 π=0, 0r E E =得;R 1<r<R 2时,33113321r R q Q R R -=-∑,333321111332330210214 π=, 4 πr r R Q Q r R r E E e R R r R R εε--=--v v 得 R 2<r<R 3时,1q Q =∑,2112004 π=, 4 πr Q Q r E E e r εε=vv 得r>R 3时,12q Q Q =+∑,212122004 π=, 4 πr Q Q Q Q r E E e rεε++=v v 得 6-8 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为53210C m -⨯。
试求距球心5cm ,8cm 及12cm 的各点的场强。
解:由高斯定理01d S E S q ε⋅=∑⎰⎰v v Ò,得2014R E q πε=∑ 当时,0=∑q , 0=E ϖ时, 3π4p =()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅,方向沿半径向外 12=r cm 时, 3π4∑=ρq ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅,方向 沿半径向外 6-9 在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示,如图所示。
试证明球形空腔中任一点的电场强度为a E ϖϖ03ερ=。
解:采用补偿法求解。
空腔等效为电荷体密度为ρ和-ρ的两个带电体。
腔内任一点的电场强度等于电荷体密度为ρ的大球和电荷体密度为-ρ的小球所产生的电场强度的矢量和。
由高斯定理可知,均匀带电球内任一点的电场强度为30043qr rE R ρπεε==v v v 空腔内任一点的电场强度()00003333O O O O O O r r E E E r r aρρρρεεεε'''-=+=+=-=v v v v v v v v*6-10 半径为R 1和R 2(R 1<R 2)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)1r R <;(2)12R r R <<;(3)2r R >处各点的场强。
解:由对称性分析可知电场成轴对称分布。
可应用高斯定理1d S E S q ε⋅=∑⎰⎰v v Ò选取同轴闭合圆柱形高斯面,有d d =2πS sE S E S rhE ⋅=⋅⎰⎰⎰⎰v vv v Ò侧面r<R 1时,0, 2π0, 0q rhE E ===∑ R 1<r<R 2时,00, 2π, 2πr h q h rhE E e rλλλεε===∑vvr>R 2时,0, 2π0, 0q rhE E ===∑6-11 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。
解:设向右为正方向。
两面间,n E ϖϖ)(21210σσε-=面外, n E ϖϖ)(21210σσε+-= 面外, n E ϖϖ)(21210σσε+= *6-12 如图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功。
解:0104O q q V R R πε⎛⎫=-= ⎪⎝⎭001436C q q q V R R R πεπε⎛⎫=-=- ⎪⎝⎭ ()00006OC O C qq A q U q V V Rπε==-= 6-13 如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R 。
试求环中心O 点处的场强和电势。
解:(1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取θd d R l =,则θλd d R q =产生点如图,由于对称性,点场强沿y 轴负方向。
220002d d cos sin sin 42224y R E E R R R ππλθλππλθπεπεπε-⎡⎤⎛⎫===--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰ (2)电荷在点产生电势,以0=∞U ⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U 0032142ln π2ελελ+=++=U U U U O6-14 在一半径为R 1的金属球A 外面套有一个同心的金属球壳B 。
已知球壳B 的内、外半径分别为R 2,R 3。
设球A 带有总电荷Q A ,球壳B 带有总电荷Q B 。
(1)求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2)将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势。
解:(1)根据空腔导体的静电性质,球壳B 内、外表面上所带的电荷量分别为Q B 内=-Q A ,Q B 外=Q A +Q B根据均匀带电球壳电势特点及电势叠加原理可得010203444A A A BA Q Q Q Q V R R R πεπεπε-+=++0003034444A A A B A BB Q Q Q Q Q Q V r r R R πεπεπεπε-++=++=(2)球壳B 接地则030,=04ABB A B Q Q V Q Q R πε+'==+得 即球壳外表面电荷为零,内表面电荷-Q A 不变。
断开后球壳带电BA Q Q '=- 球A 接地则 010*******A A A A A Q Q Q Q V R R R πεπεπε'''--'=++= 得 12122313AA R R Q Q R R R R R R '=+- 根据空腔导体的静电性质,球壳B 内、外表面上所带的电荷量分别为 12122313=--AA B R R Q Q Q R R R R R R ''=+-内132312122313122313()=A AA A AB R R R R Q R R Q Q Q Q Q R R R R R R R R R R R R -''-=-=+-+-外断开后球壳电势13230303122313()44()B AB Q R R R R Q V R R R R R R R R πεπε'-''==+-外 *6-15 半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q 。