二维形式的柯西不等式大全
- 格式:ppt
- 大小:1.70 MB
- 文档页数:42
一二维形式的柯西不等式1.二维形式的柯西不等式(1)定理1:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)二维形式的柯西不等式的推论:(a+b)(c+d)≥(ac+bd)2(a,b,c,d为非负实数);a2+b2·c2+d2≥|ac+bd|(a,b,c,d∈R);a2+b2·c2+d2≥|ac|+|bd|(a,b,c,d∈R).2.柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.[注意] 柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k,使α=kβ.3.二维形式的三角不等式(1)定理3:x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,y1,x2,y2∈R).当且仅当三点P1,P2与O共线,并且P1,P2点在原点O异侧时,等号成立.(2)推论:对于任意的x1,x2,x3,y1,y2,y3∈R,有(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2.事实上,在平面直角坐标系中,设点P1,P2,P3的坐标分别为(x1,y1),(x2,y2),(x3,y3),根据△P1P2P3的边长关系有|P1P3|+|P2P3|≥|P1P2|,当且仅当三点P1,P2,P3共线,并且点P1,P2在P3点的异侧时,等号成立.[例1] 已知θ为锐角,a ,b ∈R +,求证:a2cos2θ+b2sin2θ≥(a +b )2.[思路点拨] 可结合柯西不等式,将左侧构造成乘积形式,利用“1=sin 2θ+cos 2θ”,然后用柯西不等式证明.[证明] ∵a2cos2θ+b2sin2θ=⎝⎛⎭⎪⎫a2cos2θ+b2sin2θ(cos 2θ+sin 2θ)≥⎝⎛⎭⎪⎫a cos θ·cos θ+b sin θ·sin θ2=(a +b )2,∴(a +b )2≤a2cos2θ+b2sin2θ.利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a 1,a 2,b 1,b 2为正实数.求证:(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a1b1+a2b2≥(a 1+a 2)2.证明:∵(a 1b 1+a 2b 2)⎝⎛⎭⎪⎫a1b1+a2b2=[(a1b1)2+(a2b2)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a1b12+⎝ ⎛⎭⎪⎫a2b22 ≥⎝⎛⎭⎪⎫a1b1·a1b1+a2b2·a2b22=(a 1+a 2)2. ∴原不等式成立. 2.设a ,b ,c 为正数,求证:a2+b2+b2+c2+a2+c2≥ 2(a +b +c ). 证明:由柯西不等式,得 a2+b2·12+12≥a +b , 即2·a2+b2≥a +b . 同理:2·b2+c2≥b +c , 2·a2+c2≥a +c , 将上面三个同向不等式相加得:2()a2+b2+ b2+c2+ a2+c2≥2(a +b +c ) ∴ a2+b2+ b2+c2+a2+c2≥ 2(a +b +c ). 3.设a ,b ∈R +,且a +b =2.求证:a22-a +b22-b ≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a22-a +b22-b=[(2-a)2+(2-b)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a2-a +2-b ·b 2-b 2=(a +b )2=4.∴a22-a +b22-b ≥4(2-a)+(2-b)=2. ∴原不等式成立.[例2] 求函数y =3sin α+4cos α的最大值.[思路点拨] 函数的解析式是两部分的和,若能化为ac +bd 的形式就能用柯西不等式求其最大值.[解] 由柯西不等式得(3sin α+4cos α)2≤(32+42)(sin 2α+cos 2α)=25, ∴3sin α+4cos α≤5.当且仅当sin α3=cos α4>0即sin α=35,cos α=45时取等号,即函数的最大值为5.利用柯西不等式求最值的注意点(1)变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用技巧之一.4.已知2x 2+y 2=1,求2x +y 的最大值.解:∵2x +y =2×2x +1×y ≤(2)2+12×(2x)2+y2=3×2x2+y2=3,当且仅当x =y =33时取等号. ∴2x +y 的最大值为 3.5.求函数y =x2-2x +3+x2-6x +14的最小值. 解:y =(x -1)2+2+(3-x)2+5,y 2=(x -1)2+2+(3-x )2+5+2×[(x -1)2+2][(3-x)2+5]≥(x -1)2+2+(3-x )2+5+2×[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+(7+210)=11+210.当且仅当x -13-x =25,即x =32+52+5时等号成立.此时y min =11+210=10+1.1.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的大小关系是( ) A .P ≤Q B .P <Q C .P ≥QD .P >Q解析:选A 设m =(a x ,b y ),n =(a ,b), 则|ax +by |=|m·n |≤|m ||n |=(ax)2+(by)2·(a)2+(b)2=ax2+by2·a +b = ax2+by2, ∴(ax +by )2≤ax 2+by 2,即P ≤Q .2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ]C .[-10,10 ]D .(-5,5)解析:选A (a 2+b 2)[12+(-1)2]≥(a -b )2, ∵a 2+b 2=10, ∴(a -b )2≤20. ∴-25≤a -b ≤2 5.3.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536D.3625解析:选B (2x 2+3y 2)[(3)2+(2)2]≥(6x +6y )2=[6(x +y )]2=6, 当且仅当x =35,y =25时取等号,即2x 2+3y 2≥65.故2x 2+3y 2的最小值为65.4.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3D .5解析:选B 根据柯西不等式,知y =1×x -5+2×6-x ≤12+22×(x -5)2+(6-x)2=5,当且仅当x =265时取等号.5.设xy >0,则⎝⎛⎭⎪⎫x2+4y2⎝ ⎛⎭⎪⎫y2+1x2的最小值为________.解析:原式=⎣⎢⎡⎦⎥⎤x2+⎝ ⎛⎭⎪⎫2y 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+y2≥x ·1x +2y ·y 2=9,当且仅当xy =2时取等号. 答案:96.设a =(-2,1,2),|b |=6,则a ·b 的最小值为________,此时b =________. 解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |, ∴|a ·b |≤(-2)2+12+22×6=18, 当且仅当存在实数k , 使a =kb 时,等号成立. ∴-18≤a ·b ≤18, ∴a ·b 的最小值为-18, 此时b =-2a =(4,-2,-4). 答案:-18 (4,-2,-4)7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________. 解析:由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)·⎝ ⎛⎭⎪⎫43+12≤6×116=11,当且仅当x =411,y =311时取等号,故P =2x +y 的最大值为11. 答案:118.已知x ,y ∈R +,且x +y =2.求证:1x +1y ≥2.证明:1x +1y =12(x +y )⎝ ⎛⎭⎪⎫1x +1y =12[ (x)2+(y)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+⎝ ⎛⎭⎪⎫1y 2 ≥12⎝ ⎛⎭⎪⎫x · 1x +y ·1y 2=2,当且仅当⎩⎪⎨⎪⎧xy=y x ,x +y =2时等号成立,此时x =1,y =1.所以1x +1y≥2.9.若x 2+4y 2=5,求x +y 的最大值及此时x ,y 的值. 解:由柯西不等式得[x 2+(2y )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122≥(x +y )2,即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x2+4y2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,此时x =2,y =12.10.求函数f (x )=3cos x +4 1+sin2x 的最大值,并求出相应的x 的值. 解:设m =(3,4),n =(cos x ,1+sin2x), 则f (x )=3cos x +4 1+sin2x =|m ·n |≤|m |·|n |=cos2x +1+sin2x ·32+42 =52,当且仅当m ∥n 时,上式取“=”.此时,3 1+sin2x-4cos x=0.解得sin x=75,cos x=325.故当sin x=75,cos x=325时.f(x)=3cos x+4 1+sin2x取最大值5 2.。
柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。
柯西不等式教学题库大全一、 二维形式的柯西不等式2 2 2 2 2(a +b)(c + d )^(ac+bd) (a,b,c,d^R,当且仅当ad = be 时,等号成立 .)二、 二维形式的柯西不等式的变式(I) Ua?+/ c 2 +d 2 兰 ac +bd (a , b, c,∈ R ,当且仅当 ad = be 时,等号成立 .)(2)y ∣a 2 +b 2 +d ?兰 ac + bd (a , b , c, ∈ R ,当且仅当 ad = bc 时,等号成立.)(3)(a ■ b)(c ■ d) _ (ac ∙ ∙. bd )2(a , b , c , d _ 0 ,当且仅当 ad = bc 时,等号成立 .)二、二维形式的柯西不等式的向量形式借用一句革命口号说:有条件要用;没有条件,创造条件也要用。
比如说吧,对 a^2 + b^2 + c^2,并不是不等式的形状,但变成(1/3) * (1^2 + 1^2 + 1^2) * (a^2 + b^2 + c^2)就可以用柯西不等式了。
基本方法 (1)巧拆常数:例3、若a > b > c 求证: (4)添项:ab C 3 例 4: a, b,c 二 R 求证:b+cc+aa+b2【1】、设a~=(—2,1,2), b =6 ,贝U a ∙b 之最小值为 __________ ;此时b = ___________ 。
答案:一18; (4,—2 —)解析:a∙b兰 a ∣b /. a b ≤18 二 一18 兰 a b 兰 18a b 之最小值为-18,此时b = -2a = (4,—2,—4)【2】 设 a = (1,0,- 2), b = (x ,y ,z),若 x 2 y 2 Z = 16,则 a b 的最大值为 [解]a= (1,0,- 2),b = (x ,y ,Z) / a ∙b= X - 2z由柯西不等式[12 ■ 0 ■ (- 2)2](x 2 ■ y 2 ■ z 2) - (X 0 - 2z)2=■ 5 16 - (X - 2z)2 =- 4.5_ X 一 4、5=■ - 4 I 5 _ a . b 一 4 5 , 故a . b 的最大值为4衣-K. —K.[3]空间二向量a = (1,2, 3),b =(x, y, z),已知b = 56 ,则(1) a b 的最大值为多少? (2)此时b = ?Ans : (1) 28: (2) (2,4,6)或存在实数 k ,使〉=k :时,等号成立.)例1:设a 、b 、C 为正数且各不相等。
柯西不等式记忆方法
柯西不等式的记忆方法有多种,其中一种比较形象的方法是“双手记忆法”。
伸出你的左手和右手,把左手的每个手指看作a的系数,右手手指看作b的系数。
然后,将左手手指与对应的右手手指重叠,大拇指、食指等都是重叠的,分别代表了a和b的系数。
由于两只手合并起来了,所以整体要乘以二次方。
此外,柯西不等式的记忆还可以通过代数形式来记忆:
1. 二维形式:设a和b为实数,有(a^2+b^2)(x^2+y^2)≥(ax+by)^2,
当且仅当ad=bc时取等号。
2. 多维形式:假设A、B分别是实m×n矩阵和n×p矩阵,那么不等式
AX≤BX对一切非零向量X成立当且仅当矩阵A和B是合同的。
此外,还有构造法证明、记忆技巧等其他方法。
建议根据自己的学习习惯选择合适的方法进行记忆。
柯西不等式及应用一、二维形式的柯西不等式:22222()()()a b c d ac bd ++≥+(,,,) a b c d R ∈,当且仅当ad bc =时取等号;二、二维形式的柯西不等式的变式:bd ac d c b a +≥+⋅+2222)1((,,,) a b c d R ∈,当且仅当ad bc =时取等号;bd ac d c b a +≥+⋅+2222)2((,,,) a b c d R ∈,当且仅当ad bc =时取等号;2(3)()()a b c d ++≥(,,,0)a b c d ≥,当且仅当ad bc =时取等号;三、n 维形式的柯西不等式:设,(1,2,3,)i i a b i n = 为实数,则22212()n a a a +++ 22212()n b b b +++ 21122()n n a b a b a b ≥+++ ,当且仅当0(1,2,3,)i b i n == 或存在一个实数k ,使得(1,2,3,)i i a kb i n == 时等号成立。
四、二维形式的柯西不等式的向量形式:αβαβ⋅≤ ,当且仅当0β= 或存在实数k ,使k αβ= 时取等号;五、基本方法:利用柯西不等式常常根据所求解(证)的式子结构入手,观察是否符合柯西不等式形式或有相似之处,将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方、换序等方法的处理.六、应用:1、证明恒等式:已知0,1a b ≤≤且1,求证:221a b +=.2、解方程(组):12(1)x x =++.3、求最值(范围):若实数x ,y ,z 满足232x y z ++=,求222x y z ++的最小值.4、证明不等式:已知正数,,a b c 满足1a b c ++= 证明: 2223333a b c a b c ++++≥.六、巩固练习:1.已知22223102x y z ++=,则32x y z ++的最小值为 .2. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=,则a 的最大值为 ,最小值为 .3.在实数集内方程组22294862439x y z x y z ⎧++=⎪⎨⎪-+-=⎩的解为 . 4.设❒ABC 之三边长x ,y ,z 满足20x y z -+=及320x y z +-=,则❒ABC 的最大角的大小是 .5.设6 ),2,1,2(=-=b a ,则b a ⋅之最小值为 ,此时=b .6.设a = (1,0,- 2),b = (x ,y ,z),若22216x y z ++=,则a b ⋅ 的最大值为 .7.空间二向量(1,2,3)a = ,(,,)b x y z =,已知b = a b ⋅ 的最大值为 ,此时b = .8.设a 、b 、c 为正数,则4936()()a b c a b c++++的最小值为 .9.设x ,y ,z ∈ R ,且满足2225x y z ++=,则23x y z ++之最大值为 ,此时(x ,y ,z) = .10.设,,x y z R ∈,22225x y z ++=,则22x y z -+的最大值为 ,最小值为 .11.设622 , , ,=--∈z y x z y x R ,则222z y x ++之最小值为 .12.,,x y z R ∈,226x y z --=,则222x y z ++的最小值为 ,此时x = ,y = ,z = .13.设,,x y z R ∈,2280x y z +++=,则222(1)(2)(3)x y z -+++-之最小值为 .14.设,,x y z R ∈,若332=+-z y x ,则222)1(z y x +-+之最小值为 ,又此时=y15.设,,a b c R +∈且a + b + c = 9,则cb a 1694++之最小值为 . 16.设,,a bc R +∈,且232=++c b a ,则c b a 321++之最小值为 ,此时=a . 17.空间中一向量a 与x 轴,y 轴,z 轴正向之夹角依次为,,αβγ,则γβα222sin 9sin 4sin 1++的最小值为 .18.空间中一向量a 的方向角分别为,,αβγ,则22292516sin sin sin αβγ++的最小值为 . 19.设,,x y z R ∈,若4)2()1(222=+++-z y x ,则z y x 23--之范围为 ;又z y x 23--取最小值时,=x20.设,,x y z R ∈且14)3(5)2(16)1(222=-+++-z y x ,则x y z ++之最大值为 ,最小值为 .21.求2sin sin cos cos θθϕθϕ-的最大值与最小值.22.设a 、b 、c 为正数且各不相等。
二维形式的柯西不等式证明柯西不等式是数学中基本的不等式之一,在计算机科学、物理学、统计学等领域中都有广泛的应用。
本文将介绍柯西不等式的二维形式,并给出其证明过程。
柯西不等式的二维形式表述如下:设a1, a2, b1, b2为任意实数,则有:(a1^2+a2^2)×(b1^2+b2^2)≥(a1b1+a2b2)^2其中,等号当且仅当a1b2=a2b1时成立。
下面是柯西不等式的证明过程:首先,我们将(b1, b2)视为一个向量b,(a1, a2)视为一个向量a,则柯西不等式的二维形式可以写成:|a|×|b|×cosθ≥a·b其中,|a|和|b|分别表示向量a和向量b的模,θ表示向量a和向量b之间的夹角,a·b表示向量a和向量b的点积。
接下来,我们将a向量和b向量分别写成坐标形式:a=(a1, a2), b=(b1, b2)则有:|a|×|b|×cosθ=√(a1^2+a2^2)×√(b1^2+b2^2)×cosθ而a·b=a1b1+a2b2因此,柯西不等式的二维形式可以重新写成:√(a1^2+a2^2)×√(b1^2+b2^2)×cosθ≥a1b1+a2b2接下来,我们考虑将右侧的a1b1和a2b2变形,即:(a1b1+a2b2)^2-(a1b2-a2b1)^2这个变形的原理是差平方公式。
然后,我们将这个式子带回到柯西不等式的二维形式中,得到:√(a1^2+a2^2)×√(b1^2+b2^2)×cosθ≥(a1b1+a2b2)^2-(a1b2-a2b1)^2由于(a1b2-a2b1)^2≥0,因此右侧的式子比柯西不等式的右侧更小或相等。
因此,我们得到了柯西不等式的二维形式:√(a1^2+a2^2)×√(b1^2+b2^2)×cosθ≥a1b1+a2b2其中,等号当且仅当a1b2=a2b1时成立。