机器人学数学基础共44页
- 格式:ppt
- 大小:4.06 MB
- 文档页数:44
第3章机器人学的数学基础在机器人操作手工作时,我们需要在其特定三维工作空间中掌握各个物体之间的几何关系,这些物体包括操作手组成自身的各个活动杆件、底座、末端执行器、抓持工具、待抓取物体、障碍物等,它们之间的三维空间几何关系可用两个非常重要的特性来描述:位置和姿态。
3.1 位置和姿态表示为了精确描述各个连杆或物体之间的位置和姿态关系,我们首先定义一个固定的坐标系,并以它作为参考坐标系,所有静止或运动的物体就可以统一在同一个参考坐标系中进行比较。
该坐标系统通常被称为世界坐标系。
基于此共同的坐标系描述机器人自身及其周围物体,是机器人在三维空间中工作的基础。
通常,我们对每个物体或连杆都定义一个本体坐标系,又称局部坐标系,每个物体与附着在该物体上本体坐标系是相对静止的,即其相对位置和姿态是固定的。
因此,每个物体之间位置和姿态的关系就可以用它们自身的本体坐标系之间的位姿关系来确定了,本体坐标系原点之间的关系代表了它们的位置关系,本体坐标系各个坐标轴方向之间的关系代表了方位关系。
图3-1表示了机器人手臂及其周围物体在世界坐标系∑w中及各自本体坐标系中的位置和姿态。
zyxz∑W y z xx zzzzzz x yyx p z zy\图 3-1 机器人手臂及其周围物体的位置和姿态3.1.1 位置描述建立坐标系之后,三维空间中的任何一点都可以用一个具有三个分量的位置矢量来进行定位。
例如, 图3-1中立方体的质心p 在世界坐标系中的表示是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=wz wy wx w p p p p下标w 代表了世界坐标系,因为位置矢量p 在不同坐标系中数值表示不同。
以上就是典型的基于笛卡尔坐标系的三维空间位置矢量的描述方法。
当采用不同的坐标系表示时,会有不同的位置描述方法。
例如 基于圆柱坐标系的空间矢量表示方法,基于球坐标系的空间矢量表示方法等。
3.1.2 方位描述机器人手臂工作时,不但要考虑所抓取的物体的质心的位置,还要考虑空间中该物体的姿态,既方位。