数字信号处理实验一信号、 系统及系统响应
- 格式:doc
- 大小:368.00 KB
- 文档页数:13
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
实验报告2012年04月26 日课程名称:数字信号处理实验名称:系统及系统响应班级:学号:姓名:实验二系统及系统响应一、实验目的(1)观察离散系统的频率响应;(2)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;(3)利用序列的FT对连续信号、离散信号及系统响应进行频域分析;(4)利用卷积方法观察分析系统的时域特性。
二、实验内容(1)给定一因果系统H(z)= ,求出并绘制H(z)的幅频响应与相频响应;(2)对信号x a(t)=Au(n) 0n50 其中A=444.128,a=50,=50,实现下列实验内容:a、取采样频率fs=10KHZ,观察所得采样x a(n)的幅频特性|X()|和图中的|Xa(j)|在折叠频率附近有无明显差别。
b、改变采样频率fs=1KHZ,观察|X()|的变化,并作记录:进一步降低采样频率,fs=300HZ,观察频谱混叠是否明显存在,说明原因,并记录这时的|X()|曲线。
(3)给定系统的单位抽样响应为h1(n)=R10(n)a、利用线性卷积求信号x1(n)=(n),通过该系统的响应y1(n)。
比较所求响应y1(n)和h1(n)之间有无差别,绘图说明,并用所学理论解释所得结果。
b、利用线性卷积求信号x2(n)=R10(n),通过该系统的响应y2(n),并判断y2(n)图形及其非0值序列长度是否与理论结果一致,改变x2(n)的长度,取N=5,重复该试验。
注意参数变化的影响,说明变化前后的差异,并解释所得结果。
(4)求x(n)=11(n+2)+7(n+1)-(n-1)+4(n-2)+2(n-3)通过系统h(n)=2(n+1)+3(n)-5(n-2)+2(n-3)+(n-4)的响应y(n)。
三、实验程序及解析(1)1、程序clear; close all;b=[1,sqrt(2),1];a=[1,-0.67,0.9];[h,w]=freqz(b,a);am=20*log10(abs(h));% am=20*log10(abs(h))为幅频响应取dBsubplot(2,1,1);%将窗口划分为2*1的小窗口并选择第一个显示plot(w,abs(h));xlabel('w');ylabel('幅频响应');title('系统响应')ph=angle(h);subplot(2,1,2); %选择第二个窗口显示plot(w,ph);xlabel('w');ylabel('相频响应');2、系统响应结果图1 因果系统的H(z)的系统响应3、结果分析分析z域系统的特性主要是由系统的零点和极点的分布得出结论的。
系统响应及系统稳定性实验报告实验课程:数字信号处理实验名称:系统响应及系统稳定性实验时间:12月1日实验设备:电脑、matlab软件实验目的:在matlab 环境下,掌握求系统相应的方法,掌握时域离散系统的时域特性。
实验内容:原理:在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
但是在实验中全部都假设系统的初始状态为零。
实验内容:(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,以及用filter函数或conv函数求解系统为3输出响应的主程序。
(2)给定一个低通滤波器的差分方程y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n),x2(n)=u(n)分别求出x1(n)=R8(n),x2(n)=u(n)的系统响应,并画出其波形。
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验一实验目的:掌握利用Matlab产生各种离散时间信号,实现信号的相加、相乘及卷积运算实验函数:参考课本77-19页,注意式(2.11.1)的表达与各matlab子函数间的关系。
1、stem(x,y) % 绘制以x为横轴,y为纵轴的离散序列图形2、[h ,t] = impz(b, a) % 求解数字系统的冲激响应h,取样点数为缺省值[h, t] = impz(b, a, n) % 求解数字系统的冲激响应h,取样点数为nimpz(b, a) % 在当前窗口用stem(t, h)函数出图3、[h ,t] = dstep(b, a) % 求解数字系统的阶跃响应h,取样点数为缺省值[h, t] = dstep (b, a, n) % 求解数字系统的阶跃响应h,取样点数为ndstep (b, a) % 在当前窗口用stairs(t, h)函数出图4、y = filter(b,a,x) % 在已知系统差分方程或转移函数的情况下求系统输出实验原理:一、常用的时域离散信号及其程序1、产生单位抽样函数δ(n)n1 = -5;n2 = 5;n0 = 0;n = n1:n2;x = [n==n0]; % x在n=n0时为1,其余为0stem(n,x,'filled'); %filled:序列圆心处用实心圆表示axis([n1,n2,0,1.1*max(x)])title('单位抽样序列')xlabel('time(n)')ylabel('Amplitude:x(n)')2、产生单位阶跃序列u(n)n1 = -2;n2 = 8;n0 = 0;n = n1:n2;x = [n>=n0]; % x在n>=n0时为1,其余为0stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列')xlabel('time(n)')ylabel('Amplitude:x(n)')3、复指数序列复指数序列的表示式为()(),00,0j n e n x n n σω+⎧≥⎪=⎨<⎪⎩,当0ω=时,()x n 为实指数序列;当0σ=时,()x n 为虚指数序列,即()()cos sin j n e n j n ωωω=+,即其实部为余弦序列,虚部为正弦序列。
实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
2、 简述系统函数零极点分布与系统幅频特性间的对应关系。
(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。
(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。
(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。
3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
所以当输入x (n )有一时移时,y(n )也有同样的时移。
)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。
数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。
随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。
这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。
即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。
2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。
实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二实验内容及步骤1、给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。
b)求出系统的单位冲响应,画出其波形。
xn1=[1 1 1 1 1 1 1 1 zeros(1,50)];xn2=ones(1,128);xn3=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];yn1=filter(B,A,xn1);yn2=filter(B,A,xn2);yn3=filter(B,A,xn3);figure(1);n1=0:length(yn1)-1;subplot(2,2,1);stem(n1,yn1,'.');xlabel('n');ylabel('yn1');title('yn1');n2=0:length(yn2)-1;subplot(2,2,2);stem(n2,yn2,'.');xlabel('n');ylabel('yn2');title('yn2');n3=0:length(yn3)-1;subplot(2,2,3);stem(n3,yn3,'.');xlabel('n');ylabel('yn3');title('yn3');2、给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。
实验一 离散信号与系统S1 信号、系统及系统响应 1、实验目的(1)掌握几种基本典型数字信号在Matlab 中的实现。
(2)掌握序列的基本操作。
(3)熟悉时域离散系统的基本特征。
(4)利用卷积求线性时不变系统的输出序列。
2、实验器材PC 机;MATLAB 语言环境3、实验原理在数字信号处理中,所有的信号都是离散(时间)信号,数字信号是通过对模拟信号进行取样得到的。
图1-1是模拟信号数字化处理的简化框图。
模拟信号先转换成数字信号,经过一定的处理之后,再还原成模拟信号输出。
图1-1对模拟信号x(t)进行采样得到的信号为()t x a ^,其中:()()()t p t x t x a a =^;()()∑∞-∞=-=m nT t t p δ令:()()⎥⎦⎤⎢⎣⎡=Ω^^t x FT j X a a ;()()[]t x FT j X a a =Ω采样定理——采样与重构(1)对连续信号进行等间隔采用形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期延拓形成的,满足公式(1-1):()()s k a a jk j X T j X Ω-Ω=Ω∑∞-∞=1^(1-1)(2)设连续信号()t x a 为带限信号,其最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样信号()t x a ^通过一个增益为T ,截止频率为2sΩ的理想低通滤波器,可以唯一的恢复出连续信号()t x a ,否则将发生频谱混叠,导致信号失真。
在线性时不变系统中,若系统的输入为x(n),系统的单位脉冲响应为h(n),则系统的输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(;其对应的频域特性为:()()()jwjwjwe H e X e Y =。
为了在数字计算机上观察分析各种序列的频域特性,通常对()jwe X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:()()∑-=-=10N n njw jwkk em x eX ,其中kM w k π2=,k=0,1,…,M-1通常M 应取大一些,以便观察谱的细节变化。
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实验一 信号、系统及系统响应 操作: 报告:一、 实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理与方法采样是连续信号数字处理的第一个关键环节。
对一个连续信号()a x t 进行理想采样的过程可用(1.1)式表示。
()()()ˆa a xt x t p t =⋅ (1.1) 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑ (1.2)()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑ (1.3)将(1.2)式代入(1.1)式并进行傅里叶变换,()()()j ˆj e d Ωta a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωt a n x t t nT t δ∞∞--∞=-∞=-∑⎰()j eΩnTan x nT ∞-=-∞=∑ (1.4)式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为 ()()j j eenn X x n ωω∞-=-∞=∑ (1.5)比较(1.5)和(1.4)可知()()j ˆj e aΩTX ΩX ωω== (1.6)为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑ (1.7)其中2π,0,1,,1k k k M Mω==⋅⋅⋅- 一个时域离散线性非移变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑ (1.8)上述卷积运算也可以在频域实现()()()j j j e e e Y X H ωωω= (1.9)三、 实验内容及步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。
xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。
离散信号和系统在时域均可用序列来表示。
2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。
1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。
2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。
3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。
1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
2) 观察系统ha(n)对信号xc(n)的响应特性。
可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。
实验一信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法,利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅式变换的计算机实现方法,利用序列傅式变换对离散信号、系统及系统响应进行频域分析。
二、实验原理(一)连续时间信号的采样对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即x a^(t)=x a(t)M(t)其中x a^(t)是连续信号x a(t)的理想采样,M(t)是周期冲激脉冲δ(t-nT)M(t)=∑+∞-∞(二)有限长序列分析对于长度为N的有限长序列x(n)={f(n),0≤n≤N-10, 其他n一般只需要在0—2π之间均匀地取M个频率点,计算这些点上的序列傅里叶变x(n)e-jWkn w k=2kπ/M,k=0,1……。
换 X(e jWk)=∑+∞-∞(三)信号卷积一个线性时不变离散系统的响应y(n)可以用它的单位冲激响应h(n)和输入信号x(n)的卷积来表示:y(n)=x(n)*h(n)=∑x(m)h(n-m)根据傅里叶变换和Z变换的性质得Y(z)=X(z)H(z)Y(e jw)=X(e jw)H(e jw)卷积运算可以在频域用乘积实现。
三、实验内容及步骤1、分析理想采样信号序列的特性1.产生理想采样信号(采样频率为1000HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=0.001;>> w0=50*sqrt(2.0)*pi;>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');2.产生理想采样信号序列的幅度谱和相位谱(采样频率为1000HZ) >> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*1000;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱'); >> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');3.产生理想采样信号序列(采样频率为300HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=1/300;>> w0=50*sqrt(2.0)*pi;>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');4.产生理想采样信号序列的幅度谱和相位谱(采样频率为300HZ)>> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*300;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱'); >> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');5.产生理想采样信号序列(采样频率为200HZ)>> n=0:50;A=444.128;>> a=50*sqrt(2.0)*pi;T=1/200;>> w0=50*sqrt(2.0)*pi;>> x=A*exp(-a*n*T).*sin(w0*n*T);>> subplot(1,1,1);stem(n,x);title('理想采样信号序列');6.产生理想采样信号序列的幅度谱和相位谱(采样频率为200HZ)>> k=-25:25;W=(pi/12.5)*k;>> f=(1/25)*k*200;>> X=x*(exp(-j*pi/12.5)).^(n'*k);>> magX=abs(X);>> subplot(2,1,1);stem(f,magX);title('理想采样信号序列的幅度谱');>> angX=angle(X);>> subplot(2,1,2);stem(f,angX);title('理想采样信号序列的相位谱');分析实验结果:采样频率为200HZ时产生了频谱混淆现象,产生这种现象的原因是采样频率小于两倍的信号频率最大上限。
数字信号处理实验与课程设计教程实验一戴虹编班级:15通信A1姓名:马佳音学号:20154820112工学部计算机与信息工程学院2015年12月实验一信号、系统及系统响应一、实验目的1.掌握典型序列的产生方法。
2.掌握DFT的实现方法,利用DFT对信号进行频域分析。
3.熟悉连续信号经采样前后频谱的变化,加深对时域采样定理的理解。
4.分别利用卷积和DFT分析信号及系统的时域和频域特性,验证时域卷积定理。
二、实验环境1.Windows2000操作系统2.MATLAB6.0三、实验原理1.信号采样对连续信号x a(t)=Ae-at sin(Ω0t)u(t)进行采样,采样周期为T,采样点0≤n<50,得采样序列x a(n)= Ae-at sin(Ω0nT)δ(t-nT) 。
2.离散傅里叶变换(DFT)设序列为x(n),长度为N,则X(ej ωk)=DFT[x(n)]=∑-=10N n x(n) e -jωkn,其中ωk =k Mπ2(k=0,1,2,…,M-1),通常M>N,以便观察频谱的细节。
|X(e j ωk )|----x(n)的幅频谱。
4.连续信号采样前后频谱的变化^X a (j Ω)=)]([s m a m j X T 1Ω-Ω∑∞-∞=即采样信号的频谱^X a (j Ω)是原连续信号x a (t)的频谱X a (j Ω)沿频率轴,以周期 Ωs 重复出现,幅度为原来的 1/T 倍。
5. 采样定理由采样信号无失真地恢复原连续信号的条件,即采样定理为:模拟信号经过变换转换为数字信号进行采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs ,重复出现一次,由此采样信号无失真地恢复原连续信号。
6.时域卷积定理设离散线性时不变系统输入信号为x(n),单位脉冲响应为h(n),则输出信号y(n)= x(n)*h(n) ;由时域卷积定理,在频域中,Y(e j ω)=FT[y(n)]= FT[x(n)]FT[h(n)] 。
《数字信号处理》实验指导书王莉南京工业大学自动化与电气工程学院2008-04-17目录实验一信号、系统及系统响应 (3)实验二用双线性变换法设计IIR数字滤波器 (6)实验三用窗函数法设计FIR数字滤波器 (10)附录 MATLAB信号处理工具箱函数 (14)实验一 信号、系统及系统响应一.实验目的1. 熟悉时域离散系统的时域特性。
2. 验证时域的卷积定理。
3. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析。
二.实验内容1. 观察信号()a x n 和系统()h n 的时域和频域特性,并绘出相应的曲线。
①单位脉冲序列:()(a x n n δ=;②系统单位脉冲响应序列:()() 2.5(1) 2.5(2)(3)h n n n n n δδδδ=+-+-+-。
2. 利用线性卷积求信号()a x n 通过系统()h n 的响应()a y n ,比较所求响应()a y n 和()h n 的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
3. 卷积定理的验证。
将2中的信号换成0()()sin()()anT b b x n x nT Ae nT u n -==Ω,使a=0.4,0Ω=2.0734,A=1,T=1,重复实验2,求出()b y n ,绘出其频率特性()j b Y e ω曲线;利用公式()()()j j j b Y e X e H e ωωω=,并绘出()j Y e ω的幅频和相频特性曲线,与前面直接对()b y n 进行傅里叶变换所得频率特性曲线进行比较,验证时域卷积定理。
三.实验设备及仪器1. 计算机。
2. Matlab 软件。
四. 实验线路及原理离散信号和系统在时域均可用序列来表示。
序列图形给人以形象直观的印象,它可加深我们对信号和系统的时域特征的理解。
本实验将观察分析几种信号及系统的时域特性。
序列和信号的傅立叶变换是ω的连续函数,而计算机只能计算出有限个离散频率点的函数值。
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
西安郵電學院数字信号处理课内实验报告书系部:计算机系名称学生:常成娟姓名专业:电子信息科学与技术名称班:电科0603级学号:04062095(22号)时间: 2008-11-23实验一: 信号、 系统及系统响应一. 实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二. 实验原理与方法采样是连续信号数字处理的第一个关键环节。
对一个连续信号xa(t)进行理想采样的过程可用(10.3.1)式表示。
(10.3.1)其中 (t)为xa(t)的理想采样, p(t)为周期冲激脉冲, 即 (10.3.2)(t)的傅里叶变换 (j Ω)为 (10.3.3)将(10.3.2)式代入(10.3.1)式并进行傅里叶变换,(10.3.4)式中的xa(nT)就是采样后得到的序列x(n), 即x(n)的傅里叶变换为 (10.3.5)比较(10.3.5)和(10.3.4)可知 (10.3^()()()a a x t x t p t =^x()()n p t t nT δ∞=-∞=-∑^x ^a X 1()[()]a a s m X j X j m T ∞⋅=-∞Ω=Ω-Ω∑^()[()()]()()()j t a a n j t a n j t a n X j x t t nT e dtx t t nT e dtx nT e dt δδ∞∞-Ω-∞=-∞∞∞-Ω-∞=-∞∞-Ω=-∞Ω=-=-=∑⎰∑⎰∑()()a x n x nT =()()j j n n Xe x n e ωω∞-=-∞=∑^()()j a TX j X e ωω=ΩΩ=.6)在数字计算机上观察分析各种序列的频域特性,通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有(10.3.7)其中 一个时域离散线性非移变系统的输入/输出关系为(10.3.8)上述卷积运算也可以在频域实现10()()2,0,1,,1k N j nj k n k X e x m e k k M Mωωπω--====⋅⋅⋅-∑()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑()()()j j j Y e X e H e ωωω=10.80.60.40.200100200300400500x a (j f )f /Hz图10.3.1 实验一的主程序框图 三. 实验内容及步骤 (1) 认真复习采样理论、 离散信号与系统、线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
① 信号产生子程序, 用于产生实验中要用到的下列信号序列: xa(t)=Ae -at sin(Ω0t)u(t) 进行采样, 可得到采样序列xa(n)=xa(nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50 其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率,T 为采样间隔。
这些参数都要在实验过程中由键盘输入, 图10.3.2 xa(t)的幅频特性曲线产生不同的xa(t)和xa(n)。
b. 单位脉冲序列: xb(n)=δ(n)c. 矩形序列: xc(n)=RN(n), N=10② 系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR 系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③ 有限长序列线性卷积子程序, 用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB 语言中的卷积函数conv 。
conv 用于两个有限长度序列的卷积, 它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)(3) 调通并运行实验程序, 完成下述实验内容: ① 分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms 。
b. 改变采样频率, fs=300 Hz , 观察|X(ej ω)|的变化, 并做记录(打印曲线); 进一步降低采样频率, fs=200 Hz , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印)这时的|X(ej ω)|曲线。
源程序: A=444.128;a=50*sqrt(2)*pi; w=50*sqrt(2)*pi; n=0:49; fs=1000;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200; w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=1000');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,1000]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:49;fs=500;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=500');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,500]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:49;fs=200;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=200');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,80,180]);xlabel('w/pi');ylabel('/Xa(ejw)/');结果分析:时域采样定理要求采样频率大于折叠频率fs/2=500Hz,频谱才不至于出现混叠。
从仿真图中可以看出当fs=200Hz时,频谱出现严重失真(出现混叠);而当fs=1000Hz时,频谱没有失真;fs=500Hz时,频谱刚好处于临界状态。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
原程序:函数调用部分:function[x,n]=impesq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];n=0:3;xb=impesq(0,0,3);Hb=impesq(0,0,3)+2.5*impesq(1,0,3)+2.5*impesq(2,0,3)+impesq(3,0,3 );k=-200:200;w=(pi/100)*kaa=xb*(exp(-j*pi/100)).^(n'*k);bb=Hb*(exp(-j*pi/100)).^(n'*k);n=0:3subplot(3,2,1);stem(n,xb);axis([-2 2 0 2]);xlabel('n');ylabel('xb(n)');title('xb(n)');subplot(3,2,2);plot(w/pi,abs(aa));axis([-2 2 0 2]);xlabel('w/pi');ylabel('xb(|(jw)|');title('[xb(ejw)]');subplot(3,2,3);stem(n,Hb);axis([0 4 0 3]);xlabel('n');ylabel('Hb');title('Hb(n)');subplot(3,2,4);plot(w/pi,abs(bb));axis([-2 2 0 8]);xlabel('w/pi');ylabel('Hb(|(jw)|');title('[Hb(ejw)]');n=0:6y=conv(xb,Hb);yy=y*(exp(-j*pi/100)).^(n'*k);subplot(3,2,5);stem(n,y);axis([0 7 0 3]);xlabel('n');ylabel('y(n)');title('xb*Hb');subplot(3,2,6);plot(w/pi,abs(yy));axis([-2 2 0 8]);xlabel('w/pi');ylabel('|Y(jw)|');title('[Y(ejw)]');结果分析:单位冲击序列和任意序列卷积等于任意序列,从仿真图中可以直接看出卷积后的频谱Y/(ejw)/和任意序列的频谱Hb/(ejw)/相同。
b. 观察系统ha(n)对信号xc(n)的响应特性。
原程序:函数调用部分:function[x,n]=stepseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)>=0];n=0:18;xc=stepseq(0,0,9);Ha=stepseq(0,0,9);y=conv(xc,Ha);subplot(2,2,1);stem(n,y);axis([0 20 0 10]);xlabel('n');ylabel('y(n)');title('xc(n)*Ha(n)');k=-300:300;W=(pi/100)*k;Y=y*(exp(-j*pi/100)).^(n'*k)subplot(2,2,2);plot(W/pi,Y);axis([-2 2 0 150]);xlabel('W/pi');ylabel('Y(jw)');title('FT[xc(n)*Ha(n)]');n=0:13;xc1=stepseq(0,0,4);y=conv(xc1,Ha);subplot(2,2,3);stem(n,y);axis([0 15 0 10]);xlabel('n');ylabel('y(n)');title('xc1(n)*Ha(n)');k=-300:300;W=(pi/100)*k;Y=y*(exp(-j*pi/100)).^(n'*k)subplot(2,2,4);plot(W/pi,Y);axis([-2 2 0 60]);xlabel('W/pi');ylabel('Y(jw)');title('FT[xc1(n)*Ha(n)]');结果分析:长度为M的序列X1(n)和长度为N的序列X2(n)做线性卷积后其长度L=M+N-1.当Xc(n)和Ha(n)的长度都为10,作线性卷积后长度为10+10-1=19,和左上角的仿真结果一致;当Xc(n)和Ha(n)的长度分别为5和10时,作线性卷积后的长度为14,仿真图如左下。