教案-力对轴之矩
- 格式:pdf
- 大小:1.30 MB
- 文档页数:14
第四章 空间力系作用在物体上各力的作用线不在同一平面内,称该力系为空间力系。
按各力的作用在空间的位置关系,空间力系可分为空间汇交力系、空间平行力系和空间任意力系。
前几章介绍的各种力系都是空间力系的特例。
第一节 力的投影与分解一、力在空间直角坐标轴上的投影已知力F 与x 轴如图4-1(a)所示,过力F 的两端点A 、B 分别作垂直于x 轴的平面M 及N ,与x 轴交于a 、b ,则线段ab 冠以正号或负号称为力F 在x 轴上的投影,即F x =±ab符号规定:若从a 到b 的方向与x 轴的正向一致取正号,反之取负号。
已知力F 与平面Q ,如图4-1(b)所示。
过力的两端点A 、B 分别作平面Q 的垂直线AA ′、BB ′,则矢量B A ''称为力F 在平面Q 上的投影。
应注意的是力在平面上的投影是矢量,而力在轴上的投影是代数量。
(a) (b)图4- 1图4-2现在讨论力F 在空间直角坐标系Oxy 中的情况。
如图4-2(a)所示,过力F 的端点A 、B 分别作x 、y 、z 三轴的垂直平面,则由力在轴上的投影的定义知,OA 、OB 、O C 就是力F 在x 、y 、z 轴上的投影。
设力F 与x 、y 、z 所夹的角分别是α、β、γ,则力F 在空间直角坐标轴上的投影为:⎪⎭⎪⎬⎫±=±=±=γβαcos cos cos F F F F F F z y x (4-1)用这种方法计算力在轴上的投影的方法称为直接投影法。
一般情况下,不易全部找到力与三个轴的夹角,设已知力F 与z 轴夹角为γ ,可先将力投影到坐标平面Oxy 上,然后再投影到坐标轴x 、y 上,如图4-2(b )所示。
设力F 在Oxy 平面上的投影为F xy 与x 轴间的夹角为θ,则⎪⎭⎪⎬⎫±=±=±=γθγθγcos sin sin cos sin F F F F F F z y x (4-2)用这种方法计算力在轴上的投影称为二次投影法。
2014级高一物理竞赛培训第一讲力矩和力矩平衡 (两课时)高一物理组 郭金朋一:力矩的概念力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。
但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其转动状态,可见物体的转动运动状态的变化不仅与力的大小有关,还与受力的方向、力的作用点有关。
力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。
在物理学中力对转动物体运动状态变化的影响,用力矩这个物理量来表示,因此,力矩被定义为力与力臂的乘积。
力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。
力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。
它等于力和力臂的乘积。
表达式为:M=FL ,其中力臂L 是转动轴到F 的力线的(垂直)距离。
单位:Nm 效果:可以改变转动物体运动状态。
转轴: 物体转动时,物体上的各点都沿圆周运动,圆周的中心在同一条直线上,这条直线就叫转轴。
特点:1,体中始终保持不动的直线就是转轴。
2,体上轴以外的质元绕轴转动,转动平面与轴垂直且为圆周,圆心在轴上。
3,转轴相平行的线上各质元的运动情况完全一样。
大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。
如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。
在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。
象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。
作用于同一物体的同一力,由于所取转轴的位置不同,该力对轴的力矩大小可能发生相应的变化,对物体产生转动作用的方向(简称“转向”)也可能不同。
例如如右图中的力F ,若以1o 为轴(即对1o 取矩)其力矩为M 1=FL 1,使物体逆时针转,若以2o 为轴(即对2o 取矩)其力矩为M 2=FL 2,使物体顺时针转,由图可知L 1< L 2,故M 1< M 2,且二者反向。
力对点之矩和力对轴之矩的关系在力学的世界里,有两个非常重要的概念,那就是力对点之矩和力对轴之矩。
好啦,不要被这些术语吓到。
我们今天就用轻松的语气,把这两个概念讲得简单易懂。
希望你听完后,能对它们有个清晰的了解,甚至还能哼着小曲去向别人讲解呢!1. 力对点之矩——啥意思?首先,我们来聊聊“力对点之矩”。
假设你在玩跷跷板,这个跷跷板的一边你坐着,另一边小伙伴坐着。
现在,你们在跷跷板上施加了一定的力。
这个力在跷跷板上的效果,就可以用“力对点之矩”来表示。
简单来说,力对点之矩就是力在某一点周围产生的旋转效果。
你可以把它想象成是力使得某个点周围像个旋转的开关一样,力对这个点的旋转效应就是力对点之矩。
2. 力对轴之矩——不难懂的!接下来,我们来看看“力对轴之矩”。
还是拿跷跷板的例子。
假设跷跷板上有个固定的支点,这个支点就是一个“轴”。
当你和小伙伴在跷跷板上施加力的时候,实际上是对这个支点施加了力的效果。
力对轴之矩就是描述力对这个支点(轴)产生的旋转效应。
如果支点在跷跷板的一端,你施加的力就会绕这个支点旋转,这样产生的旋转效果就是力对轴之矩。
3. 关系和应用——它们是怎样联系的?好啦,接下来我们来聊聊这两者之间的关系。
其实,力对点之矩和力对轴之矩是有紧密联系的。
让我们用一个日常的例子来说明一下:假设你在家里修理门把手,你把门把手看作一个力的作用点,而门的转轴就是你的“轴”。
在这种情况下,你施加的力会绕门的转轴产生旋转效果,这个旋转效果就可以用力对轴之矩来表示。
现在,你把力的作用点从门把手的中心转移到门把手的一端。
虽然力的大小没有变化,但由于作用点的不同,产生的旋转效果也不同了。
这时候,你就可以看到,力对点之矩和力对轴之矩之间的关系变得更加复杂。
实际上,它们之间的关系是:力对点之矩可以用来计算力对轴之矩,只要你知道力的作用点到轴的距离就行了。
为了更具体一点,我们可以用公式来表达这个关系:力对点之矩等于力对轴之矩加上力作用点到轴的距离乘以力的大小。
0.1 工程力学的课程内容及其工程意义工程力学是一门关于力学学科在工程上的基本应用的课程,它通过研究物体机械运动的一般规律来对工程构件进行相关的力学分析和设计,其包含的内容极其广泛。
本书仅包括工程静力学和材料力学两部分。
机械运动是人们在日常生活和生产实践中最常见的一种运动形式,是物体的空间位置随时间的变化规律。
工程静力学研究的是机械运动的特殊情况,即物体在外力作用下的平衡问题,包括对工程物体的受力分析,对作用在工程物体上的复杂力系进行简化,总结力系的平衡条件和平衡方程,从而找出平衡物体上所受的力与力之间的关系。
构件,是工程上的机械、设备、结构的组成元素。
材料力学是研究工程构件在外力作用下,其内部产生的力,这些力的分布,以及将要发生的变形,这些变形中有些在外力解除后是可以恢复的,称为弹性变形;而另一些不可恢复的变形,则称为塑性变形。
为保证工程机械和结构的正常工作,其构件必须有足够的承载能力,即必须具有足够的强度、刚度和稳定性。
足够的强度,是保证工程构件在外力作用下不发生断裂和过大的塑性变形。
足够的刚度,是保证工程构件在外力作用下不发生过大的弹性变形。
足够的稳定性,是保证工程构件在外力作用下不失稳,即不改变其本来的平衡状态.在工程实际中,广泛地应用着工程力学的知识.例如图0—1所示的简易吊车,为了保证它能正常工作,首先需要用静力学知识分析和计算各构件所受的力,然后再应用材料力学知识,在安全、经济的前提下合理地确定各构件的材料和尺寸。
因此,工程力学是一门技术基础课程,它为后继专业课程和工程设计提供了必要的理论基础。
0。
2 工程力学的研究模型在工程力学中,由于工程静力学和材料力学所研究的问题不同,其工程模型也是各不相同的。
工程静力学的研究模型为刚体,即受力后理想不变形的物体。
因为大多数情形下,工程构件受力后产生的变形很小,忽略不计也不会对构件的受力分析产生影响。
而材料力学的研究模型是变形体。
因为材料力学是通过研究物体的变形规律来对工程构件进行安全性设计,所以构件的变形是不可忽略的。