Table 5_6计量经济学基础 第五版 古扎拉蒂版 数据包
- 格式:xls
- 大小:14.00 KB
- 文档页数:1
古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(多元回归分析:推断问题)【圣才出品】第8章多元回归分析:推断问题8.1 复习笔记考点一:再议正态性假定★当回归模型的参数用于估计和推断两个方面时,还需要假定u i服从正态性假定,即:u i~N(0,σ2)。
在三变量模型中,偏回归系数的OLS估计量与ML估计量一致,是最优线性无偏估计量(BLUE)。
参数估计量也是正态分布的,且(n-3)(σ∧2/σ2)~χ2(n-3)。
参数的t值均服从自由度为n-3的t分布。
t分布可用于构造置信区间并进行假设检验。
χ2分布可用于检验关于真实σ2的假设。
考点二:多元回归中的假设检验的多种形式★1.检验个别偏回归系数的假设。
2.检验估计的多元回归模型的总体显著性,即判别全部偏斜率系数是否同时为零。
3.检验两个或多个系数是否相等。
4.检验偏回归系数是否满足某种约束条件。
5.检验所估计的回归模型在时间上或在不同横截面单元上的稳定性。
6.检验回归模型的函数形式是否正确。
考点三:检验关于个别偏回归系数的假设★★t检验的程序是基于随机误差项u i服从正态分布的假定。
检验方法:给定一个特定的显著性水平α,当t值超过临界值tα/2(df),则拒绝原假设。
或使用p值判断,当p足够小,则拒绝原假设。
参数β∧2的(1-α)置信区间为:(β∧2-tα/2se(β∧2),β∧2+tα/2se(β∧2))。
由于不能直接观测u i,所以利用代理变量u∧i,即残差。
残差的正态性可进行雅克-贝拉(JB)检验(大样本检验)。
考点四:检验样本回归的总体显著性★★★★★1.总体显著性检验(1)定义总体显著性检验的原假设为:H0:β2=β3=0。
也就是检验Y是否与X2和X3存在线性关系。
(2)总体显著性检验与个别显著性检验检验个别显著性时,隐含地假定每一个显著性检验都是根据一个不同的(即独立的)样本进行的。
如果用同一样本数据去进行联合检验,就违反了检验方法所依据的基本假定。
第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。
回归子也可以是多分响应变量或多类型响应变量。
将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。
考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。
其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。
该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。
2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。
根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。
此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。
该模型的约束条件为:0≤E(Y i|X i)≤1。
3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。
表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。
虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。
此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。
(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。
对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。