《计量经济学基础第五版古扎拉蒂》习题1.1表1-3
- 格式:xlsx
- 大小:11.07 KB
- 文档页数:1
为了便于期末复习,请各类题型都抄好原题,而不是只写出答案;并且名词 解释和简答题要抄一小题,答一小题,而不是集中抄题,集中回答。
只要是讲过的附录内容,都属于考试范围。
第1章一、填空1. 拟合即( )的意思,拟合直线是指直线对( )的近似。
2. 回归一词的使用始于高尔顿对人体身高的研究。
他发现一个规律:父母高,子女也高; 父母矮,子女也矮。
当父母身高既定时, 子女的身高趋向于或“回归” 部子女的( )。
简记为,回归即指回归到(第2章一、 填空1. 总体回归线代表(二、 单项选择题1. 下列函数中,哪个是参数线性但非变量线性的函数? A. E(Y)=B 1+B 2 X ;B. E(Y | X i )=B i +B 2X iC. Y i =B i +B 2X i +U i2. 下列函数中,哪个是变量线性但非参数线性的函数?1 2A. E (Y )=B 1+B 2B. E (Y )=B 什 B 2 X iC. E (Y | X i )=B 计B 2X iXi三、 名词解释总体;样本;随机实验;估计量;估计值;变量线性;参数线性 四、 简述1. 奥卡姆剃刀原则如何应用到模型设定中?2. 什么是非随机总体回归函数?什么是随机总体回归函数?什么是非随机样本回归函数? 什么是随机样本回归函数? 五、 论述题什么是普通最小二乘法?(按教材内容回答,不必按讲义,因它太细了)第3章一、填空1. 如果连续随机变量的概率密度函数( PDF )有如下形式:11 (x _P ) f (x )= ----- exp (2 ) , (-m <x< g ) 口阪2其中,□和2分别是分布的均值和方差,那么该变量被称为是( )分布的,其图形呈( )。
2. 如果X 1,X 2, , ,X n 都独立抽取于同一概率分布,即X i (i=1,2,, ,n )的概率密度函数相同, 则称其为(),X 称为()随机变量。
3. 如果随机样本X 1, X 2, , , X n 来自均值为 収,方差为£的任一总体,则随着样本容量无限增大,样本均值X 趋于(),其均值为 似,方差为cX /n 。
计量经济学古扎拉蒂课后答案【篇一:计量经济学考试习题及答案】双对数模型 lny?ln?0??1lnx??中,参数?1的含义是()a.y关于x的增长率b.y关于x的发展速度c. y关于x的弹性d. y关于x 的边际变化2、设k为回归模型中的参数个数,n为样本容量。
则对多元线性回归方程进行显著性检验时,所用的f统计量可表示为()ess(/n?k)r2/(k?1)b. a.2rss(/k?1)(1?r)(/n?k)ess(/k?1)r2(/n-k)d.c. tss(/n?k)(1?r2)(/k?1)3、回归模型中具有异方差性时,仍用ols估计模型,则以下说法正确的是()a. 参数估计值是无偏非有效的b. 参数估计量仍具有最小方差性c. 常用f 检验失效d. 参数估计量是有偏的4、利用德宾h检验自回归模型扰动项的自相关性时,下列命题正确的是()a. 德宾h检验只适用一阶自回归模型b. 德宾h检验适用任意阶的自回归模型c. 德宾h 统计量渐进服从t分布d. 德宾h检验可以用于小样本问题5、一元线性回归分析中的回归平方和ess的自由度是()a. nb. n-1c. n-kd. 16、已知样本回归模型残差的一阶自相关系数接近于1,则dw统计量近似等于( )a. 0b. 1 c. 2 d. 47、更容易产生异方差的数据为 ( )a. 时序数据b. 修匀数据c. 横截面数据d. 年度数据8、设m为货币需求量,y为收入水平,r为利率,流动性偏好函数为?2分别是?1 、?2的估计值,则根据经济理m??0??1y??2r??,又设?1、论,一般来说(a )a. ?1应为正值,?2应为负值b. ?1应为正值,?2应为正值c. ?1应为负值,?2应为负值d. ?1应为负值,?2应为正值9、以下选项中,正确地表达了序列相关的是()a.co(v?i,?j)?0,i?jb.co(v?i,?j)?0,i?j ??????????vxi,?j)?0,i?j c.cov(xi,xj)?0,i?jd.co(10、在一元线性回归模型中,样本回归方程可表示为()a. yt??0??1??tb.yt?e(yt/x)??ic. yt??0??1xtd. e(yt/xt)??0??1xt11、对于有限分布滞后模型 ???yt????0xt??1xt?1??2xt?2????kxt?k??t在一定条件下,参数?i 可近似用一个关于i的阿尔蒙多项式表示(i?0,1,2,?,m),其中多项式的阶数m必须满足() ?a.mk b.m=kc.mkd.m?k12、设?t为随机误差项,则一阶线性自相关是指()a.cov(?t,?s)?0(t?s) b. ?t???t?1??tc. ?t??1?t?1??2?t?2??td. ?t??2?t?1??t13、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为()a. 横截面数据b. 时间序列数据c. 修匀数据d. 原始数据14、多元线性回归分析中,调整后的可决系数r与可决系数r2之间的关系()22n?122a.?1?(1?r) b. ?r n?k22n?k2 c. ?0 d. ?1?(1?r) n?115、goldfeld-quandt检验法可用于检验( )a.异方差性b.多重共线性c.序列相关d.设定误差16、用于检验序列相关的dw统计量的取值范围是( )a.0?dw?1b.?1?dw?1c.?2?dw?2 d.0?dw?417、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量的值为()a.不确定,方差无限大b.确定,方差无限大c.不确定,方差最小d.确定,方差最小18、应用dw检验方法时应满足该方法的假定条件,下列不是其假定条件的为()a.解释变量为非随机的b.被解释变量为非随机的c.线性回归模型中不能含有滞后内生变量d.随机误差项服从一阶自回归二、多项选择题1、古典线性回归模型的普通最小二乘估计量的特性有()a. 无偏性b. 线性性c. 最小方差性d. 不一致性e. 有偏性2、如果模型中存在自相关现象,则会引起如下后果()a.参数估计值有偏b.参数估计值的方差不能正确确定c.变量的显著性检验失效d.预测精度降低e.参数估计值仍是无偏的????x的特点() ???3、利用普通最小二乘法求得的样本回归直线yt12ta. 必然通过点(,)b. 可能通过点(,)?的平均值与y?的平均值相等 c. 残差et的均值为常数 d. ytte. 残差et与解释变量xt之间有一定的相关性4、广义最小二乘法的特殊情况是()a.对模型进行对数变换 b.加权最小二乘法c.数据的结合d.广义差分法e.增加样本容量5、计量经济模型的检验一般包括内容有()a、经济意义的检验b、统计推断的检验c、计量经济学的检验d、预测检验e、对比检验三、判断题(判断下列命题正误,并说明理由)1、在实际中,一元回归几乎没什么用,因为因变量的行为不可能仅由一个解释变量来解释。
第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。
一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。
虚拟变量也可以放到回归模型中。
这种模型被称为方差分析(ANOVA)模型。
2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。
所有的虚拟变量都用字母D表示。
(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。
对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。
②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。
所有其他的组都与基准组进行比较。
③截距值(β1)代表了基准组的均值。
④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。
⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。
⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。
因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。
但要确定做这个回归时,一定要使用回归软件包中的无截距选项。
⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。
为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。
第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。
(完整word版)计量经济学基本点练习题及答案Chap1—31、在同⼀时间不同统计单位的相同统计指标组成的数据组合,是()A、原始数据B、时点数据C、时间序列数据D、截⾯数据2、回归分析中定义的( )A、解释变量和被解释变量都是随机变量B、解释变量为⾮随机变量,被解释变量为随机变量C、解释变量和被解释变量都为⾮随机变量D、解释变量为随机变量,被解释变量为⾮随机变量3、在⼀元线性回归模型中,样本回归⽅程可表⽰为:()4、⽤模型描述现实经济系统的原则是( )A、以理论分析作先导,解释变量应包括所有解释变量B、以理论分析作先导,模型规模⼤⼩要适度C、模型规模越⼤越好;这样更切合实际情况D、模型规模⼤⼩要适度,结构尽可能复杂5、回归分析中使⽤的距离是点到直线的垂直坐标距离。
最⼩⼆乘准则是指()6、设OLS法得到的样本回归直线为A、⼀定不在回归直线上B、⼀定在回归直线上C、不⼀定在回归直线上D、在回归直线上⽅7、下图中“{”所指的距离是A.随机误差项B.残差C.因变量观测值的离差D.因变量估计值的离差8、下⾯哪⼀个必定是错误的9、线性回归模型的OLS估计量是随机变量Y的函数,所以OLS估计量是()。
A.随机变量B.⾮随机变量C.确定性变量D.常量10、为了对回归模型中的参数进⾏假设检验,必须在古典线性回归模型基本假定之外,再增加以下哪⼀个假定:A.解释变量与随机误差项不相关B.随机误差项服从正态分布C.随机误差项的⽅差为常数D.两个误差项之间不相关D B C B D B B C A BChap41、⽤OLS估计总体回归模型,以下说法不正确的是:2、包含有截距项的⼆元线性回归模型中的回归平⽅和ESS的⾃由度是()A、nB、n-2C、n-3D、23、对多元线性回归⽅程的显著性检验,,k代表回归模型中待估参数的个数,所⽤的F统计量可表⽰为:4、已知三元线性回归模型估计的残差平⽅和为800,样本容量为24,则随机误差项的⽅差估计量为( )A 、33.33B 、 40C 、 38.09D 、36.365、在多元回归中,调整后的判定系数与判定系数的关系为6、下⾯哪⼀表述是正确的:A.线性回归模型的零均值假设是指B.对模型进⾏⽅程总体显著性检验(即F 检验),检验的零假设是C.相关系数较⼤意味着两个变量存在较强的因果关系D.当随机误差项的⽅差估计量等于零时,说明被解释变量与解释变量之间为函数关系7、在模型的回归分析结果报告中,有F=263489,p=0.000,则表明()A 、解释变量X1对Y 的影响是显著的B 、解释变量X2对Y 的影响是显著的C 、解释变量X1, X2对的Y 联合影响是显著的D 、解释变量X1, X2对的Y 的影响是均不显著8、关于判定系数,以下说法中错误的是()A 、判定系数是因变量的总变异中能由回归⽅程解释的⽐例;B 、判定系数的取值范围为0到1;C 、判定系数反映了样本回归线对样本观测值拟合优劣程度的⼀种描述;D 、判定系数的⼤⼩不受到回归模型中所包含的解释变量个数的影响。
第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。
回归子也可以是多分响应变量或多类型响应变量。
将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。
考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。
其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。
该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。
2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。
根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。
此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。
该模型的约束条件为:0≤E(Y i|X i)≤1。
3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。
表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。
虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。
此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。
(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。
对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。
计量经济学各章习题第一章绪论1.1试列出计量经济分析地主要步骤.1.2计量经济模型中为何要包括扰动项?1.3什么是时间序列和横截面数据? 试举例说明二者地区别1.4估计量和估计值有何区别?第二章计量经济分析地统计学基础2.1名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I 类错误2.2请用例 2.2中地数据求北京男生平均身高地99%置信区间.2.325 个雇员地随机样本地平均周薪为130元,试问此样本是否取自一个均值为120 元、标准差为10 元地正态总体?文档收集自网络,仅用于个人学习2.4某月对零售商店地调查结果表明,市郊食品店地月平均销售额为2500 元,在下一个月份中,取出16 个这种食品店地一个样本,其月平均销售额为2600 元,销售额地标准差为480 元.试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?文档收集自网络,仅用于个人学习第三章双变量线性回归模型3.1判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化地估计方法.(2)计算OLS 估计值无需古典线性回归模型地基本假定.(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量.文档收集自网络,仅用于个人学习(4)最小二乘斜率系数地假设检验所依据地是t 分布,要求地抽样分布是正态分布.2(5)R2=TSS/ESS.(6)若回归模型中无截距项,则.(7)若原假设未被拒绝,则它为真.(8)在双变量回归中,地值越大,斜率系数地方差越大.3.2设和分别表示Y 对X 和X 对Y 地OLS 回归中地斜率,证明r 为X 和Y 地相关系数.3.3证明:(1)Y 地真实值与OLS 拟合值有共同地均值,即;(2)OLS 残差与拟合值不相关,即.3.4证明本章中( 3.18)和( 3.19)两式:(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)1 和1地OLS 估计量相同吗?它们地方差相等吗?(2)2 和2地OLS 估计量相同吗?它们地方差相等吗?3.6有人使用1980-1994 年度数据,研究汇率和相对价格地关系,得到如下结果:其中,Y=马克对美元地汇率X=美、德两国消费者价格指数(CPI)之比,代表两国地相对价格(1)请解释回归系数地含义;(2)X t 地系数为负值有经济意义吗?(3)如果我们重新定义X 为德国CPI与美国CPI之比,X 地符号会变化吗?为什么?3.7随机调查200 位男性地身高和体重,并用体重对身高进行回归,结果如下:其中Weight 地单位是磅(lb ),Height 地单位是厘米(cm).(1)当身高分别为177.67cm、164.98cm、187.82cm 时,对应地体重地拟合值为多少?(2)假设在一年中某人身高增高了 3.81cm,此人体重增加了多少?3.8设有10 名工人地数据如下:X 10 7 10 5 8 8 6 7 9 10Y 11 10 12 6 10 7 9 10 11 10 其中X= 劳动工时,Y= 产量(1)试估计Y=α+βX + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设β=1.0.3.9用12 对观测值估计出地消费函数为Y=10.0+0.90X ,且已知=0.01,=200,=4000,试预测当X=250 时Y 地值,并求Y 地95%置信区间.文档收集自网络,仅用于个人学习3.10设有某变量(Y)和变量(X)1995—1999 年地数据如下:(3)试预测X=10 时Y 地值,并求Y 地95%置信区间.3.11根据上题地数据及回归结果,现有一对新观测值X =20,Y=7.62,试问它们是否可能来自产生样本数据地同一总体?文档收集自网络,仅用于个人学习3.12有人估计消费函数,得到如下结果(括号中数字为t 值):=15 + 0.81 =0.98(2.7)(6.5)n=19(1)检验原假设:=0(取显著性水平为5%)(2)计算参数估计值地标准误差;(3)求地95%置信区间,这个区间包括0 吗?3.13试用中国1985—2003 年实际数据估计消费函数:=α+β + u t其中:C代表消费,Y 代表收入.原始数据如下表所示,表中:Cr=农村居民人均消费支出(元)Cu=城镇居民人均消费支出(元)Y =国内居民家庭人均纯收入(元) Yr =农村居民家庭人均纯收入(元) Yu=城镇居民家庭人均可支配收入(元) Rpop=农村人口比重(%) pop=历年年底我国人口总数(亿人)P=居民消费价格指数(1985=100)Pr=农村居民消费价格指数(1985=100)Pu=城镇居民消费价格指数(1985=100)数据来源:《中国统计年鉴2004》使用计量经济软件,用国内居民人均消费、农村居民人均消费和城镇居民人均消费分别对各自地人均收入进行回归,给出标准格式回归结果;并由回归结果分析我国城乡居民消费行为有何不同.文档收集自网络,仅用于个人学习第四章多元线性回归模型4.1某经济学家试图解释某一变量Y 地变动.他收集了Y 和 5 个可能地解释变量~地观测值(共10 组),然后分别作三个回归,结果如下(括号中数字为t 统计量):文档收集自网络,仅用于个人学习( 1) = 51.5 + 3.21 R=0.63(3.45) (5.21)2) 33.43 + 3.67 + 4.62 + 1.21 R=0.75 文档收集自网络,仅用于个人学(3.61 )(2.56)(0.81) (0.22)3) 23.21 + 3.82 + 2.32 + 0.82 + 4.10 + 1.21(2.21 )(2.83)(0.62) (0.12) (2.10) (1.11)文档收集自网络,仅用于个人学习R=0.80 你认为应采用哪一个结果?为什么?4.2为研究旅馆地投资问题,我们收集了某地地1987-1995 年地数据来估计收益生产函数R=ALKe ,其中R=旅馆年净收益(万年) ,L=土地投入,K=资金投入, e 为自然对数地底.设回归结果如下(括号内数字为标准误差) :文档收集自网络,仅用于个人学习= -0.9175 + 0.273lnL + 0.733lnK R=0.94(0.212) (0.135) (0.125)(1)请对回归结果作必要说明;( 2)分别检验α和β 地显著性;( 3)检验原假设:α =β = 0;4.3我们有某地1970-1987 年间人均储蓄和收入地数据,用以研究1970-1978 和1978 年以后储蓄和收入之间地关系是否发生显著变化. 引入虚拟变量后,估计结果如下(括号内数据为标准差) :文档收集自网络,仅用于个人学习= -1.7502 + 1.4839D + 0.1504 - 0.1034D·R=0.9425 文档收集自网络,仅用于个人学习(0.3319) (0.4704) (0.0163) (0.0332)其中:Y=人均储蓄,X=人均收入,D= 请检验两时期是否有显著地结构性变化.4.4说明下列模型中变量是否呈线性,系数是否呈线性,并将能线性化地模型线性化.(1)(2)(3)4.5有学者根据某国19年地数据得到下面地回归结果:其中:Y=进口量(百万美元),X1 =个人消费支出(百万美元),X2 =进口价格/国内价格.(1)解释截距项以及X1和X2系数地意义;(2)Y 地总变差中被回归方程解释地部分、未被回归方程解释地部分各是多少?(3)进行回归方程地显著性检验,并解释检验结果;(4)对“斜率”系数进行显著性检验,并解释检验结果.4.6由美国46个州1992年地数据,Baltagi 得到如下回归结果:其中,C=香烟消费(包/人年),P=每包香烟地实际价格Y=人均实际可支配收入(1)香烟需求地价格弹性是多少?它是否统计上显著?若是,它是否统计上异于-1?(2)香烟需求地收入弹性是多少?它是否统计上显著?若不显著,原因是什么?(3)求出.4.7有学者从209 个公司地样本,得到如下回归结果(括号中数字为标准误差):其中,Salary=CEO 地薪金Sales=公司年销售额roe=股本收益率(%)ros=公司股票收益请分析回归结果.4.8为了研究某国1970-1992 期间地人口增长率,某研究小组估计了下列模型:其中:Pop=人口(百万人),t=趋势变量,.(1)在模型 1 中,样本期该地地人口增长率是多少?(2)人口增长率在1978 年前后是否显著不同?如果不同,那么1972-1977和1978-1992 两时期中,人口增长率各是多少?文档收集自网络,仅用于个人学习4.9设回归方程为Y= β0+β1X1+β2X2+β3X3+ u, 试说明你将如何检验联合假设:β1= β2 和β3 = 1 .文档收集自网络,仅用于个人学习4.10下列情况应引入几个虚拟变量,如何表示?(1)企业规模:大型企业、中型企业、小型企业;(2)学历:小学、初中、高中、大学、研究生.4.11在经济发展发生转折时期,可以通过引入虚拟变量来表示这种变化.例如,研究进口消费品地数量Y 与国民收入X 地关系时,数据散点图显示1979 年前后明显不同.请写出引入虚拟变量地进口消费品线性回归方程.文档收集自网络,仅用于个人学习4.12柯布-道格拉斯生产函数其中:GDP=地区国内生产总值(亿元)K=资本形成总额(亿元)L= 就业人数(万人)P=商品零售价格指数(上年=100)试根据中国2003 年各省数据估计此函数并分析结果.数据如下表所示第五章模型地建立与估计中地问题及对策5.1判断题(判断对错;如果错误,说明理由)(1)尽管存在严重多重共线性,普通最小二乘估计量仍然是最佳线性无偏估计量(BLUE ).(2)如果分析地目地仅仅是为了预测,则多重共线性并无妨碍. (3)如果解释变量两两之间地相关系数都低,则一定不存在多重共线性. (4)如果存在异方差性,通常用地t 检验和 F 检验是无效地. (5)当存在自相关时,OLS 估计量既不是无偏地,又不是有效地.(6)消除一阶自相关地一阶差分变换法假定自相关系数必须等于 1. (7)模型中包含无关地解释变量,参数估计量会有偏,并且会增大估计量地方差,即增大误差.(8)多元回归中,如果全部“斜率”系数各自经t 检验都不显著,则R2值也高不了.(9)存在异方差地情况下,OLS 法总是高估系数估计量地标准误差.(10)如果一个具有非常数方差地解释变量被(不正确地)忽略了,那么OLS 残差将呈异方差性.5.2考虑带有随机扰动项地复利增长模型:Y 表示GDP,Y0是Y 地基期值,r 是样本期内地年均增长率,t 表示年份,t=1978,⋯,2003.文档收集自网络,仅用于个人学习试问应如何估计GDP 在样本期内地年均增长率?5.3 检验下列情况下是否存在扰动项地自相关 .(1) DW=0.81,n=21,k=3(2)DW=2.25,n=15,k=2(3)DW=1.56,n=30,k=55.4有人建立了一个回归模型来研究我国县一级地教育支出:Y= β0+β1X1+β 2X2+β3X3+u其中:Y,X1,X2 和X3分别为所研究县份地教育支出、居民人均收入、学龄儿童人数和可以利用地各级政府教育拨款.文档收集自网络,仅用于个人学习他打算用遍布我国各省、市、自治区地100 个县地数据来估计上述模型.(1)所用数据是什么类型地数据?(2)能否采用OLS 法进行估计?为什么?(3)如不能采用OLS 法,你认为应采用什么方法?5.5试从下列回归结果分析存在问题及解决方法:(1)= 24.7747 + 0.9415 - 0.0424 R=0.9635SE:(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000 (2)= 0.4529 - 0.0041t R=0.5284t:(-3.9606) DW=0.8252其中Y= 劳动在增加值中地份额,t=时间该估计结果是使用1949-1964 年度数据得到地.5.6工资模型:wi=b0+b1Si+b2Ei+b3Ai+b4Ui+ui其中Wi=工资,Si=学校教育年限,Ei=工作年限,Ai=年龄,Ui=是否参加工会.在估计上述模型时,你觉得会出现什么问题?如何解决?5.7你想研究某行业中公司地销售量与其广告宣传费用之间地关系.你很清楚地知道该行业中有一半地公司比另一半公司大,你关心地是这种情况下,什么估计方法比较合理.假定大公司地扰动项方差是小公司扰动项方差地两倍.文档收集自网络,仅用于个人学习(1)若采用普通最小二乘法估计销售量对广告宣传费用地回归方程(假设广告宣传费是与误差项不相关地自变量),系数地估计量会是无偏地吗?是一致地吗?是有效地吗?文档收集自网络,仅用于个人学习(2)你会怎样修改你地估计方法以解决你地问题?(3)能否对原扰动项方差假设地正确性进行检验?5.8考虑下面地模型其中GNP=国民生产总值,M =货币供给. (1)假设你有估计此模型地数据,你能成功地估计出模型地所有系数吗?说明理由.(2)如果不能,哪些系数可以估计?(3)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?(4)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?5.9采用美国制造业1899-1922年数据,Dougherty得到如下两个回归结果:(1)(2)其中:Y=实际产出指数,K=实际资本投入指数,L =实际劳动力投入指数,t=时间趋势(1)回归式(1)中是否存在多重共线性?你是如何得知地?(2)回归式(1)中,logK 系数地预期符号是什么?回归结果符合先验预期吗?为什么会这样?(3)回归式(1)中,趋势变量在其中起什么作用?(4)估计回归式(2)背后地逻辑是什么?(5)如果(1)中存在多重共线性,那么(2)式是否减轻这个问题?你如何得知?(6)两个回归地R2可比吗?说明理由.5.10有人估计了下面地模型:其中:C=私人消费支出,GNP=国民生产总值,D=国防支出假定,将(1)式转换成下式:使用1946-1975数据估计(1)、(2)两式,得到如下回归结果(括号中数字为标准误差):1)关于异方差,模型估计者做出了什么样地假定?你认为他地依据是什么?2)比较两个回归结果.模型转换是否改进了结果?也就是说,是否减小了估计标准误差?说明理由.5.11设有下列数据:RSS1=55,K =4,n1=30RSS3=140,K =4,n3=30 请依据上述数据,用戈德佛尔德-匡特检验法进行异方差性检验(5%显著性水平).5.12考虑模型(1)也就是说,扰动项服从AR (2)模式,其中是白噪声.请概述估计此模型所要采取地步骤.5.13对第 3 章练习题 3.13 所建立地三个消费模型地结果进行分析:是否存在序列相关问题?如果有,应如何解决?5.14为了研究中国农业总产值与有效灌溉面积、化肥施用量、农作物总播种面积、受灾面积地相互关系,选31 个省市2003 年地数据资料,如下表所示:文档收集自网络,仅用于个人学习表中:Y=农业总产值(亿元,不包括林牧渔)X1=有效灌溉面积(千公顷)X2=化肥施用量(万吨)X23=化肥施用量(公斤/亩)X3=农作物总播种面积(千公顷)X4=受灾面积(千公顷)(1)回归并根据计算机输出结果写出标准格式地回归结果;(2)模型是否存在问题?如果存在问题,是什么问题?如何解决?第六章动态经济模型:自回归模型和分布滞后模型6.1判断题(判断对错;如果错误,说明理由)(1)所有计量经济模型实质上都是动态模型.(2)如果分布滞后系数中,有地为正有地为负,则科克模型将没有多大用处. (3)若适应预期模型用OLS 估计,则估计量将有偏,但一致. (4)对于小样本,部分调整模型地OLS 估计量是有偏地.(5)若回归方程中既包含随机解释变量,扰动项又自相关,则采用工具变量法,将产生无偏且一致地估计量.(6)解释变量中包括滞后因变量地情况下,用德宾-沃森d 统计量来检测自相关是没有实际用处地.6.2用OLS 对科克模型、部分调整模型和适应预期模型分别进行回归时,得到地OLS 估计量会有什么样地性质?文档收集自网络,仅用于个人学习6.3简述科克分布和阿尔蒙多项式分布地区别.6.4考虑模型假设相关.要解决这个问题,我们采用以下工具变量法:首先用对和回归,得到地估计值,然后回归其中是第一步回归(对和回归)中得到地.(1)这个方法如何消除原模型中地相关?(2)与利维顿采用地方法相比,此方法有何优点?6.5设其中:M=对实际现金余额地需求,Y*=预期实际收入,R*=预期通货膨胀率假设这些预期服从适应预期机制:其中和是调整系数,均位于0和1之间.(1)请将M t 用可观测量表示;(2)你预计会有什么估计问题?6.6考虑分布滞后模型假设可用二阶多项式表示诸如下:若施加约束==0,你将如何估计诸系数(,i=0,1, (4)6.7为了研究设备利用对于通货膨胀地影响,T. A.吉延斯根据1971年到1988年地美国数据获得如下回归结果:文档收集自网络,仅用于个人学习其中:Y=通货膨胀率(根据GNP 平减指数计算)X t=制造业设备利用率X t-1 =滞后一年地设备利用率1)设备利用对于通货膨胀地短期影响是什么?长期影响又是什么?(2)每个斜率系数是统计显著地吗?(3)你是否会拒绝两个斜率系数同时为零地原假设?将利用何种检验?6.8考虑下面地模型:Y t = α+β(W0X t+ W1X t-1 + W2X t-2 + W3X t-3)+u t 请说明如何用阿尔蒙滞后方法来估计上述模型(设用二次多项式来近似) .6.9下面地模型是一个将部分调整和适应预期假说结合在一起地模型:Y t*= βX t+1eY t-Y t-1 = δ(Y t*- Y t-1) + u tX t+1e- X t e= (1-λ)( X t - X t e);t=1,2,⋯, n式中Y t*是理想值,X t+1e和X t e是预期值.试推导出一个只包含可观测变量地方程,并说明该方程参数估计方面地问题.文档收集自网络,仅用于个人学习第七章时间序列分析7.1单项选择题(1)某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()地.A.1 阶单整B.2阶单整C.K 阶单整D.以上答案均不正确文档收集自网络,仅用于个人学习(2)如果两个变量都是一阶单整地,则().A .这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应地误差修正模型一定成立D.还需对误差项进行检验文档收集自网络,仅用于个人学习(3)如果同阶单整地线性组合是平稳时间序列,则这些变量之间关系是() .A. 伪回归关系B.协整关系C.短期均衡关系D. 短期非均衡关系(4).若一个时间序列呈上升趋势,则这个时间序列是().A .平稳时间序列B.非平稳时间序列C.一阶单整序列 D. 一阶协整序列7.2请说出平稳时间序列和非平稳时间序列地区别,并解释为什么在实证分析中确定经济时间序列地性质是十分必要地.文档收集自网络,仅用于个人学习7.3什么是单位根?7.4Dickey-Fuller(DF)检验和Engle-Granger(EG)检验是检验什么地?文档收集自网络,仅用于个人学习7.5什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?7.6由1948-1984 英国私人部门住宅开工数(X)数据,某学者得到下列回归结果:注:5%临界值值为-2.95,10%临界值值为-2.60. (1)根据这一结果,检验住宅开工数时间序列是否平稳.(2)如果你打算使用t 检验,则观测地t 值是否统计显著?据此你是否得出该序列平稳地结论?(3)现考虑下面地回归结果:请判断住宅开工数地平稳性.7.7由1971-I 到1988-IV 加拿大地数据,得到如下回归结果;A.B.C.其中,M1=货币供给,GDP=国内生产总值,e t=残差(回归A)(1)你怀疑回归 A 是伪回归吗?为什么?(2)回归 B 是伪回归吗?请说明理由.(3)从回归 C 地结果,你是否改变(1)中地结论,为什么?(4)现考虑以下回归:这个回归结果告诉你什么?这个结果是否对你决定回归 A 是否伪回归有帮助?7.8 检验我国人口时间序列地平稳性,数据区间为1949-2003 年.单位:万人7.9对中国进出口贸易进行协整分析,如果存在协整关系,则建立E CM 模型.1951-2003 年中国进口(im )、出口(ex)和物价指数(pt,商品零售物价指数)时间序列数据见下表.因为该期间物价变化大,特别是改革开放以后变化更为激烈,所以物价指数也作为一个解释变量加入模型中.为消除物价变动对进出口数据地影响以及消除进出口数据中存在地异方差,定义三个变量如下:文档收集自网络,仅用于个人学习第八章联立方程模型8.1判断题(判断对错;如果错误,说明理由)(1)OLS 法适用于估计联立方程模型中地结构方程.(2)2SLS 法不能用于不可识别方程.(3)估计联立方程模型地2SLS 法和其它方法只有在大样本地情况下,才能具有我们期望地统计性质 .(4) 联立方程模型作为一个整体,不存在类似 R 2这样地拟合优度测度 .(5) 如果要估计地方程扰动项自相关或存在跨方程地相关, 则 2SLS 法和其它估 计结构方程地方法都不能用 .(6) 如果一个方程恰好识别,则 ILS 和 2SLS 给出相同结果 .8.2 单项选择题1) 结构式模型中地方程称为结构方程 .在结构方程中, 解释变量可以是前定变3) 如果联立方程模型中某个结构方程包含了模型中所有地变量,则这个方程5)当一个结构式方程为恰好识别时,这个方程中内生解释变量地个数( A .与被排除在外地前定变量个数正好相等 B .小于被排除在外地前定变量个数 C .大于被排除在外地前定变量个数D .以上三种情况都有可能发生 文档收集自网络,仅用于个人学习6) 简化式模型就是把结构式模型中地内生变量表示为 ( ).A. 外生变量和内生变量地函数关系B.前定变量和随机误差项地模型C.滞后变量和随机误差项地模型 D.外生变量和随机误差项地模量,也可以是 ( ).文档收集自网络,仅用于个人学习 A. 外生变量 B.滞后变量2)前定变量是 ( )地合称 .A.外生变量和滞后内生变量C.内生变量D. 外生变量和内生变量 C.外生变量和虚拟变量 D. 解释变量和被解释变量( ).A. 恰好识别B.不可识别 (4) 下面说法正确地是( ).A.内生变量是非随机变量 C.外生变量是随机变量 C.过度识别 D.不确定B. 前定变量是随机变量个人收集整理勿做商业用途型7) 对联立方程模型进行参数估计地方法可以分两类,即:( ).A.间接最小二乘法和系统估计方法B.单方程估计法和系统估计方法个人收集整理勿做商业用途C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法(8)在某个结构方程过度识别地条件下,不适用地估计方法是().A. 间接最小二乘法B.工具变量法C.二阶段最小二乘法D.有限信息极大似然估计法8.3行为方程和恒等式有什么区别?8.4如何确定模型中地外生变量和内生变量?8.5考虑下述模型:C t = α + β D t +u t I t = γ + δD t-1 + νt D t = C t +I t + Z t ;t=1 ,2,⋯,n其中 C = 消费支出,D= 收入,I = 投资,Z = 自发支出. C、I 和D是内生变量.试写出消费支出地简化型方程,并研究各方程地识别问题.8.6考虑下述模型:Y t = C t + I t +G t +X tC t = β 0 + β 1D t + β2C t-1 + u tD t = Y t –T tI t = α0 + α1Y t + α2R t-1 +νt 模型中各方程是正规化方程,u t、νt为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)写出用2SLS法进行估计时,每个阶段中要估计地方程.8.7下面是一个简单地美国宏观经济模型(1960-1999)其中C=实际私人消费,I= 实际私人总投资,G=实际政府支出,Y =实际GDP,M= 当年价M2,R=长期利率;P=消费价格指数.内生变量:C,I,R,Y 前定变量:C t-1,I t-1,M t-1,P t,R t-1 和G t.(1)应用识别地阶条件,决定各方程地识别状态;(2)你打算用什么方法来估计可识别行为方程?8.8假设有如下计量经济模型:其中,Y=国民收入,I=净资本形成,C=个人消费,Q =利润,P=生活费用指数,R= 工业劳动生产率1)写出模型地内生变量、外生变量和前定变量;个人收集整理勿做商业用途(2)用识别地阶条件确定各方程地识别状态;(3)此模型中是否有可以用ILS 法估计地方程?如有,请指出;(4)写出用2SLS 法进行估计时,每个阶段中要估计地方程. 8.9考虑下述模型:消费方程:C t=α0 +α 1Y t +α2C t-1 +u①投资方程:I t=β0 +β1Y t +β2I t –1+u2t②进口方程:M t = 0 + 1Y t + u3t ③Y t = C t+ I t + G t + X t - M t模型中各方程是正规化方程,u 1t, ⋯u3t为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)利用阶条件识别各行为方程.(3)写出用3SLS 进行估计时地步骤.8.10考察下述国民经济地简单模型式中,C为消费,Y 为国民收入,I 为投资,R为利率.设样本容量n 为20,已算得中间结果为:(1)判别模型中消费方程地识别状态;(2)用间接最小二乘法求消费方程结构式系数;(3)将采用哪种方法估计投资方程?为什么?(不必计算)8.11由联立方程模型;得到其简化式如下:(1)两结构方程可识别吗?(2)如果知道,识别情况有何变化?(3)若对简化式进行估计,结果如下:个人收集整理勿做商业用途试求出结构参数地值,并说明如何检验原假设个人收集整理勿做商业用途版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
第2章双变量回归分析:一些基本思想2.1 复习笔记考点一:总体回归函数相关概念★★★★1.条件期望函数(CEF)条件期望值E(Y|X i)是关于X i的一个函数,其中X i是X的某个给定值,用符号表示:E(Y|X i)=f(X i)。
该式也被称为条件期望函数(CEF)或总体回归函数(PRF),或简称为总体回归(PR),表明在给定X i下Y的分布的(总体)均值与X i有函数关系。
2.线性总体回归函数假定总体回归函数E(Y|X i)是系数的线性函数,表达为:E(Y|X i)=β1+β2X i。
其中β1和β2为未知但却固定的参数,称为回归系数;β1和β2也分别称为截距和斜率系数。
方程本身则称为线性总体回归函数,或简称线性总体回归。
3.“线性”的含义(1)对变量为线性Y的条件期望值是X i的线性函数。
从几何意义上说,这时回归曲线是一条直线。
(2)对参数为线性Y的条件期望E(Y|X i)是参数β的一个线性函数,X和Y都可以以任何形式存在(二次项、对数等)。
本书中所有的“线性回归”总是指对参数β为线性的一种回归(即参数只以它的一次方出现)。
4.PRF的随机设定(1)随机误差项个别的Y i围绕它的期望值的离差为:u i=Y i-E(Y|X i),其中离差u i是一个不可观测的可正可负的随机变量,称为随机干扰项或随机误差项。
解释方程Y i=E(Y|X i)+u i,给定X i水平,Y i可表示为两个成分之和:E(Y|X i)被称为系统性或确定性成分;u i为随机或非系统性成分。
(2)随机误差项的条件均值方程Y i=E(Y|X i)+u i的两边取期望,得到:E(Y i|X i)=E[E(Y|X i)|X i]+E(u i|X i)=E(Y|X i)+E(u i|X i)因为E(Y i|X i)=E(Y|X i),则E(u i|X i)=0。
5.随机干扰项的意义不将随机误差项清晰地引进模型中的原因:(1)理论的含糊性;(2)数据的欠缺;(3)核心变量与周边变量;(4)人类行为的内在随机性;(5)糟糕的替代变量;(6)节省原则;(7)错误的函数形式。
第13章计量经济建模:模型设定与诊断检验13.1 复习笔记考点一:模型选择准则和设定误差★★★1.模型的选择准则(1)数据容纳性;(2)与理论一致;(3)回归元的弱外生性;(4)表现出参数的不变性;(5)表现出数据的协调性;(6)模型有一定的包容性。
2.设定误差类型及解释(见表13-1)表13-1 设定误差类型及解释考点二:模型设定误差的后果★★★★1.模型拟合不足(漏掉一个有关变量)假如真实模型是:Y i=β1+β2X2i+β3X3i+u i。
但出于某种原因拟合了如下模型:Y i=α1+α2X2i+v i。
漏掉X3的后果将是:(1)如果放弃或漏掉的变量X3与变量X2两变量的相关系数r23非零,则α∧1和α∧2是有偏误且非一致的。
此时E(α∧1)≠β1,E(α∧2)≠β2,而且这种偏误不会随着样本容量的增大而消失。
(2)即使X2与X3不相关(r23=0),尽管α∧2现在是无偏的,但α∧1是有偏的。
(3)由于误差项包含了X3的信息,方差σ2将被不正确地估计。
(4)计算的α∧2的方差σ2/∑x2i2,是真实估计量β∧2的方差的一个有偏误的估计量。
(5)通常的置信区间和假设检验程序对于所估计参数的统计显著性容易导出误导性的结论。
(6)基于不正确模型做出的预测及预测(置信)区间都是不可靠的。
2.包含一个无关变量(模型拟合过度)假定:Y i=β1+β2X2i+u i是真实模型,但拟合了以下模型:Y i=α1+α2X2i+α3X3i+v i,从而导致了在模型中引入一个无关变量的设定误差。
这一设定误差将导致如下后果:(1)“不正确”模型中全部参数的OLS估计量都是无偏而又一致的,即E(α∧1)=β1,E(α∧2)=β2,和E(α∧3)=β3=0。
(2)误差方差σ2的估计是正确的。
(3)置信区间和假设检验程序仍然有效。
(4)一般地说,各个系数的估计量将是非有效的,也就是说,它们的方差一般都大于真实模型中β∧的方差。
四、计算题1、(练习题6.2)在研究生产中劳动所占份额的问题时,古扎拉蒂采用如下模型模型1 t t u t Y ++=10αα模型2 t t u t t Y +++=2210ααα其中,Y 为劳动投入,t 为时间。
据1949-1964年数据,对初级金属工业得到如下结果:模型1 t Y t0041.04529.0ˆ-=t = (-3.9608)R 2 = 0.5284 DW = 0.8252模型2 20005.00127.04786.0ˆt t Y t+-= t = (-3.2724)(2.7777)R 2 = 0.6629DW = 1.82其中,括号内的数字为t 统计量。
问:(1)模型1和模型2中是否有自相关;(2)如何判定自相关的存在?(3)怎样区分虚假自相关和真正的自相关。
练习题6.2参考解答:(1)模型1中有自相关,模型2中无自相关。
(2)通过DW 检验进行判断。
模型1:d L =1.077, d U =1.361, DW<d L , 因此有自相关。
模型2:d L =0.946, d U =1.543, DW>d U , 因此无自相关。
(3)如果通过改变模型的设定可以消除自相关现象,则为虚假自相关,否则为真正自相关。
2、根据某地区居民对农产品的消费y 和居民收入x 的样本资料,应用最小二乘法估计模型,估计结果如下。
3524.09123.27ˆ+=ySe=(1.8690) (0.0055)R 2=0.9966 0506.221612=∑=i i e ,DW=0.6800,F=4122.531由所给资料完成以下问题:(1) 在n=16,α=0.05的条件下,查D-W 表得临界值分别为L d =1.106,U d =1.371,试判断模型中是否存在自相关;(2) 如果模型存在自相关,求出相关系数ρˆ,并利用广义差分变换写出无自相关的广义差分模型。
因为DW=0.68<1.106,所以模型中的随机误差存在正的自相关。
古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解关注薇公号-精研学习网-查找资料引言0.1复习笔记考点一:计量经济学概况★1计量经济学的定义计量经济学是以一定的经济理论为基础,运用数学、统计学方法,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。
计量经济学可定义为实际经济现象的数量分析。
这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。
2研究对象和研究方法在一系列的假定条件下,计量经济学主要通过对经济数据的统计推断,研究经济定律的经验判定。
计量经济学的研究方法是,利用统计推断的理论和技术,以达到经济理论和实际测算相衔接的目的。
3计量经济学是一门单独的学科计量经济学是一门单独的学科,理由如下:(1)经济理论所作的陈述或假说大多数是定性的。
计量经济学提供了经济理论的数值估计,对大多数的经济理论赋予经验内容。
(2)数理经济学只用方程式表达经济理论,却未考虑实证检验问题。
计量经济学家对数学方程式进行改造,使其成为更适合于经验检验的形式。
(3)经济统计学主要收集、加工并通过图表的形式来展现经济数据,不考虑怎样利用所收集来的数据去检验经济理论。
计量经济学通过数据来检验经济理论。
考点二:计量经济学方法论★1计量经济学的方法论路线传统的计量经济学方法论大致按如下路线进行:(1)理论或假说的陈述;(2)理论的数学模型设定;(3)统计或计量经济模型设定;(4)获取数据;(5)计量经济模型的参数估计;(6)假设检验;(7)预报或预测;(8)利用模型进行控制或制定政策。
2计量经济学的类型计量经济学可划分为两大类:理论计量经济学和应用计量经济学。
在每一大类中按照估计方法逻辑又分为经典方法和贝叶斯方法。
理论计量经济学主要研究计量模型和计量方法,以求更精准测度由计量经济模型设定的经济关系。
应用计量经济学主要将理论计量经济学工具应用到经济学或管理学中的某些特殊领域。
第21章时间序列计量经济学:一些基本概念21.1 复习笔记考点一:随机过程★★★★1.定义一个随机过程就是随机变量按时间编排的集合,也称作时间序列。
如果令Y表示一个随机变量,而且是连续的,那么就记之为Y(t),但若它是离散的,则记之为Y t。
2.平稳随机过程(1)弱平稳性弱平稳过程又称协方差平稳、二阶平稳或广义随机过程,是指一个随机过程的均值和方差在时间过程上保持常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间。
(2)弱平稳性时间序列的性质均值:E(Y t)=μ;方差:var(Y t)=σ2;协方差:γk=E[(Y t-μ)(Y t+k-μ)]。
如果一个时间序列是平稳的,它的均值、方差和(各种滞后的)自协方差都是常数,不随时间变化。
(3)纯随机或白噪音过程若一个随机过程的均值为0,不变方差为σ2,而且不存在序列相关,那就称之为纯随机过程或者白噪音过程。
3.非平稳随机过程经典的例子就是随机游走模型(RWM)。
把随机游走分为两类:不带漂移的随机游走(即不存在常数项或截距项)和带漂移的随机游走(即出现常数项)。
(1)不带漂移的随机游走不带漂移的随机游走,对于Y t,有Y t=Y0+∑u t。
因此,E(Y t)=E(Y0+∑u t)=Y0。
同理,可以证明var(Y t)=tσ2。
上式表明,不带漂移的随机游走模型是一个非平稳的随机过程。
随机游走模型的特征是,随机冲击(即随机误差项)的持久性:Y t等于初始的Y0加上各期随机冲击项之和。
结果是,一个特定的冲击永远也不会消失。
若将方程写成Y t-Y t-1=ΔY t=u t,容易证明,尽管Y t是非平稳的,但其一阶差分却是平稳的。
换言之,一个随机游走时间序列的一阶差分是平稳的。
(2)带漂移的随机游走方程为:Y t=Y t-1+δ+u t,其中δ被称为漂移参数,若将上述方程写成:Y t-Y t-1=ΔY t =δ+u t。