古扎拉蒂《计量经济学基础》第6章
- 格式:pdf
- 大小:871.74 KB
- 文档页数:41
古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(多元回归分析:推断问题)【圣才出品】第8章多元回归分析:推断问题8.1 复习笔记考点一:再议正态性假定★当回归模型的参数用于估计和推断两个方面时,还需要假定u i服从正态性假定,即:u i~N(0,σ2)。
在三变量模型中,偏回归系数的OLS估计量与ML估计量一致,是最优线性无偏估计量(BLUE)。
参数估计量也是正态分布的,且(n-3)(σ∧2/σ2)~χ2(n-3)。
参数的t值均服从自由度为n-3的t分布。
t分布可用于构造置信区间并进行假设检验。
χ2分布可用于检验关于真实σ2的假设。
考点二:多元回归中的假设检验的多种形式★1.检验个别偏回归系数的假设。
2.检验估计的多元回归模型的总体显著性,即判别全部偏斜率系数是否同时为零。
3.检验两个或多个系数是否相等。
4.检验偏回归系数是否满足某种约束条件。
5.检验所估计的回归模型在时间上或在不同横截面单元上的稳定性。
6.检验回归模型的函数形式是否正确。
考点三:检验关于个别偏回归系数的假设★★t检验的程序是基于随机误差项u i服从正态分布的假定。
检验方法:给定一个特定的显著性水平α,当t值超过临界值tα/2(df),则拒绝原假设。
或使用p值判断,当p足够小,则拒绝原假设。
参数β∧2的(1-α)置信区间为:(β∧2-tα/2se(β∧2),β∧2+tα/2se(β∧2))。
由于不能直接观测u i,所以利用代理变量u∧i,即残差。
残差的正态性可进行雅克-贝拉(JB)检验(大样本检验)。
考点四:检验样本回归的总体显著性★★★★★1.总体显著性检验(1)定义总体显著性检验的原假设为:H0:β2=β3=0。
也就是检验Y是否与X2和X3存在线性关系。
(2)总体显著性检验与个别显著性检验检验个别显著性时,隐含地假定每一个显著性检验都是根据一个不同的(即独立的)样本进行的。
如果用同一样本数据去进行联合检验,就违反了检验方法所依据的基本假定。
第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。
一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。
虚拟变量也可以放到回归模型中。
这种模型被称为方差分析(ANOVA)模型。
2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。
所有的虚拟变量都用字母D表示。
(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。
对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。
②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。
所有其他的组都与基准组进行比较。
③截距值(β1)代表了基准组的均值。
④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。
⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。
⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。
因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。
但要确定做这个回归时,一定要使用回归软件包中的无截距选项。
⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。
为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。
第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。
回归子也可以是多分响应变量或多类型响应变量。
将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。
考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。
其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。
该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。
2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。
根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。
此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。
该模型的约束条件为:0≤E(Y i|X i)≤1。
3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。
表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。
虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。
此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。
(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。
对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。
第2章双变量回归分析:一些基本思想2.1 复习笔记考点一:总体回归函数相关概念★★★★1.条件期望函数(CEF)条件期望值E(Y|X i)是关于X i的一个函数,其中X i是X的某个给定值,用符号表示:E(Y|X i)=f(X i)。
该式也被称为条件期望函数(CEF)或总体回归函数(PRF),或简称为总体回归(PR),表明在给定X i下Y的分布的(总体)均值与X i有函数关系。
2.线性总体回归函数假定总体回归函数E(Y|X i)是系数的线性函数,表达为:E(Y|X i)=β1+β2X i。
其中β1和β2为未知但却固定的参数,称为回归系数;β1和β2也分别称为截距和斜率系数。
方程本身则称为线性总体回归函数,或简称线性总体回归。
3.“线性”的含义(1)对变量为线性Y的条件期望值是X i的线性函数。
从几何意义上说,这时回归曲线是一条直线。
(2)对参数为线性Y的条件期望E(Y|X i)是参数β的一个线性函数,X和Y都可以以任何形式存在(二次项、对数等)。
本书中所有的“线性回归”总是指对参数β为线性的一种回归(即参数只以它的一次方出现)。
4.PRF的随机设定(1)随机误差项个别的Y i围绕它的期望值的离差为:u i=Y i-E(Y|X i),其中离差u i是一个不可观测的可正可负的随机变量,称为随机干扰项或随机误差项。
解释方程Y i=E(Y|X i)+u i,给定X i水平,Y i可表示为两个成分之和:E(Y|X i)被称为系统性或确定性成分;u i为随机或非系统性成分。
(2)随机误差项的条件均值方程Y i=E(Y|X i)+u i的两边取期望,得到:E(Y i|X i)=E[E(Y|X i)|X i]+E(u i|X i)=E(Y|X i)+E(u i|X i)因为E(Y i|X i)=E(Y|X i),则E(u i|X i)=0。
5.随机干扰项的意义不将随机误差项清晰地引进模型中的原因:(1)理论的含糊性;(2)数据的欠缺;(3)核心变量与周边变量;(4)人类行为的内在随机性;(5)糟糕的替代变量;(6)节省原则;(7)错误的函数形式。
第13章计量经济建模:模型设定与诊断检验13.1 复习笔记考点一:模型选择准则和设定误差★★★1.模型的选择准则(1)数据容纳性;(2)与理论一致;(3)回归元的弱外生性;(4)表现出参数的不变性;(5)表现出数据的协调性;(6)模型有一定的包容性。
2.设定误差类型及解释(见表13-1)表13-1 设定误差类型及解释考点二:模型设定误差的后果★★★★1.模型拟合不足(漏掉一个有关变量)假如真实模型是:Y i=β1+β2X2i+β3X3i+u i。
但出于某种原因拟合了如下模型:Y i=α1+α2X2i+v i。
漏掉X3的后果将是:(1)如果放弃或漏掉的变量X3与变量X2两变量的相关系数r23非零,则α∧1和α∧2是有偏误且非一致的。
此时E(α∧1)≠β1,E(α∧2)≠β2,而且这种偏误不会随着样本容量的增大而消失。
(2)即使X2与X3不相关(r23=0),尽管α∧2现在是无偏的,但α∧1是有偏的。
(3)由于误差项包含了X3的信息,方差σ2将被不正确地估计。
(4)计算的α∧2的方差σ2/∑x2i2,是真实估计量β∧2的方差的一个有偏误的估计量。
(5)通常的置信区间和假设检验程序对于所估计参数的统计显著性容易导出误导性的结论。
(6)基于不正确模型做出的预测及预测(置信)区间都是不可靠的。
2.包含一个无关变量(模型拟合过度)假定:Y i=β1+β2X2i+u i是真实模型,但拟合了以下模型:Y i=α1+α2X2i+α3X3i+v i,从而导致了在模型中引入一个无关变量的设定误差。
这一设定误差将导致如下后果:(1)“不正确”模型中全部参数的OLS估计量都是无偏而又一致的,即E(α∧1)=β1,E(α∧2)=β2,和E(α∧3)=β3=0。
(2)误差方差σ2的估计是正确的。
(3)置信区间和假设检验程序仍然有效。
(4)一般地说,各个系数的估计量将是非有效的,也就是说,它们的方差一般都大于真实模型中β∧的方差。
古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解关注薇公号-精研学习网-查找资料引言0.1复习笔记考点一:计量经济学概况★1计量经济学的定义计量经济学是以一定的经济理论为基础,运用数学、统计学方法,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。
计量经济学可定义为实际经济现象的数量分析。
这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。
2研究对象和研究方法在一系列的假定条件下,计量经济学主要通过对经济数据的统计推断,研究经济定律的经验判定。
计量经济学的研究方法是,利用统计推断的理论和技术,以达到经济理论和实际测算相衔接的目的。
3计量经济学是一门单独的学科计量经济学是一门单独的学科,理由如下:(1)经济理论所作的陈述或假说大多数是定性的。
计量经济学提供了经济理论的数值估计,对大多数的经济理论赋予经验内容。
(2)数理经济学只用方程式表达经济理论,却未考虑实证检验问题。
计量经济学家对数学方程式进行改造,使其成为更适合于经验检验的形式。
(3)经济统计学主要收集、加工并通过图表的形式来展现经济数据,不考虑怎样利用所收集来的数据去检验经济理论。
计量经济学通过数据来检验经济理论。
考点二:计量经济学方法论★1计量经济学的方法论路线传统的计量经济学方法论大致按如下路线进行:(1)理论或假说的陈述;(2)理论的数学模型设定;(3)统计或计量经济模型设定;(4)获取数据;(5)计量经济模型的参数估计;(6)假设检验;(7)预报或预测;(8)利用模型进行控制或制定政策。
2计量经济学的类型计量经济学可划分为两大类:理论计量经济学和应用计量经济学。
在每一大类中按照估计方法逻辑又分为经典方法和贝叶斯方法。
理论计量经济学主要研究计量模型和计量方法,以求更精准测度由计量经济模型设定的经济关系。
应用计量经济学主要将理论计量经济学工具应用到经济学或管理学中的某些特殊领域。
第六章练习题参考解答练习题6.1 下表给出了美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据。
美国个人实际可支配收入和个人实际消费支出单位:100亿美元注:资料来源于Economic Report of the President ,数据为1992年价格。
要求:(1)用普通最小二乘法估计收入—消费模型;t t u XY ++=221ββ(2)检验收入—消费模型的自相关状况(5%显著水平);(3)用适当的方法消除模型中存在的问题。
6.2 在研究生产中劳动所占份额的问题时,古扎拉蒂采用如下模型模型1 t t u t Y ++=10αα 模型2 t t u t t Y +++=2210ααα其中,Y 为劳动投入,t 为时间。
据1949-1964年数据,对初级金属工业得到如下结果:模型1 t Y t 0041.04529.0ˆ-=t = (-3.9608)R 2 = 0.5284 DW = 0.8252模型2 20005.00127.04786.0ˆt t Y t +-=t = (-3.2724)(2.7777)R 2 = 0.6629DW = 1.82其中,括号内的数字为t 统计量。
问:(1)模型1和模型2中是否有自相关;(2)如何判定自相关的存在?(3)怎样区分虚假自相关和真正的自相关。
6.3下表是北京市连续19年城镇居民家庭人均收入与人均支出的数据。
要求:(1)建立居民收入—消费函数;(2)检验模型中存在的问题,并采取适当的补救措施预以处理;(3)对模型结果进行经济解释。
6.4下表给出了日本工薪家庭实际消费支出与可支配收入数据日本工薪家庭实际消费支出与实际可支配收入单位:1000日元注:资料来源于日本银行《经济统计年报》数据为1990年价格。
要求:(1)建立日本工薪家庭的收入—消费函数;(2)检验模型中存在的问题,并采取适当的补救措施预以处理;(3)对模型结果进行经济解释。
第21章时间序列计量经济学:一些基本概念21.1 复习笔记考点一:随机过程★★★★1.定义一个随机过程就是随机变量按时间编排的集合,也称作时间序列。
如果令Y表示一个随机变量,而且是连续的,那么就记之为Y(t),但若它是离散的,则记之为Y t。
2.平稳随机过程(1)弱平稳性弱平稳过程又称协方差平稳、二阶平稳或广义随机过程,是指一个随机过程的均值和方差在时间过程上保持常数,并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后,而不依赖于计算这个协方差的实际时间。
(2)弱平稳性时间序列的性质均值:E(Y t)=μ;方差:var(Y t)=σ2;协方差:γk=E[(Y t-μ)(Y t+k-μ)]。
如果一个时间序列是平稳的,它的均值、方差和(各种滞后的)自协方差都是常数,不随时间变化。
(3)纯随机或白噪音过程若一个随机过程的均值为0,不变方差为σ2,而且不存在序列相关,那就称之为纯随机过程或者白噪音过程。
3.非平稳随机过程经典的例子就是随机游走模型(RWM)。
把随机游走分为两类:不带漂移的随机游走(即不存在常数项或截距项)和带漂移的随机游走(即出现常数项)。
(1)不带漂移的随机游走不带漂移的随机游走,对于Y t,有Y t=Y0+∑u t。
因此,E(Y t)=E(Y0+∑u t)=Y0。
同理,可以证明var(Y t)=tσ2。
上式表明,不带漂移的随机游走模型是一个非平稳的随机过程。
随机游走模型的特征是,随机冲击(即随机误差项)的持久性:Y t等于初始的Y0加上各期随机冲击项之和。
结果是,一个特定的冲击永远也不会消失。
若将方程写成Y t-Y t-1=ΔY t=u t,容易证明,尽管Y t是非平稳的,但其一阶差分却是平稳的。
换言之,一个随机游走时间序列的一阶差分是平稳的。
(2)带漂移的随机游走方程为:Y t=Y t-1+δ+u t,其中δ被称为漂移参数,若将上述方程写成:Y t-Y t-1=ΔY t =δ+u t。