当前位置:文档之家› 角平分线等腰三角形

角平分线等腰三角形

角平分线等腰三角形
角平分线等腰三角形

角平分线与等腰三角形

江苏 刘顿

角平分线与等腰三角形有着密不可分联系.在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形.为了能说明这个问题,下面归类说明.

一、角平分线+平行线→等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形.

例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:AE =AP .

简析 要证AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角

形,故AE =AP .

例2 如图

3,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥

AC ,分别交AB

,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系,并说明你的猜想理由. 简析 猜想:

AD +CE =DE .理由如下:由于OA ,OC 分别是∠BAC ,∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE . 例3 如图4,△ABC 中,AD 平分∠BAC ,E ,F 分别在BD ,AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .

简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB .

二、角平分线+垂线→等腰三角形

当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若C A B E D O

图3 图4 F C D E B A M 图2

F B A C D P E 图1

① D ② C D C ④

F C D

AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.

例4 如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .

简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA ,CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD .

三、作倍角的平分线→等腰三角形

当一个三角形中出现一个角是另一个角的2倍时,我们就可以作倍角的平分线寻找到等腰三角形.如图7中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形.

例5 如图8,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.

简析 由于条件中有两个倍半关系,而结论与角有关,因此首先考虑对∠ACB =2∠B 进行技术处理,即作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 于E ,则由∠ACB =2∠B 知∠B =∠BCD ,即△DBC 是等腰三角形,而DE ⊥BC ,所以BC =2CE ,又BC =2AC ,所以AC =EC ,所以易证得△ACD ≌△ECD ,所以∠A =∠DEC =90°.

E 图5 A

B C D 图6 B F D

E C A 图7 B C D A E 图8 C B A D

三角形的高中线与角平分线练习题综述

43 2 1E D C B A 1 C D B 三角形的高、中线与角平分线1 1 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R , PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ). (A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正 确 2、 如图,点E 在BC 的延长线上,则下列条件中, 不能判定AB ∥CD 的是( ) A. ∠3=∠4 B.∠B=∠DCE C.∠1=∠2. D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B. (1)试说明 CD 是ΔABC 的高; (2)如果AC=8,BC=6,AB=10,求CD 的长。 4 如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数 5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2 所以 ____∥____ ( ) 因为 ∠1=∠3 所以 ____∥____ ( ) 6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm

A.17 B.22 C.17或22 D.13 8.适合条件∠A=1 2∠B=1 3 ∠C的△ABC是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为() A.30° B.75° C.105° D.30°或75° 10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.8 11.三角形的一个外角是锐角,则此三角形的形状是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值范围是________. 13.如图,BD平分∠ABC,DA⊥AB,∠1=60°, ∠BDC=80°,求∠C的度数. 初一三角形的高、中线与角平分线2 1 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6. (1)CO是△BCD的高吗?为什么? (2)∠5的度数是多少? (3)求四边形ABCD各内角的度数. 2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

八年级数学学案28 全等三角形的复习(3)--一线三等角

期中考试复习——全等三角形的复习(3) 一线三等角 班级: 姓名: 一. 学习目标 1. 掌握“一线三等角”的基本图形. 2. 能在复杂图形中找出“”的基本图形,并能利用其解决问题. 二. 自学指导 【基本图形】一线三等角 如图1,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足. (1)求证:△AEC ≌△CFB . (2)还能得到EF 、AE 、BF 三者之间怎样的关系? 【变式1】如图,将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α. C B A C B A C B A C B A

(1)求证:△AEC≌△CFB. (2)还能得到EF、AE、BF三者之间怎样的关系? 【变式2】如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. 【变式3】如图,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.

编号28 全等三角形的复习(2)当堂训练 班级: 姓名: 1.如图所示,Rt △ABE ≌Rt △ECD ,点B 、E 、C 在同一直线上,则结论:①AE =ED ;②AE ⊥DE ; ③BC =AB +CD ; ④AB ∥DC 中成立的是 . 2.如图,等边三角形ABC 中,ED =DF ,∠EDF =60°,求证:BC =BE +CF . 3.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S 是 . E D C B A F E D C B A 436 H C B G A F D E

(完整版)解析三角形中两条角平分线组成的角

解析三角形中两条角平分线组成的角 当同学们学完三角形的角平分线后,利用角平分线来解决相关几何题就应运而生。这儿作者只是给大家归纳了几种利用三角形两条角平分线组成的角的解析方法,以便大家在平时的作业时可简便计算。 一、三角形两内角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACB 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o 又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵BO,CO 是∠ABC 与∠ACB 的角平分线 ∴∠OBC= 2 1∠ABC ∠OCB =2 1∠ACB ∴∠OBC+∠OCB=21∠ABC+2 1∠ACB =2 1(∠ABC+∠ACB) ∴∠OBC+∠OCB=2 1(180o -n o ) =90o -21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o - 21 n o ) =180o -90o + 21 n o =90o +2 1 n o 即:∠BOC=90o +2 1 ∠A 通过上述解题过程不难发现,其实三角形的两内角平分线组成的角应为90o 与第三角的一半的和。 二、三角形两外角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠CBD 与∠BCE 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o C

又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵∠ABC+∠CBD=180o ∠ACB+∠BCE=180o ∴∠CBD+∠BCE=360o -(∠ABC+∠ACB) =360o -180o +n o =180o +n o ∵BO,CO 是∠DBC 与∠ECB 的角平分线 ∴∠OBC= 2 1∠CBD ∠OCB =2 1∠BCE ∴∠OBC+∠OCB=21∠CBD+2 1∠BCE =2 1(∠CBD+∠BCE) ∴∠OBC+∠OCB=2 1(180o +n o ) =90o +21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o + 2 1 n o ) =180o -90o -2 1 n o =90o -2 1 n o 即:∠BOC=90o -21 ∠A 由此我们可发现三角形的两个外角角平分线所组成的角等于90o 与第三角的一半的差。 三、三角形一内角角平分线与一外角角平分组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACD 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:∵∠ACD 为△ABC 的外角 ∴∠ACD=∠A+∠ABC ∵BO,CO 是∠ABC 与∠ACD 的角平分线 ∴∠OBC=2 1∠ABC ∠OCB =2 1∠ACD =21(∠A+∠ABC) A E

初二数学上全等三角形知识点总结汇编

全等三角形 知识梳理 一、知识网络 ???? ?? ????→??????? ?? ?? ???? ? ?对应角相等 性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件;

三角形角平分线专题讲解(精选.)

二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这 种尝试与猜想是在一定的规律基本之图1-1 B

上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠∠,如取,并连接、,则有△≌△,从而为我们证明线段、角相等创造了条件。 例1. 如图 1-2,,平分∠,平分∠, 点E 在上,求证:。 分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。 简证:在此题中可在长线段上截取,再证明,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长与的延长线交于一点来证明。自已试一试。 例2. 已知:如图 1-3,2,∠∠,,求证⊥ 图1-2 D B C

三角形的中线与角平分线

一.选择题(共10小题) 1.(2016秋?阿荣旗期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形 C.直角三角形D.周长相等的三角形 【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等. 【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形. 故选:B. 【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线. 2.(2016秋?大安市校级期中)如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线() A.△ABE B.△ADF C.△ABC D.△ABC,△ADF 【分析】根据三角形的角平分线的定义得出. 【解答】解:∵∠2=∠3, ∴AE是△ADF的角平分线; ∵∠1=∠2=∠3=∠4, ∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE, ∴AE是△ABC的角平分线. 故选D. 【点评】三角形的角平分线是指三角形一个内角的平分线与对边交点连接的线段. 3.(2016春?蓝田县期中)如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()

A.1 B.2 C.3 D.4 【分析】根据三角形中线的定义可得BE=EC=6,再根据BD=BE﹣DE即可求解.【解答】解:∵AE是△ABC的中线,EC=6, ∴BE=EC=6, ∵DE=2, ∴BD=BE﹣DE=6﹣2=4. 故选D. 【点评】本题考查了三角形的中线的定义,是基础题,准确识图并熟记中线的定义是解题的关键. 4.(2017?泰州)三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 【分析】根据三角形的重心是三条中线的交点解答. 【解答】解:三角形的重心是三条中线的交点, 故选:A. 【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键. 5.(2017?诸暨市模拟)已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的()

一线三角与全等

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○图中有几对相等的锐角 ○求证:AEC ?≌CFB ?; ○试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 结论: 巩固提高: 1.如图,ABC ?是等腰三角形,DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○AE CD =;○21∠=∠;○?=∠+∠9043;○BE AD =.

(A )1个 (B )2个 (C )3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点 E ,l B F ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且 CD AE ⊥于点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE , 则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. F

三角形的高、中线与角平分线(全国优质课一等奖)

2008年全国第六届初中数学优质课比赛教案 课题:§7.1.2三角形的高、中线与角平分线 教材:人教版义务教育课程标准实验教科书七年级数学下册第65~66页 授课教师:临川一中陈良琴 [教材分析] 1、本节教材的地位与作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线. 通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别.另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的. 2、教学重点: 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.3、教学难点: 在钝角三角形中作高. 4、教学关键: 运用好数形结合的思想,特别是研究三角形的角平分线、中线、高时,从折叠、度量入手,获得三种线段的直观形象,以便准确理解上述基本知识。 [教学目标] 基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标: (1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. (2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心. [学情分析] 七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望.同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养. [教学过程] 本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

一线三等角在全等三角形中的应用

线三等角在全等三角形中的应用一图形特征:一条直线上有三个相等的角,三个角可以是锐角,直角,钝角。二解题方法:利用两角一边证三角形全等找到边之间的关系。 三例题讲解 图形一,三等角为锐角

图形二,三等角为直角钝角

(1)已知,如图①’在^ABC中,ABAC = 90o I AB = 4C,直线m经过点A, BD丄直线m, CEA.直线m,垂足分别为点D、E,求证: DE = BD + CE. ⑵如图②将⑴中的条件改为:在AAEC Φ, AB = AC l O. A、E三点都在直线m上,并且有ABDA = ZAEC = ABAC =α,其中Q 为任意钝角,请问结论DE = ED + CE是否成立?若 成 立,请你给出证明:若不成立,请说明理由. m ①D AE^ 图②

.?ΛCAE= ΛABD, ?∕^±ΔADB 和 ACEA 中 AABD = ACAE ΔBDA = ΔCEA I AB = AC :AADB=^CEA{AAS^ 证明:(1) ??BD 丄直线g CEL 直线叽 90O l -.ABAC= 9()。, .??ZBW+∕C4E = 9() ?^BAD^ AABD =

四八年级期中期末考试题型 八年级期中考试卷,变形后的应用

如图①,在zMBC中,乙ACB= 90。MC = BC,过点C 在ZUBC外作直线I1AMLl于点M,BN丄2于点N. (1) 求证:MN=AM + BN?j (2) 如图②,若过点C作直线I与线段AB相交UM ■ 丄/于点M J BNlI于点7V(4Λf>BΛΓ),(l)? 的 结论是否仍然成立?说明理由. I

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版] 一、八年级数学轴对称三角形填空题(难) 1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为 ___________. 【答案】4 【解析】 【分析】 延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED, ∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案. 【详解】 延长AC至E,使CE=BM,连接DE. ∵BD=CD,且∠BDC=140°, ∴∠DBC=∠DCB=20°, ∵∠A=40°,AB=AC=2, ∴∠ABC=∠ACB=70°, ∴∠MBD=∠ABC+∠DBC=90°, 同理可得∠NCD=90°, ∴∠ECD=∠NCD=∠MBD=90°, 在△BDM和△CDE中,

BM CE MBD ECD BD CD ? ? ∠∠ ? ? ? = =, = ∴△BDM≌△CDE(SAS), ∴MD=ED,∠MDB=∠EDC, ∴∠MDE=∠BDC=140°, ∵∠MDN=70°, ∴∠EDN=70°=∠MDN, 在△MDN和△EDN中, MD ED MDN EDN DN DN ? ? ∠∠ ? ? ? = =, = ∴△MDN≌△EDN(SAS), ∴MN=EN=CN+CE, ∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4; 故答案为:4. 【点睛】 本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键. 2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形 (1)如图,在ABC ?中,25,105 A ABC ∠=?∠=?,过B作一直线交AC于D,若BD 把ABC ?分割成两个等腰三角形,则BDA ∠的度数是______. (2)已知在ABC ?中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ?分割成两个等腰三角形,则A ∠的最小度数为________. 【答案】130? 180 7 ? ?? ? ?? 【解析】 【分析】 (1)由题意得:DA=DB,结合25 A ∠=?,即可得到答案; (2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

一线三角与全等三角形B4

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○ 1图中有几对相等的锐角? ○ 2求证:AEC ?≌CFB ?; ○ 3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 巩固提高: 1.如图,ABC ?是等腰三角形, DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =;○2 21∠=∠;○ 3?=∠+∠9043;○4BE AD =. (A )1个 (B )2个 (C ) 3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且CD AE ⊥于 点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE ,则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. (第6题图) 7.如图,在等边ABC ?中,点D 为边AB 上一点,连接CD ,点E 在CD 上,连接AE , ?=∠60AED ,过点B 作BF ∥AE 交CD 的延长线于点F . 求证:EF AE =. (第7题图) F

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

八年级数学上册 《全等三角形常考题型总结》

全等三角形题型总结 题型一、一线三垂直 1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。 (2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系? 2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间. 27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以 放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵 木墙之间的距离.

题型二、角平分线与全等 1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。 2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论. 图 题型三、旋转与全等 1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

B A C D E 2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE . 图17 3、如图,ABC ?为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形 CDE ?,连接AE . (1)求证:CBD ?≌CAE ?. (2)判断AE 与BC 的位置关系,并说明理由. 4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关 系. A B D C E F

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

相关主题
文本预览
相关文档 最新文档