第三章 常用计算的基本理论和方法
- 格式:pdf
- 大小:657.54 KB
- 文档页数:51
发电厂电气部分复习课后习题仅供参考第三章常用计算的基本理论和方法3-1 研究导体和电气设备的发热有何意义?长期发热和短时发热各有何特点?答:电气设备有有电流通过时将产生损耗,这些损耗都将转变成热量使电器设备的温度升高。
发热对电气设备的影响:使绝缘材料性能降低;使金属材料的机械强度下降;使导体接触电阻增加。
导体短路时,虽然持续时间不长,但短路电流很大,发热量仍然很多。
这些热量在适时间内不容易散出,于是导体的温度迅速升高。
同时,导体还受到电动力超过允许值,将使导体变形或损坏。
由此可见,发热和电动力是电气设备运行中必须注意的问题。
长期发热是由正常工作电流产生的;短时发热是由故障时的短路电流产生的。
3-2 为什么要规定导体和电气设备的发热允许温度?短时发热允许温度和长期发热允许温度是否相同,为什么?答:导体连接部分和导体本身都存在电阻(产生功率损耗);周围金属部分产生磁场,形成涡流和磁滞损耗;绝缘材料在电场作用下产生损耗,如tan?值的测量载流导体的发热:长期发热:指正常工作电流引起的发热短时发热:指短路电流引起的发热一发热对绝缘的影响:绝缘材料在温度和电场的作用下逐渐变化,变化的速度于使用的温度有关;二发热对导体接触部分的影响:温度过高→表面氧化→电阻增大↑→ I R ↑→恶性循环;三发热对机械强度的影响:温度达到某一值→退火→机械强度↓→设备变形如:Cu长期发热70 C短期发热300 C, Al长期发热 70 C 短期发热 200。
3-6 电动力对导体和电气设备的运行有何影响?答:电气设备在正常状态下,由于流过导体的工作电流相对较小,相应的电动力较小,因而不易为人们所察觉。
而在短路时,特别是短路冲击电流流过时,电动力可达到很大的数值,当载流导体和电气设备的机械强度不够时,将会产生变形或损坏。
为了防止这种现象发生,必须研究短路冲击电流产生的电动力的大小和特征,以便选用适当强度的导体和电气设备,保证足够的动稳定性。
第三章常用计算的基本理论和方法3.1 正常运行时导体载流量计算一、概述1、两种工作状态1)正常工作状态:电压和电流都不会超过额定值,导体和电器能够长期安全经济地运行。
2)短路工作状态:系统发生故障,I↑↑,U↓↓,此时,导体和电器应能承受短时发热和电动力的作用。
2、所有电气设备在工作中,会产生各种功率损耗,其损耗有:1)电阻损耗:导体本身存在电阻。
(铜损)2)介质损耗:绝缘材料在电场作用下产生的。
(介损)3)涡流和磁滞损耗:铁磁物质在强大的交变磁场中。
本章主要讨论“铜损”发热问题。
发热不仅消耗能量,而且导致电气设备温度升高,从而产生不良影响。
3、发热对电气设备的影响1)机械强度下降:T↑,会使材料退火软化。
2)接触电阻增加:T过高,接触连接表面会强烈氧化,使接触电阻进一步增加。
3)绝缘性能降低:长期受高温作用,将逐渐变脆和老化,使用寿命大为缩短。
4、发热的分类按流过电流的大小和时间,发热可分为:1)长期发热:由正常工作电流引起的发热。
长期发热的特征:发热时间长;通电持续时间内,发热功率与散热功率平衡,保持为稳定温度;稳定温升2)短时发热:由短路电流引起的发热,导体短路时间很小,但Ik 很大。
Q发仍然很多,且不易散出,另外,还要受到电动力的作用。
短时发热的特征:发热时间短;短路时导体温度变化范围很大,整个发热过程中散热功率远小于发热功率;短路时间虽然不长,但电流大,因此发热量也很大,造成导体迅速升温。
为了保证导体的长期发热和短时发热作用下能可靠、安全地工作,应限制其发热的最高温度。
5、最高允许温度为了保证导体可靠地工作,须使其发热温度不得超过一定的数值。
按照工作状态,它又可分为下述两种:1)正常最高允许温度θal :对裸铝导体,θal =+70℃, 计入太阳辐射 θal =+80℃ 接触面镀锡时,θal =+85℃ 接触面有银覆盖时,θal =+95℃ 2)短时最高允许温度θsp :θsp >θal ,因为短路电流持续时间短。