2020年江苏省高考押题卷数学试题含附加题
- 格式:pdf
- 大小:447.72 KB
- 文档页数:6
2020届江苏省高考数学押题卷数学I一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上.1.已知集合{|02}A x x =<<,{|11}B x x =-<<,则A B =U .2.设复数z 满足(1i)i z ⋅-=(其中i 为虚数单位),则z 的模为 .3.一组数据3,x ,5,6,7的均值为5,则方差为 .4.右图是一个算法的伪代码,其输出的结果为 .5.袋中有形状、大小都相同的5只球,其中2只白球,3只红球,从中一次随机摸出2只球,则这2只球颜色相同的概率为 .6.已知正四棱柱1111ABCD A B C D -中,AB =3,AA 1=2,P ,M 分别为BD 1,B 1C 1上的点. 若112BP PD =,则三棱锥M -PBC 的体积为______.7.在平面直角坐标系xOy 中,若双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为2a ,则该双曲线的离心率为 .8. 若将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f =______. 9. 已知函数()f x 是R 上的奇函数,当x ≥0时,f (x )=2x +m (m 为常数),则2(log 5)f -的值为______.10.已知函数2()e (1)x f x x ax =++的单调减区间为()ln ln e e b a ,,则a b 的值为______. 11.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的 圆C 与直线l 交于另一点D .若AB ⊥CD ,则点A 的横坐标为 .12.设H 为三角形ABC 的垂心,且3450HA HB HC ++=u u u r u u u r u u u r r ,则cos BHC ∠= .13.已知函数f (x )满足1()+()x f x f x e'=,且f (0)=1,则函数[]21()3()()2g x f x f x =-的零点个数是 .14.若数列{}n a 满足21321111222n n a a a a a a --<-<<-<L L ,则称数列{}n a 为“差半递增”数列.若数列{}n a 为“差半递增”数列,其前n 项的和为n S ,且满足221()n n S a t n N *=+-∈,则实数t 的取值范围为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出 文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱锥S —ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ‖平面ABC .(2)求证:BC ⊥SA .16.(本小题满分14分)已知△ABC 的内角的对边分别为a 、b 、c .(1)若π3B =,b =,△ABC 的面积S ,求a+c 值; (2)若()22cos C BA BC AB AC c ⋅+⋅=u u u v u u u v u u u v u u u v ,求角C .椭圆22221x y a b +=(a >b >0)的离心率为13,左焦点F 到直线l :x =9的距离为10, 圆G :(x -1)2+y 2=1.(1)求椭圆的方程;(2)若P 是椭圆上任意一点,EH 为圆G :(x -1)2+y 2=1的任一直径,求PE PH ⋅u u u r u u u r 的取值 范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T ,都满足NF NT =M 的方程;若不存在,请说明理由.18.(本小题满分16分)如图,在某商业区周边有两条公路1l 和2l ,在点O 处交汇;该商业区为圆心角π3, 半径3km 的扇形.现规划在该商业区外修建一条公路AB ,与12l l 、分别交于A B 、,要求AB 与扇形弧相切,切点T 不在12l l 、上.(1)设km,km,OA a OB b == 试用,a b 表示新建公路AB 的长度,求出,a b 满足的关系式,并写出,a b 的范围;(2)设α=∠AOT ,试用α表示新建公路AB 的长度,并且确定A B 、的位置,使得新建公路AB 的长度最短.已知函数f (x )=x 3-x +2x .(1)求函数y =f (x )在点(1,f (1))处的切线方程;(2)令g (x )2ln x +,若函数y =g (x )在(e ,+∞)内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1,+∞),s ∈(0,1),求证:1()()e 2eg t g s ->+- .20.(本小题满分16分)已知数列{a n },{b n }满足,2S n =(a n +2)b n ,其中n S 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为13-的等比数列,求数列{b n }的通项公式; (2)若b n =n ,a 2=3,求证:数列{a n }满足a n +a n +2=2a n +1,并写出数列{a n }的通项公式;(3)在(2)的条件下,设 n n na cb =.试问,数列{c n }中的任意一项是否总可以表示成该数列其他两项之积?若可以,请证明之;若不可以,请说明理由.数学Ⅱ(附加题)满分40分考试时间30分钟21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,每小题10分.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.B.(选修4-2:矩阵与变换)已知线性变换T1是按逆时针方向旋转90︒的旋转变换,其对应的矩阵为M,线性变换T2:2,3x xy y'=⎧⎨'=⎩对应的矩阵为N.(1)写出矩阵M、N;(2)若直线l在矩阵NM对应的变换作用下得到方程为y=x的直线,求直线l的方程.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为,2sinxyαα⎧=⎪⎨=⎪⎩(α∈R,α为参数),曲线C2的极坐标方程为cos sin50ρθθ-=.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q曲线C2上一点,求线段PQ的最小值.【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30︒,AE垂直BD于点E、F为A1B1的中点.(1)求异面直线AE与BF所成角的余弦值;(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.23.(本小题满分10分)设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3,且a3-a2≤2,A⊆S.(1)若n = 6,求满足条件的集合A的个数;(2)对任意的满足条件的n及A,求集合A的个数.。
江苏省2020年高考名师押题信息卷数 学2020.6.29Ⅰ卷一. 填空题:本大题共14小题,每小题5分共计70分1.设集合A ={x |(x +1)(x ﹣2)<0},集合B ={x |1<x <3},则A ∪B =__________.2.i 是虚数单位,则|2+i 1−i|的值为__________. 3.若执行如图所示的算法流程图,则输出的结果是__________.4.(如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是__________5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为__________.6.已知cos 6πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭_____________.7.设S n 是等比数列{a n }的前n 项的和,S 3,S 9,S 6成等差数列,则a 2+a 5a 8的值为__________.8.在平面直角坐标系xoy 中,若双曲线22221(0,0)x y a b a b-=>>的一条准线与两条渐近线恰能围成一个等边三角形,则该双曲线的离心率为______.9.在平面直角坐标系xOy 中,已知A ,B 两点在圆x 2+y 2=1上,若直线x +y −√6=0上存在点C ,使△ABC 是边长为1的等边三角形,则点C 的横坐标是__________.10.如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为__________.11.已知函数f (x )=x 2﹣2x +3a ,g (x )=2x−1.若对∀x 1∈[0,3],总∃x 2∈[2,3],使得f (x 1)≤g (x 2)成立,则实数a 的取值集合为__________. 12.在ABC ∆中,3,2,AB AC D ==为边BC 上一点.若25,3AB AD AC AD ⋅=⋅=-u u u v u u u v u u u v u u u v ,则AB AC ⋅u u u v u u u v 的值为_________.13.已知向量()1,3a =v ,(),1b x y =-v 且//a b v v ,若实数,x y 均为正数,则31x y+最小值是______ 14.已知f (x )是R 上的偶函数,且f(x)={3x ,0≤x <1(13)x +1,x ≥1,若关于x 的方程f 2(x )﹣mf (x )=0有三个不相等的实数根,则m 的取值范围__________.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分14分)已知函数()221()cos sin cos ()2f x x x x x x R =+-∈. (1)求()f x 的单调递增区间.(2)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (A )=1,c =10,cosB =17,求ΔABC 的中线AD 的长.16. (本小题满分14分)如图,在四棱锥P ﹣ABCD 中,四边形ABCD 为平行四边形,∠BAP =∠CDP =90°,E 为PC 中点. (Ⅰ)求证:AP ∥平面EBD ;(Ⅱ)若△P AD 是正三角形,且P A =AB .(i )当点M 在线段P A 上什么位置时,有DM ⊥平面P AB ;(ii )在(i )的条件下,点N 在线段PB 什么位置时,有平面DMN ⊥平面PBC .17. (本小题满分14分) 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点处时,点Q 的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u v u u u u v时,求直线BM 的方程.。
2020届江苏省高三下学期6月高考押题数学试题一、填空题1.已知集合{}1,0,1,2M =-,集合{}220N x x x =+-=,则集合M N =____________.【答案】{}1【解析】解出集合N ,利用交集的定义可求得集合M N ⋂. 【详解】{}1,0,1,2M =-,{}{}2202,1N x x x =+-==-,因此,{}1M N ⋂=.故答案为:{}1. 【点睛】本题考查交集的运算,同时也考查了一元二次方程的求解,考查计算能力,属于基础题. 2.已知复数221z i i=++(i 是虚数单位),则z 的共轭复数为_______. 【答案】1i -【解析】利用复数代数形式的乘除运算化简得z ,再由共轭复数的定义得答案. 【详解】22(1)221211(1)(1)i z i i i i i i i i -∴=+=+=-+=+++- ∴1z i =-. 故答案为1i - 【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,属于基础题. 3.为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[]50,150中,其频率分布直方图如图所示.已知在[)50,100中的频数为24,则n 的值为____________.【答案】60【解析】先求出[)50,100的概率,再用[)50,100中的频数除以概率即可. 【详解】根据直方图[)50,100的概率=()0.0040.012250.4+⨯= 又在[)50,100中的频数为24 所以总数24600.4n == 故答案为:60 【点睛】此题考查根据直方图部分样本数和概率计算总体样本数,注意直方图中概率就是频率等于纵坐标乘以组距,属于简单题目.4.执行如图所示的算法流程图,则输出的b 的值为____________.【答案】16 【解析】模拟运行程序,得到输出的b 的值. 【详解】1,1a b ==,3a ≤成立, 2,2,3b a a ==≤成立,224,3b a ===,3a ≤成立,4216,4b a ===,3a ≤不成立,输出16b =.故答案为:16. 【点睛】本题考查了读程序框图,得到运行结果,属于基础题.5.已知、、A B C 三人在三天节日中值班,每人值班一天,那么A 排在C 后一天值班的概率为____________. 【答案】13【解析】用列举法求解出所有值班的情况,再找出满足题意的情况,用古典概型计算公式求解. 【详解】A ,B ,C 三人在三天中值班的情况有(),,A B C ,(),,A C B ,(),,B A C ,(),,B C A ,(),,C A B ,(),,C B A ,共6种;其中A 排在C 后一天值班的情况有(),,B C A ,(),,C A B ,共2种. 故所求概率2163P ==. 故答案为:13. 【点睛】本题考查古典概型的概率计算,属基础题;其重点是列举出所有可能,并找出满足条件的可能.6.底面边长和高都为2的正四棱锥的表面积为____________.【答案】4+【解析】求出斜高,计算各面的面积,求和可得正四棱锥的表面积. 【详解】如图所示,2,1PO OH ==,则PH =122PCD S =⨯=△故正四棱锥的表面积为2245445⨯+=+. 故答案为:445+【点睛】本题考查了求正四棱锥的表面积,属于基础题.7.在平面直角坐标系xOy 中,已知双曲线经过点()3,6,且它的两条渐近线方程是3y x =±,则该双曲线标准方程为____________.【答案】2219y x -=【解析】根据渐近线方程设双曲线的方程为229x y λ-=,将点()3,6的坐标代入双曲线的方程,求得实数λ的值,即可得出该双曲线的标准方程. 【详解】由于双曲线的两条渐近线方程是3y x =±,设该双曲线的方程为229x y λ-=, 将点()3,6的坐标代入双曲线的方程,得(229369λ=⨯-=-,所以,双曲线的方程为2299x y -=-,因此,该双曲线的标准方程为2219y x -=.故答案为:2219y x -=.【点睛】本题考查利用双曲线的渐近线方程求双曲线的标准方程,考查计算能力,属于基础题. 8.已知5sin cos 5αα+=24sin cos αα+的值为____________. 【答案】1825【解析】先平方求出sin 2α,再利用二倍角公式求出4cos α,即可求解. 【详解】25sin cos 5αα+=()24sin cos 1sin 25ααα∴+=+=即1sin 25α=- 2123412sin 2122525cos αα=-=-⨯= 123182452525sin cos αα+=-+=故答案为:1825【点睛】此题考查二倍角公式,关键熟记二倍角的各种变形,属于简单题目.9.设n S 为等差数列{}n a 的前n 项和,若351021,100a a S -==,则20S 的值为____________. 【答案】400【解析】设等差数列{}n a 的公差为d ,根据已知条件求出1,a d ,再利用前n 项和公式,求出20S . 【详解】设等差数列{}n a 的公差为d ,由351021,100a a S ==﹣,则1112(2)(4)1109101002a d a d a d +-+=⎧⎪⎨⨯+=⎪⎩,得1a 1,d 2, 2012019204002S a d ⨯=+=. 故答案为:400. 【点睛】本题考查了等差数列的通项公式和前n 项和公式,属于基础题. 10.埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如:2115315=+,它可以这样理解,假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人115,这样每人得11315+.形如2(5,7,9,)n n =…的分数的分解2115315=+,2117428=+,2119545=+,按此规律,2n=__________()5,7,9,n =….【答案】221(1)n n n +++ 【解析】由条件归纳可得2111(1)22n n n n =+++,化简即可得解.【详解】由题意2111151515315522=+=+++⨯,2111171717472228=+=+++⨯,2111191919592425=+=+++⨯⋅⋅⋅依次类推可得211221(1)1(1)22n n n n n n n =+=+++++.故答案为:221(1)n n n +++. 【点睛】本题考查了归纳推理的应用,考查了逻辑推理能力,属于中档题.11.在平面直角坐标系xOy 中,已知圆22:(2)4C x y -+=,点P 是圆C 外的一个动点,直线,PA PB 分别切圆C 于,A B 两点.若直线AB 过定点(1,1),则线段PO 长的最小值为____________.【解析】设()()()112200,,,A x y B x y P x y ,,,得出过A 点、B 点的圆C 的切线方程,又由点P 在过A 、B 的圆C 的切线上,可得出直线AB 的方程,由直线AB 过定点(1,1),得出关系002+y x =,表示PO =,根据二次函数的最值情况可求得线段PO 的长的最小值. 【详解】由圆22:(2)4C x y -+=,得22:40C x y x +-=,设()()()112200,,,A x y B x y P x y ,,,则过A 点的圆C 的切线方程为()111+2+0x x y y x x -=,过B 点的圆C 的切线方程为()222+2+0x x y y x x -=,又点P 在过A 、B 的圆C 的切线上,所以()101010+2+0x x y y x x -=,()222+2+0x x y y x x -=,所以直线AB 的方程为:()000+2+0x x y y x x -=,又直线AB 过定点(1,1),所以()000+2+10x y x -=,即002+y x =,所以()22222000000+224+4POx y x x x x =+=+=+,当01x =-时,线段PO 的长取得最小值2, 故答案为:2. 【点睛】本题考查直线与圆的位置关系,圆的切线方程,以及两点间的距离的最值,属于较难题.12.已知正实数,x y 满足211x x y y ⎛⎫-= ⎪⎝⎭,则1x y +的最小值为____________.【答案】2【解析】将已知等式变形为214x yx y y x ⎛⎫+=+ ⎪⎝⎭,利用基本不等式可求得最小值.【详解】2222112141x x x x x x x x y y y y y y y y ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+-=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,214x y x y y x ⎛⎫∴+=+ ⎪⎝⎭, 214424x y x y x y y x y x ⎛⎫∴+=+≥⋅= ⎪⎝⎭(当且仅当4x y y x =,即2y x =时取等号), 12x y∴+≥,即1x y +的最小值为2.故答案为:2 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够将已知等式变形、配凑成符合基本不等式的形式.13.如图,在平行四边形ABCD 中, 2,,AB AD E F =分别为,AD DC 的中点,AF 与BE 交于点O .若125AD AB OF OB ⋅=⋅,则DAB ∠的余弦值为____________.【答案】317【解析】设,,AD a AB b DAB θ==∠=,,AO AF BO BE λμ==,确定O 点位置,又||2||b a =,将其它向量全部用基底,a b 表示出来,再化简125AD AB OF OB ⋅=⋅可得答案. 【详解】设,,AD a AB b DAB θ==∠=,,AO AF BO BE λμ==, 则12AF a b =+,12BE a b =-,得2AO a b λλ=+,2BO a b μμ=-, 又AB AO OB =+,得()()22b a b μλλμ=-++,则0212μλλμ⎧-=⎪⎪⎨⎪+=⎪⎩,得24,55λμ==,得3335510OF AF a b ==+,2455BO a b =-, 设||,a m =则||2b m =,由125AD AB OF OB ⋅=⋅,有3324125()()51055a b a b a b ⋅=+⋅-+ 得222261824245(cos )252525m m m m θ=-++,得3cos 17θ=. 故答案为:317【点睛】本题考查了平面向量的基本定理,向量共线的应用,平面向量数量积的运算,考查了学生分析能力,运算能力,难度较大.14.在ABC 中,角,,A B C 的对边分别为,,a b c,且431tan tan A B +=,则3c b的最大值为____________. 【解析】先对431tan tan A B+=进行等价变形为4cos sin 3sin cos sin sin A B A B A B +=,再利用正弦定理()3sin 33sin sin sin A B c C B b B+==化简,再利用辅助角公式即可求最大值. 【详解】 由题意得4cos 3cos 1sin sin A B A B+=,即4cos sin 3sin cos sin sin A B A B A B +=根据正弦定理()3sin 33sin 3sin cos 3cos sin sin sin cos sin sin cos sin sin sin sin A B c C A B A B A B A B A A B B B Bb ++-=====-即3sin cos 4c A b A A π⎛⎫=-=-≤ ⎪⎝⎭【点睛】此题考查正弦定理解三角形,三角函数的和差公式,辅助角公式,关键点是对式子的恒等变形,属于较易题目.二、解答题15.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .已知向量(,2)m b a c =-,(cos 2cos ,cos )n A C B =-,且m n ⊥.(1)求sin sin CA的值; (2)若2,35a m ==,求△ABC 的面积S .【答案】(1)2(2)4【解析】(1)先根据向量垂直得到边角关系:(cos 2cos )+(2)cos 0b A C a c B --=,再由正弦定理将边的关系化角的关系,结合两角和的正弦以及三角形角的关系,即可求解;(2)由向量模的定义知22(2)45b a c +-=,又由(1)知2c a =,而2,a =所以三边都已确定,再由余弦定理求出cos A 的值,再利用三角形面积公式求解. 【详解】(1)(cos 2cos )+(2)cos 0m n b A C a c B ⊥⇒--=,由正弦定理得sin cos 2sin cos +sin cos 2sin cos B A B C A B C B --sin()2sin()sin 2sin 0A B B C C A =+-+=-=,所以sin 2sin CA=; (2)由35m =得22(2)45b a c +-=,又由(1)知2c a =,而2,a =所以解得4,3c b ==,由余弦定理得222715cos ,sin 28b c a A A bc +-===, 因此三角形面积为11153153422S bcsinA ==⨯⨯⨯=【考点】正余弦定理16.如图直三棱柱111ABC A B C -中12AC AA =,AC BC ⊥,D 、E 分别为11A C 、AB 的中点.求证:(1)AD ⊥平面BCD ;(2)1A E ∥平面BCD . 【答案】(1)见解析;(2)见解析. 【解析】试题分析:(1)由判断定理,BC⊥AD,CD⊥AD,则AD⊥平面BCD. (2)A 1E//OD ,而OD ⊂平面BC D ∴A 1E//平面BCD 试题解析:(1)∵直三棱柱ABC-A 1B 1C 1中CC 1⊥平面ABC ,又BC ⊂平面ABC∴CC 1⊥BC,又∵AC⊥BC,AC CC 1=C ,AC ,CC 1⊂平面AA 1C 1C ∴BC⊥平面AA 1C 1C ,而AD ⊂平面AA 1C 1C ∴BC⊥AD ① 又该直三棱柱中AA 1⊥A 1C 1,CC 1⊥A 1C 1 由已知AA 1=12AC=A 1D ,则∠A 1DA=4π同理∠C 1DC=4π,则∠ADC=2π,即CD⊥AD…由①BC⊥AD,BC CD=C ,BC ,CD ⊂平面BCD 得AD⊥平面BCD… (2)取BC 中点O ,连结DO 、OE ,∵AE=EB,CO=BO ∴OE 平行等于12AC , 而A 1D 平行等于12AC ,∴A 1D 平行等于OE ∴四边形A 1DOE 为平行四边形… ∴A 1E//OD ,而A 1E ⊄平面BCD ,OD ⊂平面BCD ∴A 1E//平面BCD点睛:证明线面平行问题的答题模板第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检查关键点及答题规范.17.如图,某大型厂区有三个值班室,,A B C ,值班室A 在值班室B 的正北方向3千米处,值班室C 在值班室B 的正东方向4千米处.(1)保安甲沿CA 从值班室C 出发行至点P 处,此时2PC =,求PB 的距离; (2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话? 【答案】(1)55BP =;(2)413小时.【解析】(1)在Rt ABC 中求得cos C 后,在PBC 中利用余弦定理可求得结果; (2)设甲乙出发后的时间为t 小时,在AMN 中,利用余弦定理可用t 表示出2MN ,解29MN >可求得结果. 【详解】(1)在Rt ABC 中,3AB =,4BC =,则5AC =,4cos 5C ∴=, 在PBC 中,由余弦定理得:2224362cos 1641655BP BC CP BC CP C =+-⋅=+-⨯=,655BP ∴=; (2)设甲乙出发后的时间为t 小时,甲在线段CA 上的位置为M ,乙在线段AB 上的位置为N ,则55AM t =-,3AN t =,且[]0,1t ∈,由(1)知:3cos 5A =, 在AMN 中,由余弦定理得:2222cos MN AM AN AM AN A =+-⋅, 即()()222218559555268255MN t t t t t t =-+--=-+, 若甲乙不能通话,则3MN >,即25268259t t -+>,解得:413t <或1t >, 又[]0,1t ∈,40,13t ⎡⎫∴∈⎪⎢⎣⎭, ∴两人不能通话的时间为413小时. 【点睛】本题考查解三角形的实际应用问题,主要考查了余弦定理的应用,属于基础题.18.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>过点6⎛ ⎝⎭,离2.,A B是椭圆上两点,且直线OA 与OB 的斜率之积为12.(1)求椭圆C 的方程; (2)求直线AB 的斜率;(3)设直线AB 交圆222:O x y a +=于,C D 两点,且6AB CD =求COD △的面积. 【答案】(1)22142x y +=;(2)22±;(3)2. 【解析】(1)利用离心率和已知点代入求出,a b 即可求出结果;(2)设()(),,,A x y B x y '',设直线AB 的方程:y kx m =+,代入椭圆方程消y 得到关于x 的一元二次方程,利用韦达定理和直线OA 与OB 的斜率之积为12求出k 即可;(3)先写出直线方程,利用点到直线的距离公式和弦长公式代入已知条件求出23m =,再利用面积公式即可得出结果. 【详解】(1)由题意得:2c e a ==和22222161,4a b c a b +=+=, 则224,2a b ==,所以椭圆C 的方程:22142x y +=.(2)设()(),,,A x y B x y '', 又直线OA 与OB 的斜率之积为12, 所以直线AB 存在斜率,设为k , 设直线AB 的方程:y kx m =+,代入22142x y +=整理得:()222124240k xkmx m +++-=,则()()2222221641224042k m kmm k ∆=-+->⇒<+,且2224122412km x x k m xx k -⎧+=⎪⎪+⎨-⎪=+'⎩'⎪ , 则()22222412m k yy k xx km x x m k -'''=+++=+,由题意得22241242OA OB yy m k k k xx m '-==='-, 即212k =,即2k =±, 所以直线AB的斜率为:2±. (3)由(2)知不妨设直线AB的斜率为2, 则直线AB的方程为:y x m =+, 设O 到直线AB 的距离为d ,则,d CD ===又AB x '=-=又AB CD =23m =, 所以122S COD d CD ==. 【点睛】本题主要考查了椭圆的标准方程,利用韦达定理求直线的斜率,弦长公式等.属于中档题.19.已知数列{}()*n a n N ∈的前n 项和为nS,()2n n nS a λ=+(λ为常数)对于任意的*n N ∈恒成立.(1)若11a =,求λ的值; (2)证明:数列{}n a 是等差数列;(3)若22a =,关于m 的不等式21m S m m -<+有且仅有两个不同的整数解,求λ的取值范围.【答案】(1)1;(2)详见解析;(3)191,,522⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.【解析】(1)将1n =代入已知等式即可求得结果;(2)利用11n n n S S a ++-=可得到递推关系()1121n n n a n a na λ++=+-+,将1n +换成n 后两式作差可得到112n n n a a a +-+=,从而证得结论; (3)将不等式化为()2312m m m λ-⋅-<+,令22t λ-=,则不等式()31t m m m -<+的正整数解只有两个,通过分析可知除3m =以外只能有1个m 符合要求;当4m ≥时,通过导数可求得()max 1534m m m ⎡⎤+=⎢⎥-⎣⎦,分别讨论54t ≤、5342t <<和32t ≥时m 的取值,得到符合题意的范围后,解不等式求得结果. 【详解】(1)当1n =时,()11112S a a λ=+=,112a a λ∴=+,解得:11a λ==; (2)由(1)知:()()()11221n n n n S n a S n a λλ++⎧=+⎪⎨=++⎪⎩,()1121n n n a n a na λ++∴=+-+,*n N ∈,()()1112121n n n n n n a n a na a na n a λλ++-⎧=+-+⎪∴⎨=--+⎪⎩,则()()11122121n n n n n a a n a na n a ++--=+-+-, ()()()111121n n n n a n a n a +-∴-+-=-,又2n ≥,*n N ∈,10n ∴->,∴112n n n a a a +-+=对任意2n ≥,*n N ∈成立,∴数列{}n a 是等差数列;(3)由(2)可知:21m S m m -<+,即()11212m m ma d m m -+-<+, 即()()12212m m m m m λλ-+--<+,()2312m m m λ⋅∴--<+, 令22t λ-=,题目条件转化为满足不等式()31t m m m -<+的正整数解只有两个, 若1m =符合,则22t <,即1t <;若2m =符合,则23t <, 1.5t <; 若3m =符合,则t 为任意实数,即除3m =以外只能有1个m 符合要求.当4m ≥,*m N ∈时,()31tm m m -<+,解得:()13m t m m +<-,令15x m =+≥,则()()()1143145m x m m x x x x+==----+, 令()45f x x x =-+,则()222441x f x x x-'=-=, 当5x ≥时,()0f x '>恒成立,()f x ∴在[)5,+∞上单调递增,()()min455f x f ∴==,()max 1534m m m ⎡⎤+∴=⎢⎥-⎣⎦,∴当54t ≤时,至少存在2m =、3、4满足不等式,不符合要求; 当5342t <<时,对于任意4m ≥,*m N ∈都不满足不等式,1m =也不满足, 此时只有2m =、3满足; 当32t ≥时,只有3m =符合; 故5342t <<,即523422λ-<<,解得:112λ-<<-或952λ<<; ∴λ的取值范围是191,,522⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查数列知识的综合应用,涉及到数列中的项的求解、根据递推关系式证明数列为等差数列、根据不等式整数解的个数求解参数范围的问题;本题中求解参数范围的关键是能够将不等式进行化简,结合最值采用分类讨论的方式确定整数解的个数,从而构造不等式求得结果,属于难题.20.已知函数()ln 1xf x ax =+(a ∈R ,且a 为常数). (1)若函数()y f x =的图象在x e =处的切线的斜率为()211e e -(e 为自然对数的底数),求a 的值;(2)若函数()y f x =在区间()1,2上单调递增,求a 的取值范围; (3)已知(),1,2x y ∈,且3x y +=.求证:()()23ln 23ln 011x x y y x y --+≤--.【答案】(1)1-或2e e -;(2){}11,2⎡⎫--+∞⎪⎢⎣⎭;(3)详见解析. 【解析】(1)根据导数几何意义知()()211f e e e '=-,由此构造方程求得结果;(2)将问题转化为1ln 0ax ax x +-≥且10ax +≠恒成立的问题,令()1ln x ax ax x ϕ=+-,分别在0a =、0a >和102a -≤<或1a ≤-时,结合函数单调性确定最小值,令()min 0x ϕ≥,从而求得a 的取值范围;(3)根据(2)的结论可知()f x 在()1,2上单调递增,分类讨论可确定()()()23ln 32ln 2312x x x x -≤--,将不等关系代入所求不等式左侧,结合对数运算可整理得到结果. 【详解】(1)由题意得:()()()()2211ln 1ln 11ax a x ax ax xx f xax x ax +-+-'==++ ()y f x =的图象在x e =处的切线的斜率为()211e e -,()()211f e e e '∴=-,()()221ln 111ae ae e e ae e e +-∴=+-,解得:()()2211ae e +=-,()11ae e ∴+=±-,1a ∴=-或2e e-; (2)函数()f x 在()1,2上单调递增,∴对于任意的()1,2x ∈,都有()0f x '≥恒成立即1ln 0ax ax x +-≥且10ax +≠,当0a =,10≥恒成立,满足题意; 当0a ≠时,由1x a ≠-得:()11,2a-∉,即0a >或102a -≤<或1a ≤-,令()1ln x ax ax x ϕ=+-,则()ln x a x ϕ'=-,①当0a >且()1,2x ∈时,()0x ϕ'<,()x ϕ∴在()1,2上单调递减, 要使得1ln 0ax ax x +-≥恒成立,即要求()20ϕ≥, 即212ln 20a a +-≥,解得:122ln 2a -≥-,0a ∴>满足题意;②当102a -≤<或1a ≤-,且()1,2x ∈时,()0x ϕ'>,()x ϕ∴在()1,2上单调递增, 要使得1ln 0ax ax x +-≥恒成立,即要求()10ϕ≥, 即1ln10a a +-≥,解得:1a ≥-;102a ∴-≤<或1a =-综上所述:a 的取值范围是{}11,2⎡⎫--+∞⎪⎢⎣⎭; (3)由(2)可知:当1a =-时,函数()f x 在()1,2上单调递增,此时()ln ln 11x xf x x x==-+-, 当312x <≤时,()332ln 22f x f ⎛⎫≤=- ⎪⎝⎭,而230x -≤,()()()3232ln 232x f x x ∴-≥--,即()()()ln 3232ln 2312x x x x -≥---, ()()()23ln 32ln 2312x x x x -∴≤--, 当322x ≤<时,()332ln 22f x f ⎛⎫≥=- ⎪⎝⎭,而230x -≥,()()()3232ln 232x f x x ∴-≥--,即()()()2ln 3232ln 2312x x x x -≥---, ()()()23ln 32ln 2312x x x x -∴≤-- 综上,对于任意()1,2x ∈,都有()()()23ln 32ln 2312x x x x -≤--,()()()()()()()23ln 23ln 3332ln 232ln 232ln 22611222x x y y x y x y x y --∴+≤-+-=+---0=,结论得证.【点睛】本题考查导数在研究函数中的应用,涉及到导数几何意义的应用、根据函数在区间内的单调性求解参数范围、利用导数证明不等式;本体证明不等式的关键是能够通过分类讨论的方式将()()23ln 1x xx --进行放缩,属于难题.21.曲线221x y +=在矩阵00a A b ⎡⎤=⎢⎥⎣⎦()0,0a b >>对应的变换下得到曲线2219x y +=. (1)求矩阵A ;(2)求矩阵A 的特征向量. 【答案】(1)3001A ⎡⎤=⎢⎥⎣⎦;(2)10⎡⎤⎢⎥⎣⎦和01⎡⎤⎢⎥⎣⎦. 【解析】(1)根据对应关系可得到x axy by ''=⎧⎨=⎩,代入椭圆方程整理,结合圆的方程可构造方程组求得,a b ,从而求得结果;(2)由()3001f λλλ-==-可求得1λ=或3,分别在1λ=或3两种情况下求得特征向量. 【详解】(1)设曲线221x y +=上的任意一点(),x y 在矩阵A 的对应变换作用下得到的点为(),x y '',则00a x x b y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,x ax y by =∴=''⎧⎨⎩,222219a x b y ∴+=,22191a b ⎧=⎪∴⎨⎪=⎩, 又0,0a b >>,3a ∴=,1b =,3001A ⎡⎤∴=⎢⎥⎣⎦;(2)由()()()331001fλλλλλ-==--=-得:1λ=或3;当1λ=时,由200000x y x y -+⋅=⎧⎨⋅+⋅=⎩得对应的特征向量为01⎡⎤⎢⎥⎣⎦;当3λ=时,由000020x y x y ⋅+⋅=⎧⎨⋅+=⎩得对应的特征向量为10⎡⎤⎢⎥⎣⎦;综上所述:矩阵A 的特征向量为01⎡⎤⎢⎥⎣⎦和10⎡⎤⎢⎥⎣⎦. 【点睛】本题考查矩阵问题中的曲线的变换、特征向量的求解问题,属于常考题型. 22.已知在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数).以原点O 为极点,以x 轴的非负半轴为极轴的坐标系中,直线l 的极坐标方程为()sin cos 2ρθθ+=,直线l 与曲线C 相交于,A B 两点,求线段AB 的值.【解析】把曲线C 化简为直角坐标方程,和直线l 化成参数方程,利用参数的几何意义,求出弦长即可. 【详解】曲线22x C :y 14+=,直线l :x y 20+-=,设直线l的参数方程为222x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C,得25t 240++=,设,A B 的参数分别为1t ,2t .>0∆成立,1t 5∴=-,2t =-∴弦长AB 12t t =-=【点睛】本题考查了圆的参数方程化为普通方程、极坐标方程化为直角坐标方程和参数方程,属于基础题.23.已知,,a b c 为正实数,满足3a b c ++=,求149a b c++的最小值.【答案】12【解析】利用柯西不等式可知()14936a b c a b c ⎛⎫∴++++≥⎪⎝⎭,由此求得结果. 【详解】 ,,a b c 均为正实数,()222222149a b c a b c ⎛⎫⎛⎫⎛⎫ ⎪∴++++=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2212336≥=++=(当且仅当22249b c a ==时取等号),又3a b c ++=,14912a b c ++≥∴,即149a b c ++的最小值为12. 【点睛】本题考查利用柯西不等式求解最值的问题,关键是能够将所求式子配凑成符合柯西不等式的形式.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量ξ表示上述五个自然数组成的一个排列中“友好数”的组数,求ξ的概率分布和数学期望()E ξ.【答案】(1)35;(2)分布列详见解析,()45E ξ=. 【解析】(1)利用插空法可求得2和4不相邻的事件总数,根据古典概型概率公式可求得结果;(2)确定ξ所有可能的取值,结合排列组合知识可求得每个取值对应的概率,进而得到分布列;利用数学期望计算公式计算可得期望.【详解】(1)记“2和4不相邻”为事件A ,则()32345535A A P A A ==; (2)ξ的所有可能取值为0,1,2,()22322355125A A A P A ξ===,()222223552215A A A P A ξ===,()121212242424225522205C A C A C A A P A ξ++===, ξ∴的分布列如下:()22140125555E ξ∴=⨯+⨯+⨯=. 【点睛】本题考查古典概型概率问题的求解、离散型随机变量的分布列与数学期望的求解,涉及到排列组合的相关知识;解题关键是能够准确确定随机变量可能的取值,并利用排列组合的知识求得每个取值对应的概率.25.已知2,*n n ≥∈N ,数列12:,,,n T a a a 中的每一项均在集合{}1,2,,M n =⋯中,且任意两项不相等,又对于任意的整数,(1)i j i j n ≤<≤,均有i j i a j a +≤+.记所有满足条件的数列T 的个数为n b .例如2n =时,满足条件的数列T 为1,2或2,1,所以22b =.(1)求3b ;(2)求n b .【答案】(1)3=4b (2)12n n b -=【解析】(1)直接利用关系式的应用求出结果.(2)直接利用数列的通项公式的应用和递推关系式的应用求出结果.【详解】(1)若a 1=3,则1+3≤2+a 2,则a 2≥2,任意两项不相等,故a 2=2,则a 3=1. 若a 2=3,则2+a 2≤3+a 3,则a 3≥2,故a 3=2,则a 1=1.若a 3=3,则a 1=1,a 2=2,或a 1=2,a 2=3.所以当n =3时,满足条件的数列T 为3,2,1;1,3,2;1,2,3;2,1,3.故满足条件的T 为4,即3=4b .(2)设满足条件的数列T 的个数为b n ,显然b 1=1,b 2=2,b 3=3.不等式i +a i ≤j +a j 中取j =i +1,则有i +a i ≤i +1+a i +1,即a i ≤1+a i +1.①当a 1=n ,则a 2=n ﹣1,同理a 3=n ﹣2,…,a n =1.②当a i =n ,(2≤i ≤n ),则a i +1=n ﹣1,同理a i +2=n ﹣2,…,a n =i .即a i =n 以后的各项是唯一确定的.a i =n 之前的满足条件的数列的个数为b i ﹣1.所以当n ≥2时,b n =b n ﹣1+b n ﹣2+…+b 1+1.().当n ≥3时,b n ﹣1=b n ﹣2+b n ﹣3+…+b 1+1.代入()式得到b n =b n ﹣1+b n ﹣1=2b n ﹣1,且满足b 2=2b 1.所以对任意n ≥2的,都有b n =2b n ﹣1,又b 1=1,所以12n nb -=. 综上所述,满足条件的数列T 的个数12n nb -=.【点睛】本题考查数列的通项公式的求法及应用,主要考查学生的运算能力和转换能力及思维能力,综合性较强.。
2020年高考数学押题试卷(6月份)一、填空题(共14小题).1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N=.2.已知复数(i是虚数单位),则z的共轭复数为.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为.4.执行如图所示的算法流程图,则输出的b的值为.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.6.底面边长和高都为2的正四棱锥的表面积为.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为.8.已知sinα+cosα=,则sin2α+cos4α的值为.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=(n=5,7,9,11,…).11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.12.已知正实数x,y满足,则的最小值为.13.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N={1}.【分析】可以求出集合N,然后进行交集的运算即可.解:∵M={﹣1,0,1,2},N={﹣2,1},∴M∩N={1}.故答案为:{1}.2.已知复数(i是虚数单位),则z的共轭复数为1﹣i.【分析】直接利用复数代数形式的乘除运算化简得答案.解:∵=,∴.故答案为:1﹣i.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为60.【分析】由频率分布直方图求出[50,100)中的频率,再由在[50,100)中的频数,能求出n.解:由频率分布直方图得:[50,100)中的频率为:(0.004+0.012)×25=0.4,因为在[50,100)中的频数为24,所以n==60,故答案为:60.4.执行如图所示的算法流程图,则输出的b的值为8.【分析】按照程序框图一步一步代入求值,直到跳出循环,输出结果.解:a=1,b=1;b=2,a=2;b=4,a=3,b=8,a=4;跳出循环,输出b=8,故答案为:8.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.【分析】利用排列组合数公式易求三人值班有A种,A排在C后一天值班的情况有C A 种,相比即可.解:因为A、B、C三人在三天节日中值班有A=6种,其中A排在C后一天值班的情况有C A=2种,所以A排在C后一天值班的概率P==,故答案是.6.底面边长和高都为2的正四棱锥的表面积为4+4.【分析】由已知中正四棱锥的底面边长为2,高为2,求出棱锥的侧高,进而求出棱锥的侧面积,加上底面积后,可得答案.解:如下图所示:正四棱锥S﹣ABCD中,AB=BC=CD=AD=2,S0=2,E为BC中点,在Rt△SOE中,OE=AB=1,则侧高SE==,故棱锥的表面积S=2×2+4×(×2×)=4+4.故答案为:4+4.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为﹣x2=1.【分析】根据题意,设要求双曲线的方程为x2﹣=t,(t≠0),将点坐标代入计算可得t的值,将t的值代入计算双曲线的方程,变形为标准方程即可得答案.解:根据题意,要求双曲线的两条渐近线方程是y=±3x,设其方程为x2﹣=t,(t ≠0),又由双曲线经过点(﹣,6),则有(﹣)2﹣=3﹣4=t=﹣1,则要求双曲线的方程为﹣x2=1;故答案为:﹣x2=1.8.已知sinα+cosα=,则sin2α+cos4α的值为.【分析】将已知等式两边平方,利用二倍角公式可求sin2α的值,进而根据二倍角的余弦函数公式可求cos4α的值,即可得解.解:∵sinα+cosα=,∴两边平方,可得1+sin2α=,sin2α=﹣,∴cos4α=1﹣2sin22α=1﹣2×(﹣)2=,∴sin2α+cos4α=﹣+=.故答案为:.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为400.【分析】利用等差数列前n项和公式和通项公式列方程组,解得a1=1,d=2,由此能求出S20.解:∵S n为等差数列{a n}的前n项和,2a3﹣a5=1,S10=100,∴,解得a1=1,d=2,∴S20=20×1+=400.故答案为:400.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=+(n=5,7,9,11,…).【分析】由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+.解:假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.【分析】设P(x0,y0),求出以AB为直径的圆的方程,与圆C联立,可得AB所在直线方程,代入(1,1),得P点轨迹,再由点到直线的距离公式求得线段PO长的最小值.解:设P(x0,y0),则PC的中点坐标为(),又|PC|=,∴以PC为直径的圆的方程为,即x2+y2﹣(x0+2)x﹣y0y+2x0=0,①又圆C:x2+y2﹣4x=0,②①﹣②得:(x0﹣2)x+y0y﹣2x0=0.∵直线AB过(1,1),∴x0﹣y0+2=0.即点P的轨迹为x﹣y+2=0.∴线段PO长的最小值为O到直线x﹣y+2=0的距离等于.故答案为:.12.已知正实数x,y满足,则的最小值为2.【分析】直接利用关系式的变换和不等式的性质的应用求出结果.解:已知正实数x,y满足,整理得:,所以=,所以(当且仅当y=2x等号成立)故的最小值为2.故答案为:213.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.【分析】用表示出,根据条件列方程计算cos∠DAB.解:=+,设=λ=+λ=+2λ,∵B,O,E三点共线,∴+2λ=1,即λ=.∴==+,=+,∴==﹣,∴5•=(+)•(4﹣2)=﹣2+.若,则﹣2=,又AB=2AD,=AB•AD•cos∠DAB,∴6(4AD2﹣AD2)=51(2AD•AD•cos∠DAB),解得cos∠DAB==.故答案为:.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.【分析】由已知化切为弦可得3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A ﹣cos A),得到,再由辅助角公式化积,利用正弦函数的有界性求得最大值.解:由=1,得,∴4cos A sin B+3cos B sin A=sin A sin B,∴3sin(A+B)+cos A sin B=sin A sin B,即3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A﹣cos A),∴.∵0<A<π,∴<<,则当A﹣时,取得最大值为.即的最大值为.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.【分析】(1)由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0法一:根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B法二:根据余弦定理可得,b×=0化简可得,然后根据正弦定理可求(2)由(1)c=2a可求c,由||可求b,结合余弦定理可求cos A,利用同角平方关系可求sin A,代入三角形的面积公式S=可求解:(1)法一:由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B=0∴(sin B cos A﹣sin A cos B)﹣2(sin B cos C+sin C cos B)=0∴sin(A+B)﹣2sin(B+C)=0∵A+B+C=π∴sin C﹣2sin A=0∴(法二):由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据余弦定理可得,b×=0整理可得,c﹣2a=0∴=2(2)∵由(1)可知c=2a=4∴b=3∴cos A==,sin A==∴△ABC的面积S===16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.【分析】(1)只需证明BC⊥AD,DC⊥AD,证明即可AD⊥平面BCD(2)取BC中点O,连结DO、OE可得四边形A1DOE为平行四边形,即A1E∥OD,A1E∥平面BCD.【解答】证明:(1)∵直三棱柱ABC﹣A1B1C1中CC1⊥平面ABC,又BC⊂平面ABC,∴CC1⊥BC,又∵AC⊥BC,AC∩CC1=C,AC,CC1⊂平面AA1C1C,∴BC⊥平面AA1C1C,而AD⊂平面AA1C1C∴BC⊥AD…①又该直三棱柱中AA1⊥A1C1,CC1⊥A1C1,由已知AA1=AC=A1D,则∠A1DA=,同理∠C1DC=,则∠ADC=,即CD⊥AD,由①BC⊥AD,BC∩CD=C,BC,CD⊂平面BCD,∴AD⊥平面BCD;(2)取BC中点O,连结DO、OE,∵AE=EB,CO=BO∴OE平行等于AC,而A1D平行等于AC,∴A1D平行等于OE∴四边形A1DOE为平行四边形,∴A1E∥OD,而A1E⊄平面BCD,OD⊂平面BCD,∴A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【分析】(1)在△PBC中,根据余弦定理计算PB;(2)设行进时间为t,得出两人距离关于t的函数,解不等式得出t的范围即可得出结论.解:(1)AC==5,cos C==,在△PBC中,由余弦定理可得:PB2=PC2+BC2﹣2PC•BC•cos C=4+16﹣2•2•4•=,∴PB=千米.(2)设两保安出发t小时后,甲保安到达M处,乙保安到达N处(0≤t≤1).则AM=5(1﹣t),AN=3t,又cos A=,则MN2=25(1﹣t)2+9t2﹣2•5(1﹣t)•3t•=52t2﹣68t+25,令MN>3可得52t2﹣68t+25>9,即13t2﹣17t+4>0,又0≤t≤1,解得:0≤t<.∴两保安有小时不能通话.18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.【分析】(1)由椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾;可设直线AB的方程为y =kx+m,代入椭圆方程x2+2y2=4,运用韦达定理和直线的斜率公式,计算可得所求值;(3)不妨设直线AB的方程为y=x+m,运用点到直线的距离公式和弦长公式,化简整理,结合三角形的面积公式,计算可得所求值.解:(1)因为e==,所以a2=2b2,设椭圆方程为+=1,将点(1,)代入可得+=1,解得b=,则a=2,则椭圆的方程为+=1;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾.所以直线AB的斜率存在.可设直线AB的方程为y=kx+m,代入椭圆方程x2+2y2=4,可得(2k2+1)x2+4kmx+2m2﹣4=0,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,而k OA•k OB==,即x1x2=2y1y2,则=2•,解得k2=,即有k=±,所以直线AB的斜率为±;(3)不妨设直线AB的方程为y=x+m,即x﹣y+m=0,因为原点O到直线AB的距离d=,所以|CD|=2=2,由(2)当k=时,x1+x2=﹣m,x1x2=m2﹣2,所以|AB|=|x1﹣x2|=•=•,于是==,解得m2=3,因此△COD的面积S△OCD=CD•d=•2•=2.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.【分析】(1)令n=1,结合S1=a1及题设条件可得2a1=a1+λ,进而得解;(2)利用S n+1﹣S n=a n及题设条件可得2a n+1=(n+1)a n+1﹣na n+λ,进而得到2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,化简整理即可得证;(3)由(2)问题等价于,令,题目条件进一步转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,然后再分类讨论得出结论.解:(1)当n=1时,,∴2a1=a1+λ,解得λ=a1=1;(2)证明:由题意知,,∴2a n+1=(n+1)a n+1﹣na n+λ,∴,∴2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,∴(n﹣1)a n+1+(n﹣1)a n﹣1=2(n﹣1)a n,又n≥2,n∈N•,∴n﹣1>0,∴a n+1+a n﹣1=2a n对任意n≥2,n∈N•都成立,∴数列{a n}是等差数列;(3)由(2)可知,|S m﹣2m|<m+1,即,即,∴,令,题目条件转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,若m=1符合,则2t<2,即t<1;若m=2符合,则2t<3,即;若m=3符合,则t为任意实数,即m=3以外只能有1个m符合要求;当m≥4,m∈N•时,tm(m﹣3)<m+1,解得,令x=m+1≥5,则,令,则,当x≥5时,f′(x)>0恒成立,∴f(x)在[5,+∞)上单调递增,∴,∴,∴当时,至少存在m=2,3,4满足不等式,不符合要求;当时,对于任意m≥4,m∈N•都不满足不等式,m=1也不满足,此时只有m=2,3满足;当时,只有m=3符合;故,即,解得或,∴λ的取值范围为.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.【分析】(1)根据导数的几何意义知f′(e)=,由此构造方程求得结果.(2)将问题转化为ax+1﹣axlnx≥0且ax+1≠0,恒成立的问题,令φ(x)=ax+1﹣axlnx,分别在a=0,a>0和﹣≤a<0,或a≤﹣1时,结合函数单调性确定最小值,令φ(x)min≥0,从而求得a的取值范围.(3)根据(2)的结论可知f(x)在(1,2)上单调递增,分类讨论可确定≤2ln(2x﹣3),将不等关系代入所求不等式左侧,结合对数运算可整理得到结果.解:(1)由题意得:f′(x)==,因为y=f(x)的函数图象在x=e处的切线的斜率为,所以f′(e)=,所以,解得(ae+1)2=(1﹣e)2,所以ae+1=±(1﹣e),所以a=﹣1或.(2)因为函数f(x)在(1,2)上单调递增,所以对于任意的x∈(1,2),都有f′(x)≥0恒成立,即ax+1﹣axlnx≥0且ax+1≠0,当a=0,1≥0恒成立,满足题意,当a≠0时,由x≠﹣得:﹣,即a>0,或﹣或a≤﹣1,令φ(x)=ax+1﹣axlnx,则φ′(x)=﹣alnx,①当a>0且x∈(1,2)时,φ′(x)<0,所以φ(x)在(1,2)上单调递减,要使得ax+1﹣axlnx≥0,即要求φ(2)≥0,即2a+1﹣2aln2≥0,解得a≥,所以a>0满足题意,②当﹣≤a<0或a≤﹣1,且x∈(1,2)时,φ′(x)>0,所以φ(x)在(1,2)上单调递增,要使得ax+1﹣axlnx≥0,即要求φ(1)≥0,即a+1﹣aln1≥0,解得a≥﹣1,所以﹣≤a<0或a=﹣1,综上所述:a的取值范围是{﹣1}∪[﹣,+∞).(3)证明:由(2)知:当a=﹣1时,函数f(x)在(1,2)上单调递增,此时f(x)==,当1<x≤时,f(x)≤f()=﹣2ln,而2x﹣3≤0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,当≤x<2时,f(x)≥f()=﹣2ln,而2x﹣3≥0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,综上,对于任意x∈(1,2),都有,所以≤2ln(2x﹣3)+2ln(2y﹣3)=2ln(2x+2y﹣6)=0,结论得证.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.【分析】(1)推导出=,从而,由点P'(x',y')在曲线=1,得=1.再由x2+y2=1,能求出矩阵A.(2)由|λI﹣A|==0,求出λ1=3,λ2=1,由此能求出矩阵A的特征向量.解:(1)P(x,y)为圆C上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),则=,即,又∵点P'(x',y')在曲线=1,∴=1.由已知条件可知,x2+y2=1,∴a2=9,b2=1.∵a>0,b>0,∴a=3,b=1.∴A=.(2)∵A=.∴|λI﹣A|==0,解得λ1=3,λ2=1,把λ1=3代入|λI﹣A|x=0,得=,∴x2=0,∴λ1=3的特征向量为,把λ1=1代入|λI﹣A|x=0,得=,∴x1=0,∴λ2=1的特征向量为.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.【分析】化曲线的参数方程为普通方程,化直线的极坐标方程为直角坐标方程,进一步化为参数方程的标准形式,代入曲线的普通方程,得到关于t的一元二次方程,再由根与系数的关系及弦长公式求解.解:由(α为参数),消去参数α,得;由ρ(sinθ+cosθ)=2,得ρsinθ+ρcosθ﹣2=0,即x+y﹣2=0.设直线l的参数方程为,代入,得.∴,.∴|AB|=|t1﹣t2|==.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【分析】根据条件,可得=,然后利用柯西不等式求出其最小值即可.解:∵a,b,c为正实数且满足a+b+c=3,∴,即,当且仅当,即时等号成立,∴的最小值为12.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).【分析】(1)记“2和4不相邻”为事件A,则P(A)=;(2)X的所有可能取值为0,1,2,结合排列组合的思想逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.解:(1)记“2和4不相邻”为事件A,则P(A)=,所以2和4不相邻的概率为.(2)X的所有可能取值为0,1,2,P(X=2)=,P(X=1)=,P(X=0)=(先确定3的位置)或(P(X=0)=1﹣P (X=1)﹣P(X=2)=).所以X的分布列为X012P数学期望E(X)=.25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.【分析】(1)直接利用关系式的应用求出结果.(2)直接利用数列的通项公式的应用和递推关系式的应用求出结果.解:(1)若a1=3,则1+3≤2+a2,故a2=2,则a3=1.若a2=3,则2+a2≤3+a3,则a3≥2.故a2=2,则a1=1.若a3=3,则a1=1,a2=2,或a1=2,a2=3.所以当n=3时,满足条件的数列T为3,2,1;1,3,2;1,2,3;2,1,3.故满足条件的T为4.(2)设满足条件的数列T的个数为b n,显然b1=1,b2=2,b3=3.不等式i+a i≤j+a j中取j=i+1,则有i+a i≤i+1+a i+1,即a i≤1+a i+1.①当a1=n,则a2=n﹣1,同理a3=n﹣2,…,a n=1.②当a i=n,(2≤i≤n),则a i+1=n﹣1,同理a i+2=n﹣2,…,a n=i.即a i=n以后的各项是唯一确定的.a i=n之前的满足条件的数列的个数为b i﹣1.所以:当n≥2时,b n=b n﹣1+b n﹣2+…+b1+1.(*).当n≥3时,b n﹣1=b n﹣2+b n﹣3+…+b1+1.代入(*)式得到b n=b n﹣1+b n﹣1=2b n﹣1,且满足b2=2b1.所以对任意n≥2的,都有b n=2b n﹣1,又b1=1,所以.综上所述,满足条件的数列T的个数为2n﹣1.。
2020年江苏省高考数学压轴试卷(6月份)一、填空题(本大题共14小题,共70.0分)1.已知集合,,则______.2.已知复数,则______.3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S为______.5.已知双曲线的离心率为,则该双曲线的渐近线方程是______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.7.已知点P在抛物线上运动,F为抛物线的焦点,点A的坐标为,则的最小值是______.8.已知,都是锐角,,,则的值等于______.9.在体积为9的斜三棱柱中,S是上的一点,的体积为2,则三棱锥的体积为______10.在等差数列中,,则数列的前11项和等于______ .11.如图,三棱锥中,已知平面ABC,是边长为2的正三角形,E为PC的中点.若直线AE与平面PBC所成角的正弦值为,则PA的长为______.12.如图,在四边形ABCD中,,点M,N分别是边AD,BC的中点,延长BA和CD交MN的延长线于不同的两点P,Q,则的值为______.13.已知函数,若有两个零点,,则的取值范围______.14.在中,记角A,B,C所对的边分别是a,b,c,面积为S,则的最大值为______.二、解答题(本大题共11小题,共142.0分)15.在中,角A,B,C所对的边分别为a,b,c,已知,,求a的值;若,求周长的取值范围.16.如图,在直三棱柱中,,D,E分别是AB,AC的中点.求证:平面;求证:平面平面.17.如图所示,为美化环境,拟在四边形ABCD空地上修建两条道路EA和ED,将四边形分成三个区域,种植不同品种的花草,其中点E在边BC的三等分处靠近B点,百米,,,百米,.求区域的面积;为便于花草种植,现拟过C点铺设一条水管CH至道路ED上,求当水管CH最短时的长.18.己知椭圆的左、右焦点分别为,,离心率为,P是椭圆C上的一个动点,且面积的最大值为.求椭圆C的方程;设斜率不为零的直线与椭圆C的另一个交点为Q,且PQ的垂直平分线交y轴于点,求直线PQ的斜率.19.数列的前n项和记为,且,数列是公比为q的等比数列,它的前n项和记为若,且存在不小于3的正整数k,m,使若,,求,证明:数列为等差数列;若,是否存在整数m,k,使,若存在,求出m,k的值;若不存在,说明理由.20.已知函数.当时,求函数的图象在处的切线方程;若对任意,不等式恒成立,求a的取值范围;若存在极大值和极小值,且极大值小于极小值,求a的取值范围.21.求椭圆C:在矩阵对应的变换作用下所得曲线的方程.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,以原点为极点,x轴非负半轴为极轴建立极坐标系.求曲线C的极坐标方程;在平面直角坐标系xOy中,,,M是曲线C上任意一点,求面积的最小值.23.已知x,y,z均为正数,且,求证:.24.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家库房中视为数量足够多的每件产品合格的概率为,从中任意取出3件进行检验,求至少有2件是合格品的概率;若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数的分布列,并求该商家拒收这批产品的概率.25.已知数列满足,,其中m为常数,.求m,的值;猜想数列的通项公式,并证明.-------- 答案与解析 --------1.答案:解析:【分析】利用交集定义直接求解.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:集合,,.故答案为:.2.答案:解析:解:复数,则,故答案为:.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.答案:8解析:解:高一年级有30名学生,在高一年级的学生中抽取了6名,每个个体被抽到的概率是高二年级有40名学生,要抽取人,故答案为:8首先根据高一年级的总人数和抽取的人数,求出每个个体被抽到的概率,根据在抽样过程中每个个体被抽到的概率相等,利用这个概率乘以高二的学生数,得到高二要抽取的人数.本题考查分层抽样,在分层抽样过程中每个个体被抽到的概率相等,是基础题.4.答案:205解析:解:模拟程序语言的运行过程,得:,满足条件,执行循环体,满足条件,执行循环体,满足条件,执行循环体,满足条件,执行循环体,此时,不满足条件,退出循环,输出S的值为205.故答案为:205.根据已知中的程序代码,可知本程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析各个变量的变化规律,可得答案.本题考查了程序语言的应用问题,解题时应模拟程序语言的运行过程,以便得出输出的结果,是基础题目.5.答案:解析:解:由已知可知离心率,,即,双曲线焦点在y轴,渐近线方程为,即.故答案为:.利用双曲线的离心率求出a,b关系,然后求解渐近线方程即可.本题考查双曲线的简单性质的应用,是基本知识的考查.6.答案:解析:【分析】由于学校有两个食堂,不妨令他们分别为食堂A、食堂B,则甲、乙、丙三名学生选择每一个食堂的概率均为,代入相互独立事件的概率乘法公式,即可求出他们同在食堂A用餐的概率,同理,可求出他们同在食堂B用餐的概率,然后结合互斥事件概率加法公式,即可得到答案.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的分几类还是分步的分几步,然后再利用加法原理和乘法原理进行求解.【解答】解:甲、乙、丙三名学生选择每一个食堂的概率均为,则他们同时选中A食堂的概率为:;他们同时选中B食堂的概率也为:;故们在同一个食堂用餐的概率故答案为:7.答案:7解析:【分析】本题考查抛物线的定义,考查抛物线的性质,属于基础题.过P作准线l,交l于D,求得抛物线的焦点坐标,根据抛物线的定义,可得:当A,P,D三点共线时,取最小值.【解答】解:抛物线的焦点,准线l:,过P作准线l,交l于D,由抛物线的定义:,当且仅当A,P,D三点共线时,取最小值,最小值为,故答案为7.8.答案:解析:【分析】此题考查了同角三角函数间的基本关系,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.由,都是锐角,得出的范围,由和的值,利用同角三角函数间的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的正弦函数公式化简,把各自的值代入即可求出值.【解答】解:,都是锐角,,又,,,,则.故答案为:9.答案:1解析:解:如图,设三棱柱的底面积为,高为h,则,,再设S到底面ABC的距离为,则,得,,则S到上底面的距离为.三棱锥的体积为.故答案为:1.由已知棱柱体积与棱锥体积可得S到下底面距离与棱柱高的关系,进一步得到S到上底面距离与棱锥高的关系,则答案可求.本题考查棱柱、棱锥体积的求法,考查空间想象能力与思维能力,是中档题.10.答案:132解析:解:等差数列中,,即,,,.故答案为:132.由已知条件,利用等差数列的通项公式推导出,由此利用等差数列的前n项和公式能求出.本题考查数列的前11项和的求法,是基础题,解题时要熟练掌握等差数列的通项公式和前n项和公式.11.答案:2或解析:解:以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,设,则0,,2,,0,,1,,1,,1,,,2,,设平面PBC的法向量y,,则,取,得a,,直线AE与平面PBC所成角的正弦值为,,解得或.的长为2或.故答案为:2或.以A为原点,在平面ABC内过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出PA的长.本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.12.答案:0解析:解:设,,,则,,,,,,,,,,,又,,故答案为:0.建立坐标系,设,,,求出和的坐标,即可得出结论.本题考查了平面向量的数量积运算,建立坐标系可使运算较简单.13.答案:解析:解:当时,,则,,当时,,则,,综上可知,,令,得,依题意,有两个根,,不妨设,当时,,当时,,令,则,,设,则,在上单调递减,,的取值范围为.故答案为:.分析可知,,则有两个根,,令,则,故,再构造函数,利用导数求其取值范围即可.本题考查函数零点与方程根的关系,考查利用导数研究函数的最值,考查转化思想及运算求解能力,属于较难题目.14.答案:解析:解:因为,当且仅当时取得等号,令,,故,因为,且,故可得点表示的平面区域是半圆弧上的点,如下图所示:目标函数,表示圆弧上一点到点点的斜率,数形结合可知,当且仅当目标函数过点,即时,取得最小值;故可得又,故可得,当且仅当,,也即三角形为等边三角形时,取得最大值.故答案为:.由已知可得,令,,可得,数形结合可知,又,可得,当且仅当,,也即三角形为等边三角形时,取得最大值.本题考查三角形中边角互化、面积以及利用基本不等式求最值时,代数式的变形技巧,本题的难点一是不会建立已知条件与目标式之间的关系;二是式子结构较复杂不会变形,三角函数与基本不等式交汇一直是高考考查的热点,也是难点,属于难题.15.答案:解:中,角A,B,C所对的边分别为a,b,c,,利用三角函数关系式的展开式整理得,,,利用正弦定理得,解得.由得,,所以,整理得.所以三角形的周长为,,由于,故,所以所以三角形的周长的范围为.解析:直接利用三家函数关系式的变换和正弦定理的应用求出结果.利用的结论和正弦定理及正弦型函数的性质的应用求出三角形的周长的范围.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力16.答案:证明:因为D,E分别是AB,AC的中点,所以,分又因为在三棱柱中,,所以分又平面,平面,所以平面分在直三棱柱中,底面ABC,又底面ABC,所以分又,,所以,分又,平面,且,所以平面分又平面,所以平面平面分解析:证明,即可证明平面;证明平面,即可证明平面平面.本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.17.答案:解:由题意得:,,,在中,,,解得百米分平方百米.分记,在中,,即,,,分当时,水管长最短,在中,百米分解析:由余弦定理求出百米,由此能求出区域的面积.记,在中,,求出,,当时,水管长最短,由此能求出当水管CH最短时的长.本题考查三角形面积的求法,考查线段长的最小值的求法,考查余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.答案:解:因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值,所以,所以,故椭圆C的方程为:设直线PQ的方程为,当时,代入,得:,设,,线段PQ的中点为,,,即因为,则,所以,化简得,解得或.解析:因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值,由此列方程组可解得a,b,c.设直线PQ的方程为,当时,代入,得:,得到PQ的中点N的坐标后利用,则,所以,可解得.本题考查了椭圆的性质,属中档题.19.答案:解:由,得,,,;由,得,两式相减,得,,,两式相减,得,数列为等差数列;由题意,得,,,,,,且,,又,且为奇数,时,是整数,此时,,.解析:本题考查了等差中项和等差数学的证明,考查了方程思想和运算能力,属难题.根据,和,取,可直接求出;由,得,利用作差法可得,从而证明数列为等差数列;根据,可得关于m,k的方程,再由m,k为整数,可最终得到m,k的值.20.答案:解:时,,,则,又,故函数在处的切线方程为,即;,故,且,,,当即时,在恒成立,故在递增,故时,,故满足条件;当时,即时,由,得,,当时,,则在递减,故当时,,这与时,恒成立矛盾,故不满足条件,综上,a的范围是;当时,区间恒成立,故在递增,故不存在极值,故不满足条件,当时,,故函数的定义域是,由,得,,列表如下:x00递增极大值递减极小值递增由于在递减,此时极大值大于极小值,不合题意,故不满足条件;当时,由,解得:,列表如下:x2递减极小值递增此时仅存在极小值,不合题意,故时满足题意,当时,函数的定义域是,且,,列表如下:x00递增极大值递减递减极小值递增故存在极大值和极小值,此时,,故,,,,故,即,故满足题意,综上,a的范围是解析:代入a的值,根据以及,求出切线方程即可;求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合函数恒成立确定a的范围即可;通过讨论a的范围,结合函数的单调性结合函数的极值确定a的范围即可.本题考查了函数的单调性,极值,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.答案:解:设是曲线上的任意一点,它是椭圆上的点在矩阵对应变换作用下的对应点,则:即:,所以代入椭圆,得到.解析:直接利用矩阵的变换的应用,伸缩变换的应用求出结果.本题考查的知识要点:矩阵的变换的应用,伸缩变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.22.答案:解:曲线C的参数方程为为参数,曲线C的直角坐标方程为,将,代入得曲线C的极坐标方程为:.设点到直线AB:的距离为d,则,当时,d有最小值,.所以面积的最小值.解析:本题考查曲线的极坐标方程的求法,考查三角形的面积的最小值的求法,考查极坐标方程、直角坐标方程、参数方程等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.曲线C的参数方程消去参数得到曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.设点到直线AB:的距离,求出d有最小值,由此能滶出面积的最小值.23.答案:证明:因为x,y,z均为正数,所以,,均为正数,由柯西不等式得,当且仅当时,等式成立.因为,所以,所以.解析:由x,y,z均为正数,运用柯西不等式和不等式的性质,即可得证;本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.24.答案:解:“从中任意取出3件进行检验,至少有2件是合格品”记为事件A,其中包含两个基本事件“恰有2件合格”和“3件都合格”,.该商家可能检验出不合格产品数,可能的取值为0,1,2,,,,的分布列为:012P因为只有件都合格时才接收这批产品,故商家拒收这批产品的对立事件为商家任取2件产品检验都合格,记“商家拒收”为事件B,则,商家拒收这批产品的概率为.解析:“从中任意取出3件进行检验,至少有2件是合格品”记为事件A,其中包含两个基本事件“恰有2件合格”和“3件都合格”,由此能求出至少有2件是合格品的概率.该商家可能检验出不合格产品数,可能的取值为0,1,2,分别求出相应的概率,由此能求出的分布列;只有2件都合格时才接收这批产品,从而商家拒收这批产品的对立事件为商家任取2件产品检验都合格,由此能求出商家拒收这批产品的概率.本题考查概率、离散型别随机变量的分布列的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中档题.25.答案:解:因为,所以,所以,此时;猜想:,用数学归纳法证明如下:当时,由可知结论成立,假设时结论成立,则有,则时,,由得:,又,于是,所以,故时结论也成立,由得,,解析:由,可求出,此时;猜想:,用数学归纳法证明即可.本题主要考查数列的递推式,以及数学归纳法,是中档题.。
江苏省2020年高考数学压轴卷(含解析)一、 填空题:本大题共14小题,每小题5分,共70分.1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =I ______ 2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三 棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC n 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC 所成角的正弦值为42,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -u u u v u u u v u u u v的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC V 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值; (2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,21EA =60AED ∠=o .(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆3. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列;(3)若2q =,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x y C +=在矩阵104102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C '的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,曲线C 的参数方程为3242x cos y sin θθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x 轴非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)在平面直角坐标系xOy 中,A (﹣2,0),B (0,﹣2),M 是曲线C 上任意一点,求△ABM 面积的最小值.C. (选修45:不等式选讲) 已知x ,y ,z 均为正数,且1113112x y y z ++≤+++,求证:4910x y z ++≥.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 0.7,从中任意取出 3件进行检验,求至少有2 件是合格品的概率;(2)若厂家发给商家20 件产品,其中有4不合格,按合同规定 商家从这20 件产品中任取2件,都进行检验,只有2 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222nn n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =. (1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}A B x x =<<I .故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;L L满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =.∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即y x =.故答案为:y =. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h ,所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:132 11.【答案】2或3【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥Q 平面ABC ,PA BC ∴⊥, ABC ∆Q 为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥, 则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅, 求得233PA AF mAH PF m ⋅==+,211422AE PC m ==+, AE ∵平面PBC 所成的角的正弦值为427, 223423sin 142mAH m AEH AE m +∴∠===+,解得2m =或3m =,即PA 的长为2或3,故答案为2或3. 12.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==u u u v u u u v u u u v u u u v ,所以1()2MN ME EN DC AB =+=+u u u u v u u u v u u u v u u u v u u u v . 由PQ uuu v 与MN u u u u r共线, 所以()PQ MN R λλ=∈u u u v u u u u v,故()()()()2PQ AB DC MN AB DC AB DC AB DC u u u v u u u v u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=u u uv u u u v . 答案:013.【答案】(e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2tx e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2tg t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减, 1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故答案为:(-∞.14.【解析】因为22Sa bc +2211222222bcsinAsinA b c b c bccosA bc cosA c b==⨯+-+++-142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >, 故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率, 数形结合可知,当且仅当目标函数过点132H ⎛ ⎝⎭,即60A =︒时,取得最小值3 故可得3[2y z x =∈-, 又22S a bc +142y x ≤-⨯-,故可得22S a bc +1334312≤-⨯-=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.故答案为:312. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =; (2)由正弦定理得sin 23sin a B b B A ==,sin 23sin a Cc C A==ABC ∆周长:23232332323sin()3a b c B C B B π++=++=++- 33323sin 36sin 26B B B π⎫⎛⎫=+=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈. 因此ABC ∆周长的取值范围是(]6,9.16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE ,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=I ,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1平方百米;(2)7百米. 【解析】(1)由题知1,120,BE ABC EA =∠==o在ABE V 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABE S AB BE ABE V =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE V 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin ,cos 77αα===,当CH DE ⊥时,水管CH 最短, 在Rt ECH V 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=- ⎪⎝⎭=7百米.18.【答案】(1)22143x y +=(2)12或32【解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △.所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k =,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。
2020年高考数学原创押题预测卷01(江苏卷)数学Ⅰ(考试时间:120分钟 试卷满分:160分)注意事项:1.本试卷均为非选择题(第1题~第20题,共20题).考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.) 1.已知集合{}062<--∈=x x Z x A ,{}1->=x x B ,则A B =I . 2.已知i R b a ,,∈是虚数单位,若i bibia =-+2,则ab 的值为 . 3.已知一组数据9,7,4,3,x 的平均数为5,则方差为 . 4.函数xy 15=的值域为 .5.执行如图所示的伪代码,输出的S 为 .6.双曲线12422=-y x 实轴的左端点为A ,虚轴的一个端点为B ,又焦点为F ,设点A 到直线BF 的距离为d ,则d 的值为 .7.将一个单位圆周六等分,得到6个不同的等分点,从任意取2个不同的等分点得到一条线段,则线段的长为3的概率为 .8.已知等比数列{}n a 的公比q 是正数,且352q a =,则当q a +1取得的最小时,q 值为 .9.现在有实心的正四棱柱铁器和实心的正四棱锥铁器各一个,已知它们的底面边长和高均相等,分别为n 和1.把它们在熔炉中熔化后重新铸造成一个底面半径为2,高为h 的实心圆锥体铁器(不计铸造过程中的损耗),则h 的值为 .10.已知点A,B 分别在以O 为圆心的两个同心圆上运动,且,2,1==OB OA 则-++的取值范围为 .11.若对任意正实数mab ab b Ina Inb a b a ≥+-+22)(,,恒成立,则实数m 的取值范围是 .12.已知函数),0(sin )(>=ωωx x f 若)4()4(),4()4(x f x f x f x f +=---=+-ππππ对任意的实数x 均恒成立,则ω的取值集合为 .13.已知x x ee xf 212)(-=的图象在点A 处的切线为)211(ln )(,1x x x xg l --=的图象在点B 处的切线为,2l 若21l l ⊥,则直线AB 的斜率为 . 14.在锐角三角形ABC 中,设A,B,C 的对边分别为cb a ,,成等差数列,则B accos 的取值范围为 .二、解答题(本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)在三角形ABC 中,A 为钝角,且角A 的值和函数x y tan =与)3tan(x y -=π图象的一个公共点的横坐标相同. (1)求角A 的大小;(2)若,141sin cos sin =-C B A 求B sin 的值; 16.(本小题满分14分)如图,在六面体1111D C B A ABCD -中,已知从顶点A 出发的三条棱两两垂直,且四边形BA B A 11为矩形.(1)求证:⊥1AA 平面ABCD . (2)若11//DD BB ,求证:.//11CC AA17.(本小题满分14分)如图,椭圆)0(1:2222>>=+b a by a x C 的左、右顶点分别为21,A A ,离心率为32,其两条准线之间的距离为9. (1)求椭圆C 的标准方程;(2)设P 是曲线C 上一点,⎥⎦⎤⎢⎣⎡∈=∠3,421ππαA PA ,过2A 作P A R A 12⊥,交P A 1的延长线于点R A R 2,与C 交于点Q ,求直线PQ 斜率的取值范围.18.(本小题满分16分)如图,现要在边长为100 m 的正方形ABCD 内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2m 的圆形草地,为了保证道路畅通,岛口宽不小于60 m ,绕岛行驶的路宽均不小于10 m .(1)求x 的取值范围;(运算中2取1.4)(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?19.(本小题满分16分)已知函数f(x)=e x ,g(x)=ax 2+bx +1(a 、b ∈R ).(1)若a≠0,则a 、b 满足什么条件时,曲线y =f(x)与y =g(x)在x =0处总有相同的切线?(2)当a=1时,求函数h(x)=g(x)f(x)的单调减区间;(3)当a=0时,若f(x)≥g(x)对任意的x∈R恒成立,求b的取值的集合.20.(本小题满分16分)设等差数列{a n}的前n项和为S n,已知a1=2,S6=22.(1)求S n;(2)若从{a n}中抽取一个公比为q的等比数列{ak n},其中k1=1,且k1<k2<…<k n<…,k n∈N*.①当q取最小值时,求{k n}的通项公式;②若关于n(n∈N*)的不等式6S n>k n+1有解,试求q的值.数学Ⅱ(附加题)(考试时间:30分钟试卷满分:40分)注意事项:1.本试卷均为非选择题(第21题~第23题).考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内...................作.答.,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤0 a b0满足:Mαi =λi αi ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,α2=⎣⎢⎡⎦⎥⎤11,求矩阵M .B .【选修4-4:坐标系与参数方程】(本小题满分10分)已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π].记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.C .【选修4-5:不等式选讲】(本小题满分10分)解不等式:|x -1|+2|x|≤4x .【必做题】请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A ,B ,C ,D ,E 五种商品有购买意向.已知该网民购买A ,B 两种商品的概率均为34,购买C ,D 两种商品的概率均为23,购买E 种商品的概率为12.假设该网民是否购买这五种商品中的任一种不受其他商品的影响.(1)求该网民至少购买4种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.23.(本小题满分10分)设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n(n ∈N *且n≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明.2020年高考数学原创押题预测卷01(江苏卷)数学·全解全析1.【答案】{}2,1,0【解析】以题意知,{}{}{}2,1,0,132062-=<<-∈=<--∈=x Z x x x Z x A ,又{}1->=x x B ,所以B A ⋂={}2,1,0.2.【答案】4 【解析】因为i bibia =-+2,所以ib bi a 2+=+所以2==b a 所以ab 的值为4. 3.【答案】534 【解析】由题意可知,5)9743(51=++++x 解得2=x ,所以这组数据的方差为.534])59()57()54()53()52[(5122222=-+-+-+-+-⨯ 4.【答案】),1()1,0(+∞⋃ 【解析】令,1xt =则0≠t ,结合函数t y 5=的图象,可知函数x y 15=的值域是),1()1,0(+∞⋃.5. 【答案】42【解析】第一次循环,;17,17==S I 第二次循环;31,14==S I 第三次循环,42,11==S I 退出循环,输出的S 为42.6.【答案】262+ 【解析】易知)0,6(),0,2(F A -,由对称性不妨令)2,0(B ,则直线BF 的方程为063=-+y x 所以点A 到直线BF 的距离.262262=--=d7.【答案】52 【解析】由题意可得,不同的2个等分点构成的线段共有15条,其中满足线段长为3的线段有6条,根据古典概型的概率计算公式得,所求的概率为.52156= 8.【答案】2【解析】因为352q a =,所以3412q q a =因为q 为证数,所以,22222,211=⋅≥+=+=q qq q q a q a 当切仅当2=q 时取等号. 9.【答案】1【解析】由已知得, 实心的正四棱柱铁器和实心的正四棱锥铁器的体积之和为341)(311)(22πππ=⨯⨯+⨯,重新铸造成底面半径为2,高为h 的实心圆锥体铁器的体积为,342312h h ππ=⨯⨯所以h ππ3434=,所以.1=h 10.【答案】[4,【解析】设向量,的夹角为θ,则[],,0πθ∈OA OB OA OB ++-u u u r u u u r u u u r u u u r+=+=θθcos 45cos 45-++=.令θθcos 45cos 45-++=y ,则[],20,16cos 162521022∈-+=θy 据此可得OA OB OA OB ++-u u u r u u u r u u u r u u u r的取值范围为[4,.11.【答案】(]2,∞-【解析】因为对任意正实数mab ab b Ina Inb a b a ≥+-+22)(,,恒成立,∴对任意正实数(想)恒成立,a ba b b a a b a b b a m ln )ln (ln 1⋅+=-+≤-∴对任意正实数b a ,恒成立, .)ln (1min a b a b b a m ⋅+≤-∴令,x a b =则min )ln 1(1,0x x x m x +≤->.设,ln 1)(x x x x +=ϕ则.1ln 1)(2++-='x x x x ϕ令)()(x x g ϕ'=则)(,012)(3x x x x g ϕ'∴>+='在),0(+∞上单调递增,又∴=++-=',011ln 11)1(2ϕ当)1,0(∈x 时,,0)(<'x ϕ当),1(+∞∈x 时,ϕϕ∴>',0)(x )(x 在(0,1)上单调递减,在),1(+∞上单调递增,.2,11,1)1()(min ≤∴≤-∴==∴m m x ϕϕ12.【答案】{}N n n ∈+=,24ωω【解析】因为)4()4(),4()4(x f x f x f x f +=---=+-ππππ对任意的实数x 均恒成立,所以)(x f 的图像关于直线4π-=x 和直线4π=x 对称,所以).(2)4(4*∈=--N k k πππ).(*∈=N k kT π 因为,2ωπ=T 所以),(2*∈=N k k ω所以12sin )4(==ππk f 或1-,所以k 为正奇数,设,,12N n n k ∈+=所以ω的取值集合为{}N n n ∈+=,24ωω.13.【答案】23-【解析】易知21,l l 的斜率均存在,设直线21,l l 的斜率分别为1221)(21)(,,21=⋅⋅≥+='--x x x x e e e e x f k k ,当且仅当0=x 时等号成立,则.11≥k 因为21l l ⊥,所以121-=⋅k k ,所以.012<≤-k ,ln )(x x x g -='令,ln )(x x x h -=则11)(-='xx h ,令0)(='x h ,得1=x ,分析易知)(x h 在1=x 处取得最大值1-,所以12-≤k .因为012<≤-k ,所以1,112=-=k k ,所以,1,0==B A x x 可得A(0,0),)23,1(-B ,所以.23-=AB k14.【答案】)1,259(【解析】设,t ac= 若,c b a ≤≤则⎩⎨⎧>++=≥,,2,1222c b a c a b t 得;351<≤t 若,c b a ≥≥则⎪⎩⎪⎨⎧>+>++=≤,,,2,1222a c b a c b c a b t 得.153≤<t综上,.3553<<t ,41)1(83823324)(2cos 22222222-+=-+=+-+=-+=t t ac ac c a ac c a c a ac b c a B 所以,8348341)1(83cos 2+-=⎥⎦⎤⎢⎣⎡-+=t t t tt B a c 因为二次函数834832+-=t t y 图象的对称轴方程为,31=t 所以二次函数834832+-=t t y 在)35,53(上单调递增,所以,1259<<y 即.1cos 259<<B ac 15.(本小题满分14分)【解析】(1)由已知得)3tan(tan A A -=π,因为A 为钝角,所以),6,32(3),,2(πππππ-∈-∈A A 所以)3(A A -+=ππ,所以.32π=A (7分) (2)因为,141sin cos sin ,32=-=C B A A π 所以,141)3sin(cos 23=--B B π 所以,141)sin 3cos cos 3(sin cos 23=--B B B ππ 所以,141sin 21=B所以.71sin 21=B (14分) 16.(本小题满分14分)【解析】(1)因为从顶点A 出发的三条棱两两垂直, 所以.,11AD AA AB AA ⊥⊥因为⊂AD AB ,平面ABCD,且,A AD AB =⋂ 所以⊥1AA 平面ABCD.(7分)(2)因为11//DD BB ,⊄1BB 平面⊂111,DD CDD C 平面11CDD C , 所以//1BB 平面11CDD C ,因为平面⋂CB C B 11平面11CDD C ⊂=11,BB C C 平面,11CB C B 所以11//CC BB因为四边形BA B A 11为矩形,所以,//11BB AA 所以.//11CC AA (14分) 17.(本小题满分14分)【解析】(1)由椭圆C 的离心率为32,两条准线之间的距离为9得 ⎪⎪⎩⎪⎪⎨⎧==,92,322ca a c 得⎩⎨⎧==,2,3c a 结合222c b a +=,得5=b ,所以椭圆C 的标准方程为.15922=+y x (5分)(2)设直线P A 1的斜率为k,则,k ⎡∈⎣直线P A 1的方程是),3(+=x k y由⎪⎩⎪⎨⎧+==+)3(,15922x k y y x 消去y 得,0)59(954)59(2222=-+++k x k x k设P ,Q 的坐标分别是),(),,(2211y x y x ,由求根公式得22195)95(3kk x +-=,则219530k k y +=, 由P A R A 12⊥,得直线R A 2的方程为),3(1--=x k y 同理可得⎪⎪⎩⎪⎪⎨⎧+=+-=22222593059)59(3k k y k k x 所以)1(14559)59(395)95(3593095302222222121kk k k k k k kk k x x y y k PQ-=+--+-+-+=--=因为k k k g 1)(-=在[]3,1上单调递增,所以,2135,0⎥⎦⎤⎢⎣⎡∈PQ k 即直线PQ 的斜率的取值范围为.2135,0⎥⎦⎤⎢⎣⎡(14分)18. (本小题满分16分)【解析】(1) 由题意,得⎩⎨⎧x≥9,100-2x≥60,1002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x≥9,x≤20,-20≤x≤15,即9≤x≤15.所以x 的取值范围是[9,15].(6分) (2) 记“环岛”的整体造价为y 元,则由题意得 y =a×π×⎝⎛⎭⎫15x 22+433ax×πx 2+12a 11×[104-π×⎝⎛⎭⎫15x 22-πx 2] =a 11[π⎝⎛⎭⎫-125x 4+43x 3-12x 2+12×104], 令f(x)=-125x 4+43x 3-12x 2,则f′(x)=-425x 3+4x 2-24x =-4x ⎝⎛⎭⎫125x 2-x +6. 由f′(x)=0,解得x =0(舍去)或x =10或x =15, 列表如下:]^所以当x=10,y取最小值.答:当x=10 m时,可使“环岛”的整体造价最低.(16分)19. (本小题满分16分)【解析】(1)因为f′(x)=e x,所以f′(0)=1.又f(0)=1,所以y=f(x)在x=0处的切线方程为y=x+1.因为g′(x)=2ax+b,所以g′(0)=b.又g(0)=1,所以y=g(x)在x=0处的切线方程为y=bx+1.所以当a≠0且b=1时,曲线y=f(x)与y=g(x)在x=0处总有相同的切线.(4分)(2)由a=1,h(x)=x2+bx+1e x,所以h′(x)=-x2+(2-b)x+b-1e x=-(x-1)[x-(1-b)]e x.由h′(x)=0,得x=1或x=1-b.所以当b>0时,函数y=h(x)的减区间为(-∞,1-b),(1,+∞);当b=0时,函数y=h(x)的减区间为(-∞,+∞);当b<0时,函数y=h(x)的减区间为(-∞,1),(1-b,+∞).(10分)(3)由a=0,则φ(x)=f(x)-g(x)=e x-bx-1,所以φ′(x)=e x-b.①当b≤0时,φ′(x)>0,函数φ(x)在R上单调递增.又φ(0)=0,所以x∈(-∞,0)时,φ(x)<0,与函数f(x)≥g(x)矛盾.②当b>0时,由φ′(x)>0,得x>lnb;由φ′(x)<0,得x<lnb,所以函数φ(x)在(-∞,lnb)上单调递减,在(lnb,+∞)上单调递增.当0<b<1时,所以lnb<0.又φ(0)=0,所以φ(lnb)<0,与函数f(x)≥g(x)矛盾;当b>1时,同理φ(lnb)<0,与函数f(x)≥g(x)矛盾;当b=1时,lnb=0,所以函数φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.所以φ(x)≥φ(0)=0,故b=1满足题意.综上所述,b 的取值的集合为{1}.(16分) 20. (本小题满分16分)【解析】(1) 设等差数列的公差为d ,则S 6=6a 1+15d =22,因为a 1=2,解得d =23.(2分) 所以S n =n (n +5)3.(2分) (2) ① 因为数列{a n }是正项递增等差数列,所以数列{ak n }的公比q>1.要使q 最小,只需要k 2最小即可.若k 2=2,则由a 2=83,得q =a 2a 1=43,此时ak 3=2·⎝⎛⎭⎫432=329.由329=23(n +2),解得n =103N *,所以k 2>2.同理k 2>3.若k 2=4,则由a 4=4,得q =2,此时ak n =2n .因为ak n =23(k n +2),所以23(k n +2)=2n ,即k n =3×2n -1-2. 所以对任何正整数n ,ak n 是数列{a n }的第3·2n -1-2项, 所以最小的公比q =2,所以k n =3·2n -1-2.(9分) ② 因为ak n =2k n +43=2q n -1,所以k n =3q n -1-2(q>1).所以当q>1且q ∈N 时,所有的k n =3q n -1-2均为正整数,适合题意;当q>2且q N 时,k n =3q n -1-2∈N 不全是正整数,不合题意,所以q 为正整数. 而6S n >k n +1有解,所以2n (n +5)+23q n>1有解. 经检验,当q =2,q =3,q =4时,n =1都是2n (n +5)+23q n >1的解,适合题意. 下证当q≥5时,2n (n +5)+23q n >1无解,设b n =2n (n +5)+23q n , 则b n +1-b n =2[(1-q )n 2+(7-5q )n +7-q]3q n +1. 因为5q -72-2q <0,所以f(n)=2[(1-q)n 2+(7-5q)n +7-q]在n ∈N *上单调递减.因为f (1)<0,所以f(n)<0恒成立,所以b n +1-b n <0,所以b n ≤b 1恒成立.因为当q≥5时,b 1<1,所以当q≥5时,6S n >k n +1无解.综上所述,q 的取值为2,3,4.(16分)21.A .【选修4-2:矩阵与变换】(本小题满分10分)【解析】由题意,λ1,λ2是方程f(λ)=⎪⎪⎪⎪⎪⎪λ -a -b λ=λ2-ab =0的两根.因为λ1=1,所以ab =1. ①因为Mα2=λ2α2,所以⎣⎡⎦⎤0 a b 0⎣⎡⎦⎤11=λ2⎣⎡⎦⎤11,从而⎩⎪⎨⎪⎧a =λ2,b =λ2. 所以λ22=ab =1.因为λ1≠λ2,所以λ2=-1.从而a =b =-1.故矩阵M =⎣⎢⎡⎦⎥⎤0 -1-1 0.21.B .【选修4-4:坐标系与参数方程】(本小题满分10分)【解析】设M(x ,y),则⎩⎪⎨⎪⎧x =sinθ+cosθ,y =sinθ-cosθ,两式平方相加得x 2+y 2=2.又x =2sin ⎝⎛⎭⎫θ+π4,y =2sin ⎝⎛⎭⎫θ-π4,θ∈[0,π],所以x ∈[]-1,2,y ∈[]-1,2.所以动点M 轨迹的普通方程为x 2+y 2=2(x ,y ∈[]-1,2).21.C .【选修4-5:不等式选讲】(本小题满分10分)【解析】原不等式等价于⎩⎪⎨⎪⎧x≤0,1-x -2x≤4x 或⎩⎪⎨⎪⎧0<x≤1,1-x +2x≤4x 或⎩⎪⎨⎪⎧x >1,x -1+2x≤4x. 解⎩⎪⎨⎪⎧x≤0,1-x +2x≤4x ,得x ∈∅; 解⎩⎪⎨⎪⎧0<x≤1,1-x +2x≤4x ,得13≤x≤1; 解⎩⎪⎨⎪⎧x >1,x -1+2x≤4x ,得x >1. 所以原不等式的解集为⎣⎡⎭⎫13,+∞.22.(本小题满分10分)【解析】(1) 记“该网民购买i 种商品”为事件A i ,i =4,5, 则P(A 5)=34×34×23×23×12=18,P(A 4)=34×34×23×23×⎝⎛⎭⎫1-12+C 1234×⎝⎛⎭⎫1-34×23×23×12+C 1223×⎝⎛⎭⎫1-23×34×34×12=13, 所以该网民至少购买4种商品的概率为P(A 5)+P(A 4)=18+13=1124. 答:该网民至少购买4种商品的概率为1124.(2) 随机变量η的可能取值为0,1,2,3,4,5,P(η=0)=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=1288,P(η=1)=C 1234×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12+C 1223×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-12+12×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23=11288,P(η=2)=34×34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12+23×23×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-12+C 12⎝⎛⎭⎫1-23×23×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×12+C 1234×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×12+C 1234×⎝⎛⎭⎫1-34×C 1223×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=47288,P(η=3)=1-P(η=0,1,2,4,5)=1-1288-11288-47288-13-18=97288, P(η=4)=P(A 4)=13,P(η=5)=P(A 5)=18. 所以,随机变量η的概率分布为故Eη=0×1288+1×11288+2×47288+3×97288+4×13+5×18=103.23.(本小题满分10分)【解析】(1)因为a n (n ∈N *且n≥3)均为正实数,左-右=12⎝⎛⎭⎫a 1a 3a 2+a 1a 2a 3-2a 1+12⎝⎛⎭⎫a 2a 3a 1+a 1a 2a 3-2a 2+12⎝⎛⎭⎫a 2a 3a 1+a 1a 3a 2-2a 3 ≥12⎝⎛⎭⎫2a 1a 3a 2×a 1a 2a 3-2a 1+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 2a 3-2a 2+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 3a 2-2a 3=0,所以,原不等式a 2a 3a 1+a 1a 3a 2+a 1a 2a 3≥a 1+a 2+a 3成立. (2)归纳的不等式为a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n≥3). 记F n =a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2-(a 1+a 2+…+a n ), 当n =3(n ∈N *)时,由(1)知,不等式成立; 假设当n =k(k ∈N *且k≥3)时,不等式成立,即F k =a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a 1+a k a 1a 2-(a 1+a 2+…+a k )≥0. 则当n =k +1时,F k +1=a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-(a 1+a 2+…+a k +a k +1) =F k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-a k -1a k a 1-a k a 1a 2-a k +1=F k +a k -1a k ⎝⎛⎭⎫1a k +1-1a 1+a k +1⎝⎛⎭⎫a k a 1-1+a 1a 2(a k +1-a k )≥0+a 2k⎝⎛⎭⎫1a k +1-1a 1+a k +1⎝⎛⎭⎫a k a 1-1+a 1a k (a k +1-a k )=(a k +1-a k )⎝⎛⎭⎫a k a 1+a 1a k -a k +1+a k a k +1,因为a k +1≥a k ,a k a 1+a 1a k ≥2,a k +1+a k a k +1≤a k +1+a k +1a k +1=2, 所以F k +1≥0,所以当n =k +1,不等式成立.综上所述,不等式a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n≥3)成立.。
绝密★启封前2020江苏省高考压轴卷数 学一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC所成角的正弦值为7,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值;(2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x yC+=在矩阵1412A⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C'的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为3242x cosy sinθθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.C. (选修45:不等式选讲)已知x,y,z均为正数,且1113112x y y z++≤+++,求证:4910x y z++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20件产品,其中有4不合格,按合同规定商家从这20件产品中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222n n n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =. (1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}AB x x =<<.故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y x = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =.∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即2y x =±.故答案为:y =. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h ,则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:13211.【答案】2【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥, ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥,则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC所成的角的正弦值为7,sin 7AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2212.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC ABDC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.答案:013.【答案】(),e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2tg t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减, 1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故答案为:(-∞.14.【解析】因为22S a bc +2211222222bcsinAsinA b c b c bccosA bc cosA c b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 226B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈.因此ABC ∆周长的取值范围是(]6,9. 16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1(2)7百米. 【解析】(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 4122ABESAB BE ABE =⋅⋅∠=⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin 7αα===, 当CH DE ⊥时,水管CH 最短,在Rt ECH 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=-⎪⎝⎭=7百米. 18.【答案】(1)22143x y +=(2)12或32【解析】 (1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k +==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+,化简得24830k k -+=,解得12k =或32k ,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。
由全国各地一线教师精心编制《 高考终极预测押题卷》对近十年全国各地高考试题的全方位精确分析,把握命题规律,找出命题趋势。
全网首发!百位名师呕血专研,只为高考最后一搏!江苏省高考数学预测押题试卷【考试时间:120分钟 分值:160分】参考公式:样本数据12,,,n x x x L 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑;一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1、集合{}3,6A =,{}3,9B =,则A B =U ▲ .2、若复数1(4),()z a a i a R =++-∈是实数,则a = ▲ .3、如果22sin 3α=,α为第一象限角,则sin()2πα+= ▲ . 4、已知正六棱锥ABCDEF P -的底面边长为1cm ,高为1cm ,则棱锥的体积 为 ▲ 3cm .5、高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应 为 ▲ .6、已知某一组数据8,9,10,11,12,则其方差为 ▲ .7、阅读下列程序框图,运行相应程序,则输出的S 值为 ▲ .8、若)(x f y =是定义在R 上周期为2的偶函数,当[]1,0∈x 时,12)(-=xx f ,则函数3()()log g x f x x =-的零点个数为 ▲ .9、若命题“R x ∃∈,使得2(1)10x a x +-+≤”为假命题,则实数a 的范围 ▲ . 10、在△ABC 中,AH 为BC 边上的高,tan C =43,则过点C ,以A ,H 为焦点的双曲线的离心率为 ▲ .11、设等比数列{}n a 的公比1q ≠,n S 表示数列{}n a 的前n 项的和,n T 表示数列{}n a 的前n 项的乘积,()n T k 表示{}n a 的前n 项中除去第k 项后剩余的1n -项的乘积,即()(),,n n kTT k n k N k n a *=∈≤,则当11a =,2q =,数列()()(){}12n n n n n S T T T T n +++L 的前n 项的和是 ▲ .12、已知)(),(x g x f 都是定义在R 上的函数,()0,()()()()g x f x g x f x g x ''≠>, ()(),x f x a g x =⋅(01a a >≠且),(1)(1)5,(1)(1)2f fg g -+=- 在有穷数列)10,,2,1}()()({Λ=n n g n f 中,任意取正整数k (110k ≤≤),则前k 项和不小于1615的概率是 ▲ . 13、设A ,B ,C 为单位圆O 上不同的三点,则点集{(,)|,A x y OC xOA yOB ==+u u u r u u u r u u u r开始 n=1,S=1S=S·cos126n π-⋅n ≥3输出S 结束n=n+1是否02,02}x y <<<<所对应的平面区域的面积为 ▲ .14、函数21()23ln 2f x x tx x =-+,2()3x tg x x +=+,函数()f x 在,x a x b ==处取得极值(0a b <<), ()g x 在[,]b a --上的最大值比最小值大13,若方程()f x m =有3个不同的解,则函数152m y e +=的值域为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15、(本小题满分14分)在ABC ∆中,c b a ,,分别是∠A 、∠B 、∠C 的对边, c b a ,,满足222b a c ac =+- (Ⅰ)求角B 的大小;(Ⅱ)在区间(0,)B 上任取θ,求2cos 12θ<<的概率; (Ⅲ)若AC =23,求ΔABC 面积的最大值.16、(本小题满分14分)直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(Ⅰ)求证:平面⊥C AB 1平面CB B 1; (Ⅱ)求三棱锥C AB A 11-的体积.17、(本小题满分14分)工厂生产某种零件,每天需要固定成本100元,每生产1件,还需再投入资金2元,若每天生产的零件能全部售出,每件的销售收入()P x (元)与当天生产的件数x (*x N ∈)A B C C 1A 1B 1之间有以下关系:()23183,01035201331,10x x P x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩ ,设当天利润为y 元.(Ⅰ)写出y 关于x 的函数关系式;(Ⅱ)要使当天利润最大,当天应生产多少零件?(注:利润等于销售收入减去总成本)18、(本小题满分16分)设等比数列{}n a 的首项为12a =,公比为(q q 为正整数),且满足33a 是18a 与5a 的等差中项;等差数列{}n b 满足2*32()0(,)2n n n t b n b t R n N -++=∈∈. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ) 若对任意*n N ∈,有111n n n n n n a b a a b a λ++++≥成立,求实数λ的取值范围; (Ⅲ)对每个正整数k ,在k a 和1k a +之间插入k b 个2,得到一个新数列{}n c .设n T 是数列{}n c 的前n 项和,试求满足12m m T c +=的所有正整数m .19、(本小题满分16分)已知椭圆2222:1(0)x y C a b a b +=>>过点3(3,)2,椭圆C 左右焦点分别为21,F F ,上顶点为E ,21F EF ∆为等边三角形.定义椭圆C 上的点00(,)M x y 的“伴随点”为00(,)x y N a b.(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆1C 的方程为2(2)x a ++2y =2a ,圆1C 和x 轴相交于A ,B 两点,点P 为圆1C 上不同于A ,B 的任意一点,直线PA ,PB 交y 轴于S ,T 两点.当点P 变化时,以ST 为直径的圆2C 是否经过圆1C 内一定点?请证明你的结论;(Ⅲ)直线l 交椭圆C 于H 、J 两点,若点H 、J 的“伴随点”分别是L 、Q ,且以LQ 为直径的圆经过坐标原点O .椭圆C 的右顶点为D ,试探究ΔOHJ 的面积与ΔODE 的面积的大小关系,并证明.20、(本小题满分16分)已知函数2()ln(1),()f x ax x a R =++∈. (Ⅰ)设函数(1)y f x =-定义域为D ①求定义域D ;②若函数41()[()ln(1)]()h x x f x x x x=+-++2(0)cx f '++在D 上有零点,求22a c +的最小值; (Ⅱ) 当12a =时,2()(1)(1)(1)2g x f x bf x ab x a '=-+---+,若对任意的],1[e x ∈,都有2()2g x e e≤≤恒成立,求实数b 的取值范围;(注:e 为自然对数的底数) (Ⅲ)当[0,)x ∈+∞时,函数()y f x =图象上的点都在0,0x y x ≥⎧⎨-≤⎩所表示的平面区域内,求实数a 的取值范围.2013届高三年级第三次模拟考试数学试题(附加题)( 满分40分,考试时间30分钟)21、[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答......................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A 、[选修4 - 1:几何证明选讲](本小题满分10分)如图,AD 是⊙O 的直径,AB 是⊙O 的切线,M, N 是圆上两点,直线MN 交AD 的延长线于点C ,交⊙O 的切线于B ,BM =MN =NC =1,求AB 的长和⊙O 的半径.B 、[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵213122A -⎡⎤⎢⎥=⎢⎥-⎣⎦(Ⅰ)求矩阵A 的逆矩阵B ;(Ⅱ)若直线经过矩阵B 变换后的直线方程为730x y -=,求直线的方程.C 、[选修4 - 4:坐标系与参数方程](本小题满分10分)已知圆C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线的参数方程为11,525x t y a t ⎧⎪⎪⎨⎪⎪⎩=+=+(为参数).若直线与圆C相交于P ,Q 两点,且455PQ =. (Ⅰ)求圆C 的直角坐标方程,并求出圆心坐标和半径; (Ⅱ)求实数a 的值.D 、[选修4 - 5:不等式选讲](本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++(Ⅰ)已知常数2a <,解关于x 的不等式()20f x a +->;(Ⅱ)若函数()f x 的图象恒在函数()g x 图象的上方,求实数m 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22、(本小题满分10分)已知12310,,,,A A A A L 等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为12. (Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;(Ⅱ)假设该同学参加每所高校考试所需的费用均为a 元,该同学决定按12310,,,,A A A A L 顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用ξ的分布列及数学期望.23、(本小题满分10分)已知,m n 为正整数.(Ⅰ)用数学归纳法证明:当1x >-时,(1)1m x mx +≥+;(Ⅱ)对于6n ≥,已知11(1)32n n -<+,求证:1(1)()32n m m n -<+, (1,2,,)m n =L ;(Ⅲ)求出满足等式345(2)(3)n n n n nn n +++++=+L 的所有正整数n .2013届高三年级第三次模拟考试参考答案1、{}3,6,92、43、13 4、32 5、20 6、2 7、38-8、2 9、(1,3)- 10、2 11、21n- 12、710 13、25 14、4(27,)e15、解:(Ⅰ)由222b a c ac =+-得3B π= -------------------4分;(Ⅱ) 由2cos 12θ<<,得(0,)4πθ∈,--------------6分 所以2cos 12θ<<的概率为34-------------8分(Ⅲ)由23b =,22212b a c ac ac ==+-≥.3334ABC S ac ∆=≤,ΔABC 面积的最大值为33.--------------14分 16、(Ⅰ)略;--------------8分 (Ⅱ)三棱锥C AB A 11-的体积为16.--------------14分 17、解:(1) 当0<x ≤10时,y =x (83-13x 2)-100-2x =-13x 3+81x -100;当x >10时,y =x (520x -1 331x 3)-2x -100=-2x -1 331x2+420.∴ y =⎩⎪⎨⎪⎧-13x 3+81x -100,0<x ≤100,x ∈N ,-2x -1 331x2+420,x >10,x ∈N . ------- (6分)(2) 设函数y =h (x )=⎩⎪⎨⎪⎧-13x 3+81x -100,0<x ≤100,x ∈N ,-2x -1 331x2+420,x >10,x ∈N .① 当0<x ≤10时,y ′=81-x 2,令y ′=0,得x =9 ------- .(9分)当x ∈(0,9)时,y ′>0;当x ∈(9,10)时,y ′<0. ∴ 当x =9时,y max =386;(10分)② 当x >10时,y ′=--2×1 331t3-2,令y ′=0,得x =11. ------- (12分) 当x ∈(10,11)时,y ′>0;当x ∈(11,+∞)时,y ′<0. ∴ 当x=11时,y max =387.(14分)∵ x ∈N *,∴ 综合①②知:当x =11时,y 取最大值.故要使当天利润最大,当天应生产11件零件.------- (14分)18、解: (1)由题意31568a a a =+,则2468q q =+,解得24q =或22q =因为q 为正整数,所以2q =, 又12a =,所以*2()n n a n N =∈------3分2n b n =。
江苏省2020年高考数学压轴卷(含解析)注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:球体的体积公式:V=334Rπ,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U=,,,,,集合134{}}35{A B=,,,=,,则UA B⋂()ð═.2.已知i是虚数单位,若12i a i a R+∈(﹣)()=,,则a=.3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽人.4.如图是一个算法的流程图,则输出y的取值范围是.5.已知函数22353log(1)3x xf xx x-⎧-<⎨-+≥⎩()=,若f(m)=﹣6,则f(m﹣61)=.6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 .10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u ru u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x(f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分.解析应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点.(1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22(Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM 面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡...指定区域内.....作答.解析应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,已知AB为半圆O的直径,点C为半圆上一点,过点C作半圆的切线CD,过点B作BD CD⊥于点D. 求证:2BC BA BD=⋅.B.选修4—2:矩阵与变换已知矩阵=a bMc d⎡⎤⎢⎥⎣⎦,10=12N⎡⎤⎢⎥⎢⎥⎣⎦,且()11402MN-⎡⎤⎢⎥=⎢⎥⎣⎦,求矩阵M.C.选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为2{2x ty t==--(t为参数).在极坐标系中(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合),圆C的方程为42cos4πρθ⎛⎫=+⎪⎝⎭,求直线l被圆C截得的弦长.D.选修4—5:不等式选讲已知正实数x y z、、,满足3x y z xyz++=,求xy yz xz++的最小值.注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题)。
2020年江苏省高考压轴卷一、 填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______.8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC—A 1B 1C 1中,S 是C 1C 上的一点,S—ABC 的体积为2,则三棱锥S—A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________.11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______. 14.在ABC 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin26cos sin b A A B =.(1)求a 的值; (2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE 平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=,EA =60AED ∠=.(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P是椭圆C 上的一个动点,且12PF F ∆. (1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =.(1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列; (3)若2q,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围;(3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.——★ 参 考 答 案 ★——1.『答案』{|12}x x <<『解析』因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}AB x x =<<.故『答案』为:{|12}x x <<2.『解析』12z i i =+-==3.『答案』8『解析』设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故『答案』为:8 4.『答案』205『解析』模拟程序语言,运行过程,可得1I =, 满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故『答案』为205.5.『答案』y x = 『解析』由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =. ∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即y x =.故『答案』为:y x =. 6.『答案』14『解析』由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.『答案』7『解析』PA PF +55272A L Pd -≥=+=+= 8.『答案』1665『解析』∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故『答案』为1665. 9.『答案』1『解析』设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=,所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故『答案』为1. 10.『答案』132『解析』由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故『答案』为:13211.『答案』2『解析』设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥平面ABC ,PA BC ∴⊥,ABC ∆为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥, 则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅,求得PA AF AH PF ⋅==,12AE PC == AE ∵平面PBC,sin AH AEH AE ∴∠===,解得2m =或m =,即PA 的长为2『答案』为2. 12.『答案』0『解析』如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==, 所以1()2MN ME EN DC AB =+=+.由PQ 与MN 共线, 所以()PQ MN R λλ=∈,故()()()()2PQ AB DC MN AB DC AB DC AB DC λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=.『答案』013.『答案』(-∞『解析』当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,2t x e =,112x t -=,122x t =-,12(22)t x x e t ∴=-,12t >, 设()(22)tg t e t =-,12t >, 所以()2t g t te '=-, 1,()02t g t '⎛⎫∈+∞< ⎪⎝⎭,,函数()g t 单调递减,1()2g t g ⎛⎫∴<=⎪⎝⎭()g x ∴的值域为(-∞, 12x x ∴取值范围为(-∞,故『答案』为:(-∞.14.『答案』『解析』因为22Sa bc +2211222222bcsinAsinA b c b c bccosA bc cosAc b==⨯+-+++- 142sinA cosA ≤-⨯-(当且仅当b c =时取得等号)令,sinA y cosA x ==, 故22S a bc +142y x ≤-⨯-,因为221x y +=,且0y >, 故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[2y z x =∈-,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14≤-⨯=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.故『答案』为:12. 15.『答案』(1)3;(2)(]6,9. 『解析』(1)由sin26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 26B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈. 因此ABC ∆周长的取值范围是(]6,9.16.『答案』(Ⅰ)详见『解析』(Ⅱ)详见『解析』『解析』证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分又1,CC AC ⊂平面11ACC A ,且1CC AC C=,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.『答案』(1(2)7百米. 『解析』(1)由题知1,120,BE ABC EA =∠==在ABE 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 41222ABESAB BE ABE =⋅⋅∠=⨯⨯⨯=.(2)记AEB α∠=,在ABE 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin αα===, 当CHDE ⊥时,水管CH 最短,在Rt ECH中,2π2π2πsin2sin2sin cos2cos sin333CH CE HECααα⎛⎫=∠=-=-⎪⎝⎭= .18.『答案』(1)22143x y+=(2)12或32『解析』(1)因为椭圆离心率为12,当P为C的短轴顶点时,12PF F△.所以22212122caa b cc b⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21abc=⎧⎪=⎨⎪=⎩C的方程为:22143x y+=.(2)设直线PQ的方程为()1y k x=-,当0k≠时,()1y k x=-代入22143x y+=,得:()22223484120k x k x k+-+-=.设()()1122,,,P x y Q x y,线段PQ的中点为()00,N x y,212024234x x kxk+==+,()1200231234y y ky k xk+-==-=+即22243,3434k kNk k⎛⎫-⎪++⎝⎭因为TN PQ⊥,则1TN PQk k⋅=-,所以222314381443kk kkk--+⋅=-+,化简得24830k k-+=,解得12k=或32k,即直线PQ的斜率为12或32.19.『答案』(1)23a=(2)见『解析』(3)存在8,340m k==满足题意。
2020年江苏省高考押题卷数 学I 2020.6一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合M = {-1,0,1,2 },集合2{|20}N x x x =+-=,则集合M ∩N = ▲ .2. 已知复数22i 1iz =++(i 为虚数单位),则z 的共轭复数z =▲ .3. 为了解学生课外阅读的情况,随机统计了n 名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50 100),中的频数为24,则n 的值为 ▲ . 4. 如图,执行算法流程图,则输出的b 的值为 ▲ .5. 已知A 、B 、C 三人在三天节日中值班,每人值班一天,那么A 排在C 后一天值班的概率为 ▲ .6. 底面边长和高都为2的正四棱锥的表面积为 ▲ .7. 在平面直角坐标系xOy 中,已知双曲线经过点(36)-,,且它的两条渐近线方程是3y x =±,则该双曲线标准方程为 ▲ . 8.已知25sin cos αα+=,则sin2cos4αα+的值为 ▲ . 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页包含填空题(第1~14题)、解答题(第15~20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠(第4题)9. 设S n 为等差数列{a n }的前n 项和,若3521a a -=,10100S =,则20S 的值为 ▲ . 10. 埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如2115315=+可以这样理解:假定有两个面包,要平均分给5个人,如果每人 12,不够;每人13,余13,再将这13分成5份,每人得115,这样每人分得11315+.形如2n (n = 5,7,9,11,…)的分数的分解:2115315=+,2117428=+,2119545=+,按此规律,2n= ▲ (n = 5,7,9,11,…) . 11. 在平面直角坐标系xOy 中,已知圆22:(2)4C x y -+=,点P 是圆C 外的一个动点,直线P A ,PB 分别切圆C 于A ,B 两点.若直线AB 过定点(1,1),则线段PO 长的最小值为 ▲ . 12. 已知正实数x ,y 满足21()1,x x y y -=则1x y+的最小值为 ▲ . 13.如图,在平行四边形ABCD 中,AB =2AD ,E , F 分别为AD ,DC 的中点,AF 与BE 交于点O .若125OF OB AD AB u u u r u u u r u u u r u u u r⋅=⋅,则∠DAB 的余弦值为 ▲ . 14. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且431tan tan A B +=,则3c b的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(b ,a - 2c ), n =(cos A - 2cos C ,cos B ),且m ⊥n . (1)求sin sin C A的值;(2)若a =2,35=m ,求△ABC 的面积.AB CD FEO16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,12AC AA =,AC BC ⊥,D ,E 分别为A 1C 1,AB 的中点.求证:(1)AD ⊥平面BCD ;(2)A 1E ∥平面BCD .17.(本小题满分14分)如图,某大型厂区有三个值班室A ,B ,C .值班室A 在值班室B 的正北方向3千米处,值班室C 在值班室B 的正东方向4千米处.(1)保安甲沿CA 从值班室C 出发行至点P 处,此时PC =2,求PB 的距离;(2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)y x a b a b+=>>过点()61,,离心率为2.A ,B 是椭圆上两点,且直线OA 与OB 的斜率之积为12. (1)求椭圆C 的方程; (2)求直线AB 的斜率; (3)设直线AB 交圆O :222x y a +=于C ,D 两点,且6AB CD =,求△COD 的面积.(第17题)19.(本小题满分16分)已知数列*{}()n a n ∈N 的前n 项和为S n ,()2n n nS a λ=+(λ为常数)对于任意的*n ∈N 恒成立.(1)若11a =,求λ的值; (2)证明:数列{}n a 是等差数列;(3)若22a =,关于m 的不等式|2|1m S m m -<+有且仅有两个不同的整数解,求λ的取值范围.20.(本小题满分16分)已知函数ln ()(1xf x a ax =∈+R ,且a 为常数). (1)若函数y =f (x )的图象在x =e 处的切线的斜率为21e(1e)-(e 为自然对数的底数),求a的值;(2)若函数y = f (x )在区间(1,2)上单调递增,求a 的取值范围; (3)已知x ,y ∈(1,2), 且x +y =3,求证:(23)ln (23)ln 11x x y yx y --+--≤0.2020年江苏省高考押题卷数 学II(附加题)21.【选做题】本题包括A ,B ,C 三小题,每小题10分. 请选定其中两.....小.题.,并在相应....的.答题区域....内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4—2:矩阵与变换](本小题满分10分)曲线221x y +=在矩阵0(0,0)0a A a b b ⎡⎤=>>⎢⎥⎣⎦对应的变换下得到曲线221.9x y += (1)求矩阵A ;(2)求矩阵A 的特征向量.B. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩,(α为参数).以原点O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为(sin cos )2ρθθ+=,直线l 与曲线C 相交于A ,B 两点,求线段AB 的值.C . [选修4-5:不等式选讲] (本小题满分10分)已知a ,b ,c 为正实数,满足a +b +c =3,求149a b c++的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)五个自然数1、2、3、4、5按照一定的顺序排成一列. (1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻..,称这两个数为一组“友好数”.随机变量X 表示上述五个自然数组成的一个排列中“友好数”的组数,求X 的概率分布和数学期望E (X ).23.(本小题满分10分)已知*2,,n n N ≥∈数列T 12:,,,n a a a L 中的每一项均在集合M ={1,2,…,n }中,且任意两项不相等,又对于任意的整数i ,j (1≤i <j ≤n ),均有.i j i a j a +≤+记所有满足条件的数列T 的个数为b n .例如n =2时,满足条件的数列T 为1,2或2,1,所以b 2=2.(1)求b 3; (2)求b n .。
2020高考数学原创押题卷数学参考公式:πR3,其中R为球的半径.球的体积V球=43一、填空题:本大题共14小题. 请把答案填写在答题卡相应位置上.1. 已知集合A={-2,-1,0,1,2},B={x|x<0,x∈R},则A∩B=________.2. 已知复数z的实部为0,且满足(1+i)z=a-4i,其中i为虚数单位,则实数a的值是________.3. 下图是根据某学校1000位学生的身高(单位:厘米)制成的频率分布直方图,则所调查的学生中身高在[165,185)内的学生人数是________.4. 一个算法的伪代码如图所示,执行此算法,最后输出的I的值是________.+ln(2-x)的定义域是________.5. 函数y=√1−1x6. 在区间(0,6)中任取一个数x,则能使2,3,x是某个三角形三边长的概率是________.7. 在平面直角坐标系xOy中,曲线y=(x3+ax)e x在点(0,0)处的切线方程为3x-y=0(e 是自然对数的底数),则实数a的值是________.8. 在正方体内有一个球,该球与正方体的六个面均相切. 记正方体的体积为V1,球O体积为V2,则V1的值是________.V29. 设三个等差数列{a n },{b n },{c n }的前n 项和分别为S n ,T n ,U n . 已知a 2+b 2+c 2=-98,a 7+b 7+c 7=-88,则S 101+T 101+U 101的值是________. 10. 已知函数f (x )=x 2+2x ,g (x )={x +2,x ≥−1,−x ,x <−1.则不等式f (x )≤3g (x )的解集是________. 11. 已知e ⃗是单位向量,向量a ⃗满足a ⃗·e ⃗=4,且|a ⃗|2≤10|a ⃗+te ⃗|对任意实数t 恒成立,则|a ⃗|的取值范围是________.12. 在平面直角坐标系xOy 中,椭圆x 2a 2+y 29=1(a >3)与为双曲线x 2m 2−y 24=1有公共焦点F 1,F 2. 设P 是椭圆与双曲线的一个交点,则△PF 1F 2的面积是________.13. 已知sin (2α+β)=3sin (2α-β),tan (α-β)=3√3,则tan α的值是________. 14. 已知二次函数f (x )=x 2+bx+c ,当x ∈[α,β]时,|f (x )|≤1,则β-α的最大值是________. 二、解答题:本大题共6小题. 请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤.15. 在平面直角坐标系中,设向量p ⃗=(cosA ,sinA ),q ⃗=(sinB ,cosB ). 其中A ,B 分别是△ABC 的两个内角. (1)若p ⃗//q ⃗,求C 的值; (2)若p ⃗·q ⃗=sin2C ,AB=2,求△ABC 的面积的最大值.16. 如图,在三棱锥P-ABC 中,PA ⊥平面ABC ,AB=BC ,AF=2FP ,D 为AC 的中点,E 为BC 中点. 求证: (1)BD ⊥PC ; (2)PE//平面FBD.17. 为防止新冠肺炎病毒的传播,净化空气,确保医务人员的安全,某医院决定喷洒一种消毒剂,每天2次. 根据实验知,每喷洒该消毒剂1个单位,空气中释放出有效杀毒成份浓度y (毫克/立方米)随时间x (小时)的变化近似为y={√x +4−1,0<x ≤12,6−x4,12<x ≤24.当空气中的有效杀毒浓度不少于4(毫克/立方米)时,才能起到杀死新冠肺炎病毒的作用. 若第一次喷洒时间为6:00,且喷洒4个单位的消毒剂. (1)问第一次喷洒后多少小时内有效杀毒?(2)若第二次喷洒时间为当日22:00,则第二次至少喷洒多少个单位的消毒剂,使一天内(6:00到次日6:00)都能有效杀毒.18. 如图在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1,C 2:x 24a 2+y 24b 2=1(a >b >0),椭圆C 2的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆C 1的切线ι1,ι2,切点为C ,D.(1)若a=2,b=1,求直线ι1的方程;(2)若直线ι1与ι2的斜率之积为−916,求椭圆C 1的离心率.19. 已知函数f (x )=lnx x,g (x )=k (x -1)(k >0).(1)求f (x )的单调区间; (2)证明:f (1k)≤g (1k);(3)若关于x 的方程f (x )=g (x )有唯一解,求k 的值.20. 数列{a n }满足:a 1=1,a 2=2,a n+1a n -1=a n 2+(-1)n (n=1,2,3,…). (1)当n ≥3时,求a n −a n−2a n−1的值;(2)设b n =a n+1-(√2+1)a n ,c n =a n+12+a n 2-a 2n+1,证明: ①数列{bn}是等比数列; ②数列{c n }是等差数列.数学II (附加题)21. 【选做题】本题包括A ,B ,C 三小题. 请选定其中两小题,并在相应的答题区域内作答. 若多做,则按作答的前两小题评分. 解答时应写出文字说明、证明过程或演算步骤. A. [选修4—2:矩阵与变换] 已知矩阵A=[4321].(1)求A 的逆矩阵A -1; (2)求矩阵A 的特征值.B. [选修4—4:坐标系与参数方程]在极坐标系中,已知点A (2,π6),B (1,π3),C (2,π3). (1)求直线BC 的极坐标方程; (2)求△ABC 的面积.C. [选修4—5:不等式选讲]已知a ,b ,c 是非负实数,满足a+b+c=1.求(a+2b+3c )(a+b 2+c3)的最小值.【必做题】第22题、第23题. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22. 如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=4,AB=2,E ,F 分别是BC ,BB 1的中点. (1)求直线AF 与平面C 1DE 所成角的正弦值; (2)求二面角A -A 1F -D 的余弦值.23. 设a 1,a 2,…,a n 的值分别独立地从集合{1,2,…,n}中随机选取,记由a 1,a 2,…,a n 组成的数集的元素个数为X. (1)当n=3时,求X=2的概率; (2)求X 的数学期望EX.1、只要朝着一个方向努力,一切都会变得得心应手。
江苏省高考压轴卷数 学一、 填空题:本大题共14小题,每小题5分,共70分.1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =I ______ 2.已知复数(1)(2),z i i =+-则|z |= .3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为______.4.根据如图所示的伪代码,可知输出的结果S 为____.5.在平面直角坐标亲xOy 中,若双曲线22221x y a b-=(0a >,0b >)的离心率为32,则该双曲线的渐近线方程为______.6.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为__________.7.已知点P 在抛物线28y x =上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则PA PF +的最小值是______. 8.已知,αβ都是锐角,45sin ,cos()513ααβ=+=,则sin β=_____ 9.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三 棱锥S —A 1B 1C 1的体积为___.10.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =____________. 11.三棱锥P ABC -中,已知PA ⊥平面ABC ,ABC n 是边长为2的正三角形,E 为PC 的中点,若直线AE 与平面PBC 所成角的正弦值为427,则PA 的长为_____. 12.如图,在四边形ABCD 中,1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则·()PQ AB DC -u u u v u u u v u u u v的值为_________.13.已知函数()ln ,11,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()()()1F x f f x m =++有两个零点12,x x ,则12x x 的取值范围______.14.在ABC V 中,记角A ,B ,C 所对的边分别是a ,b ,c ,面积为S ,则22Sa bc+的最大值为______.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2A π≠,sin 26cos sin b A A B =.(1)求a 的值;(2)若3A π=,求ABC ∆周长的取值范围.16.如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE;(2)求证:平面1A DE ⊥平面11ACC A .17.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,21EA =百米,60AED ∠=o .(1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.18.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,点P 是椭圆C上的一个动点,且12PF F ∆3(1)求椭圆C 的方程;(2)设斜率不为零的直线2PF 与椭圆C 的另一个交点为Q ,且PQ 的垂直平分线交y 轴于点1(0,)8T ,求直线PQ 的斜率.19.已知数列{}n a 的前n 项和记为n A ,且()12n n n a a A +=,数列{}n b 是公比为q 的等比数列,它的前n 项和记为n B .若110a b =≠,且存在不小于3的正整数k ,m ,使得k m a b =. (1)若11a =,35a =,求2a 的值; (2)求证:数列{}n a 是等差数列;(3)若2q =,是否存在整数m ,k ,使得86k m A B =,若存在,求出m ,k 的值;若不存在,请说明理由.20.已知()22ln 12x f x x x a-=--+,0a >.(1)当2a =时,求函数()f x 图象在1x =处的切线方程;(2)若对任意[)1,x ∈+∞,不等式()0f x ≥恒成立,求a 的取值范围; (3)若()f x 存在极大值和极小值,且极大值小于极小值,求a 的取值范围.数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)求椭圆22:1164x yC+=在矩阵1412A⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦对应的变换作用下所得曲线C'的方程.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy中,曲线C的参数方程为3242x cosy sinθθ=+⎧⎨=+⎩,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.C. (选修45:不等式选讲)已知x,y,z均为正数,且1113112x y y z++≤+++,求证:4910x y z++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为0.7,从中任意取出3件进行检验,求至少有2件是合格品的概率;(2)若厂家发给商家20 件产品,其中有4不合格,按合同规定 商家从这20 件产品中任取2件,都进行检验,只有2 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.23.已知数列{}n a 满足123*12323,N 2222nn n n n nn n C C C C a m n ++++=++++⋯+∈,其中m 为常数,24a =.(1)求1, m a 的值(2)猜想数列{}n a 的通项公式,并证明.参考答案及解析1.【答案】{|12}x x << 【解析】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}A B x x =<<I . 故答案为:{|12}x x <<2.【解析】12z i i =+-==3.【答案】8【解析】设样本容量为N ,则306,14,70N N ⨯== 高二所抽人数为4014870⨯=. 故答案为:8 4.【答案】205【解析】模拟程序语言,运行过程,可得1I =,满足条件100I <,执行循环体3,9I S ==; 满足条件100I <,执行循环体5,13I S ==;满足条件100I <,执行循环体99,201I S ==;满足条件100I <,执行循环体101,21013205I S ==⨯+=, 此时,不满足条件100I <,退出循环,输出S 的值为205, 故答案为205.5.【答案】y x = 【解析】由已知可知离心率32c e a ==,2222294c a b a a +==,即2254b a =. ∵双曲线22221x y a b-=的焦点在x 轴上∴该双曲线的渐近线方程为b y x a =±,即y x =.故答案为:2y x =±. 6.【答案】14【解析】由题意,三名学生各自随机选择两个食堂中的一个用餐的情况共有2228⨯⨯=(种),其中他们在同一个食堂用餐的情况有2种,根据古典概型概率的计算公式得,所求概率为2184=. 7.【答案】7【解析】PA PF +55272A L Pd -≥=+=+= 8.【答案】1665【解析】∵,αβ都是锐角,∴(0,)αβπ+∈, 又45sin ,cos()513ααβ=+=, ∴3cos 5α=,12sin()13αβ+=, ∴sin sin[()]sin()cos cos()sin βαβααβααβα=+-=+-+123541613513565=⨯-⨯=. 故答案为1665. 9.【答案】1【解析】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 10.【答案】132【解析】 由a 912=a 12+6,得2a 9﹣a 12=12, 即2a 1+16d ﹣a 1﹣11d =12,∴a 1+5d =12,a 6=12. 则S 11=11a 6=11×12=132. 故答案为:13211.【答案】2【解析】设F 是BC 的中点,连接sin cos 210k k ρθρθ-+-=,PA ⊥Q 平面ABC ,PA BC ∴⊥, ABC ∆Q 为正三角形,BC AF ∴⊥,BC ∴⊥平面PAF ,在平面PAF 内作AH PF ⊥, 则BC AH ⊥,AH ∴⊥平面PBC ,连接EH ,则AEH ∠是AE 与平面PBC 所成的角, 设PA m =,在直角三角形PAF 中,AH PF PA AF ⋅=⋅, 求得233PA AF mAH PF m ⋅==+,211422AE PC m ==+ AE ∵平面PBC 42, 223423sin 142mAH m AEH AE m +∴∠===+,解得2m =或3m ,即PA 的长为232312.【答案】0【解析】如图,连AC ,取AC 的中点E ,连ME ,NE ,则,ME NE 分别为,ADC CAB ∆∆的中位线,所以11,22EN AB ME DC ==u u u v u u u v u u u v u u u v ,所以1()2MN ME EN DC AB =+=+u u u u v u u u v u u u v u u u v u u u v .由PQ uuu v 与MN u u u u r共线,所以()PQ MN R λλ=∈u u u v u u u u v,故()()()()2PQ AB DC MN AB DC AB DC AB DC u u u v u u u v u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v λλ⋅-=⋅-=+⋅-22()02AB DC λ=-=u u uv u u u v . 答案:013.【答案】(e -∞【解析】当1x ≥时,()ln 0f x x =≥, ()11f x ∴+≥, [()1]ln(()1)f f x f x ∴+=+,当131()1()1[()1]ln(()1)222x x f x f x f f x f x <=->+>+=+,,,, 综上可知:()()()1ln(()1)0F x f f x m f x m =++=++=,则()1mf x e-+=,()1mf x e-=-有两个根1x ,2x ,(不妨设)12x x <,当1x ≥时,2ln 1mx e -=-,当1x <时,1112m x e --=-,令112mt e-=->,则2ln x t=,2tx e=,112xt-=,122x t=-,12(22)tx x e t∴=-,12t>, 设()(22)tg t e t=-,12t>, 所以()2tg t te'=-,1,()02t g t'⎛⎫∈+∞<⎪⎝⎭,,函数()g t单调递减,1()2g t g e⎛⎫∴<=⎪⎝⎭,()g x∴的值域为(,)e-∞, 12x x∴取值范围为(,)e-∞,故答案为:(,)e-∞.14.【答案】312【解析】因为22Sa bc+2211222222bcsinA sinAb cb c bccosA bc cosAc b==⨯+-+++-142sinAcosA≤-⨯-(当且仅当b c=时取得等号)令,sinA y cosA x==,故22Sa bc+142yx≤-⨯-,因为221x y+=,且0y>,故可得点(),x y表示的平面区域是半圆弧上的点,如下图所示:目标函数2yzx=-,表示圆弧上一点到点()2,0A点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =︒时,取得最小值故可得[23y z x =∈--,又22S a bc +142y x ≤-⨯-,故可得22S a bc +14312≤-⨯-=. 当且仅当60,A b c =︒=,也即三角形为等边三角形时,取得最大值.故答案为:12. 15.【答案】(1)3;(2)(]6,9.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =, 又sin sin a bA B=即sin sin b A a B =,所以3a =;(2)由正弦定理得sin sin a B b B A ==,sin sin a Cc C A==ABC ∆周长:233sin()3a b c B C B B π++=++=++-33sin 36sin 26B B B π⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭, 又因为2(0,)3B π∈,所以1sin (,1]2B ∈. 因此ABC ∆周长的取值范围是(]6,9. 16.【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】证明:(1)因为D ,E 分别是AB ,AC 的中点,所以//DE BC , ...........2分 又因为在三棱柱111ABC A B C -中,11//B C BC,所以11//B C DE. ...............4分 又11B C ⊄平面1A DE,DE ⊂平面1A DE,所以11B C ∥平面1A DE. ...............6分(2)在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,又DE ⊂底面ABC ,所以1CC DE⊥. .............8分又BC AC ⊥,//DE BC ,所以DE AC ⊥, ..........10分 又1,CC AC ⊂平面11ACC A ,且1CC AC C=I ,所以DE ⊥平面11ACC A . ...............12分又DE ⊂平面1A DE,所以平面1A DE ⊥平面11ACC A . ............14分17.【答案】(1平方百米;(2百米. 【解析】(1)由题知1,120,BE ABC EA =∠==o在ABE V 中,由余弦定理得2222cos AE AB BE AB BE ABE =+-⋅∠,即2211AB AB =++,所以4AB =百米所以11sin 41222ABE S AB BE ABE V =⋅⋅∠=⨯⨯⨯=.(2)记AEB α∠=,在ABE V 中,sin sin AB AE ABEα=∠,即4sin α=,所以sin αα===当CH DE ⊥时,水管CH 最短,在Rt ECH V 中,2π2π2πsin 2sin 2sin cos 2cos sin 333CH CE HEC ααα⎛⎫=∠=-=- ⎪⎝⎭=7百米. 18.【答案】(1)22143x y +=(2)12或32【解析】(1)因为椭圆离心率为12,当P 为C 的短轴顶点时,12PF F △.所以22212122c a a b c c b ⎧=⎪⎪=+⎨⎪⎪⨯⨯=⎩,所以21a b c =⎧⎪=⎨⎪=⎩,故椭圆C 的方程为:22143x y +=.(2)设直线PQ 的方程为()1y k x =-,当0k ≠时,()1y k x =-代入22143x y +=,得:()22223484120k x k x k +-+-=.设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,N x y ,212024234x x k x k+==+,()1200231234y y k y k x k +-==-=+ 即22243,3434k k N k k ⎛⎫- ⎪++⎝⎭因为TN PQ ⊥,则1TN PQ k k ⋅=-,所以222314381443k k k k k --+⋅=-+, 化简得24830k k -+=,解得12k =或32k =,即直线PQ 的斜率为12或32.19.【答案】(1)23a =(2)见解析(3)存在8,340m k ==满足题意。
2020年江苏省高考数学考前最后押题试卷(一)一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,2,9},B={1,7},则A∩B=______.2.已知复数z=2+ii.求|z|=______ .3.某工厂生产A,B,C三种不同型号的产品,产品数量之比为k︰5︰3,现用分层抽样的方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为________.4.阅读下面的伪代码,最后输出的a,b,c分别为_________,_________,_________.a←3b←5c←6a←bb←cPrint a,b,c5._____________.6.双曲线x225−y27=1的两条渐近线方程为________.7.函数f(x)=2sin(ωx+ϕ)(ω>0)的部分图象如图所示,若AB=5,则ω的值为______ .8.在等差数列{a n}中,a3+a9=27−a6,S n表示数列{a n}的前n项和,则S11=______ .9.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S−ABCD,该四棱锥的体积为4√23,则该半球的体积为__________.10. 设α∈(π,2π),若tan(α+π6)=2,则cos(π6−2α)的值为______ .11. △OBC 中,A 为BC 中点,OB 长为3,OC 长为5,则OA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =_________. 12. 已知圆C :(x −2)2+y 2=4,点P 在直线l :y =x +3上,若圆C 上存在两点A 、B 使得PA ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则点P 的横坐标的取值范围是______. 13. 已知函数,若存在实数a,b,c,d ,满足a <b <c <d ,且f(a)=f(b)=f(c)=f(d),则(c−2)(d−2)ab 的取值范围是______________.14. 在△ABC 中,若则的最大值为_______.二、解答题(本大题共11小题,共142.0分)15. 已知△ABC 中,(sinA −sinB)(sinA +sinB)=sinAsinC −sin 2C .(1)求sin B 的值;(2)若△ABC 的面积S △ABC =20√3,且AB +BC =13√2,求AC 的值.16. 如图,在三棱柱ABC A 1B 1C 1中,AB =AC ,A 1C ⊥BC 1,AB 1⊥BC 1,D ,E 分别是AB 1和BC 的中点.求证:(1) DE//平面ACC 1A 1; (2) AE ⊥平面BCC 1B 1.17. 某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x(m),三块种植植物的矩形区域的总. 面. 积.为S(m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.18. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为,F 1和F 2,上顶点为B ,BF 2,延长线交椭圆于点A ,△ABF 的周长为8,且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =0. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l ⊥AB 且与椭圆C 相交于两点P ,Q ,求|PQ|的最大值.19.已知函数f(x)=ax2+x−1e x.(1)求曲线y=f(x)在点(0,−1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.20.已知数列{a n}中,a1=1,其前n项和为S n,且满足a n=2S n22S n−1(n≥2,n∈N+).(Ⅰ)求证:数列{1S n}是等差数列;(Ⅱ)证明:13S1+15S2+17S3+⋯+12n+1S n<12.21.已知矩阵A=[110−1],二阶矩阵B满足AB=[2001],求矩阵B的特征值.22.在平面直角坐标系xOy中,以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ=21−cosθ.(1)试将曲线C的极坐标方程转化为直角坐标系下的普通方程;(2)直线l过点M(m,0),交曲线C于A、B两点,若1|MA|2+1|MB|2的定值为14,求实数m的值.23.已知a,b,c都是正数,求证:a2b2+b2c2+c2a2a+b+c≥abc.24.如图,已知正方体ABCD−A1B1C1D1的棱长为2,点M,N分别为A1A和B1B的中点.(Ⅰ)求异面直线CM与D1N所成角的余弦值;(Ⅱ)求点D1到平面MDC的距离.25.设(2x−1)n=a0+a1x+a2x2+⋯+a n x n展开式中只有第1010项的二项式系数最大.(1)求n;(2)求|a0|+|a1|+|a2|+⋯+|a n|;(3)求a12+a222+a323+⋯+a n2n.-------- 答案与解析 --------1.答案:{1}解析:解:∵A={1,2,9},B={1,7};∴A∩B={1}.故答案为:{1}.进行交集的运算即可.考查列举法的定义,以及交集的运算.2.答案:√5解析:解:复数z=2+ii =−i(2+i)−i⋅i=1−2i.则|z|=√12+(−2)2=√5.故答案为:√5.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.答案:36解析:【分析】本题主要考查分层抽样的应用,利用条件建立比例关系是解决本题的关键,比较基础.根据分层抽样的定义求出k,即可得到结论.【解答】解:∵新产品数量之比依次为k:5:3,∴由kk+3+5=24120,解得k=2,则C种型号产品抽取的件数为120×310=36,故答案为36.4.答案:5;6;6解析:【分析】本题考查算法语句中的赋值语句,根据条件直接得出答案,属基础题.【解答】解:由算法语句可知:在该算法中给a赋值两次,最终a的值为5;给b赋值两次,最终b的值为6;给c赋值一次,c的值为6.故答案为5;6;6.5.答案:23解析:【分析】本题主要考查概率的计算,得出总的基本事件数和满足题意的基本事件数可得答案,属于基础题.【解答】解:从甲、乙、丙、丁四个人中随机选取两人,共有4×32=6种基本事件,而甲、乙两人有且仅有一人被选中的基本事件有2×2=4种,故所求概率为46=23.故答案为23.6.答案:y=±√75x解析:【分析】本题考查双曲线的方程和性质,考查渐近线方程的求法,属于基础题.由双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,即可得到所求方程.【解答】解:由于双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,则双曲线x225−y27=1的两条渐近线方程为y=±√75x.故答案为y=±√75x.7.答案:π3解析:解:∵函数f(x)=2sin(ωx+φ),图象中AB两点距离为5,设A(x1,2),B(x2,−2),∴(x2−x1)2+42=52,解得:x2−x1=3,∴函数的周期T=2×3=2πω,解得:ω=π3.故答案为:π3.设A(x1,2),B(x2,−2),由函数图象可得(x2−x1)2+42=52,解得:x2−x1=3,利用T=2×3=2πω,即可解得ω的值.本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,属于基础题.8.答案:99解析:解:由题意得,a3+a9=27−a6,根据等差数列的性质得,2a6=27−a6,解得a6=9,所以S11=11(a1+a11)2=11a6=99,故答案为:99.根据题意和等差数列的性质求出a6,由等差数列的前n项和公式得S11=11(a1+a11)2=11a6,代入求值即可.本题考查等差数列的性质、前n项和公式的灵活应用,属于基础题.9.答案:4√23π解析:设所给半球的半径为R,则棱锥的高ℎ=R,底面正方形中有AB=BC=CD=DA=√2R,所以其体积23R3=4√23,则R3=2√2,于是所求半球的体积为V=23πR3=4√23π.10.答案:45解析:解:∵tan(α+π6)=2=tanα+tanπ61−tanαtanπ6=tanα+√331−√33tanα,∴tanα=5√3−8.再由sin2α=2sinαcosαsin2α+ cos2α=2tanα1+tan2α=√3−16140−80√3,cos2α= cos2α−sin2α cos2α+sin2α=1−tan2α1+tan2α=√3140−80√3,可得cos(π6−2α)=cosπ6cos2α+sinπ6sin2α=45,故答案为45.利用两角和差的正切公式求得tanα=5√3−8,再利用同角三角函数的基本关系求得sin2α和cos2α的值,再由cos(π6−2α)=cos π6cos2α+sin π6sin2α,运算求得结果.本题主要考查两角和差的正切公式、余弦公式、同角三角函数的基本关系的应用,属于中档题.11.答案:−8解析: 【分析】本题考查平面向量的数量积运算,属于基础题目. 利用平面向量数量积公式求解即可. 【解答】解:∵A 为BC 中点,OB 长为3,OC 长为5,∴OA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·(OB ⃗⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )=12(OB ⃗⃗⃗⃗⃗⃗ 2−OC ⃗⃗⃗⃗⃗ 2)=12(32−52)=−8. 故答案为−8.12.答案:[−1−√72,−1+√72]解析: 【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,判断点P 到圆上的点的最小距离应小于或等于半径,是解题的关键,体现了转化的数学思想,属于较难题.由题意可得圆心C(2,0),推导出点P 到圆上的点的最小距离应小于或等于半径r =2.设点P 的坐标为(m,m +3),则√(m −2)2+(m +3−0)2−2≤2,由此能求出点P 的横坐标的取值范围. 【解答】解:由题意可得圆心C(2,0),∵点P 在直线l :y =x +3上,圆C 上存在两点A 、B 使得PA ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ , 如图,|AB|=2|PB|,|CD|=|CE|=r =2,∴点P到圆上的点的最小距离|PD|应小于或等于半径r=2.设点P的坐标为(m,m+3),则√(m−2)2+(m+3−0)2−2≤2,化简可得2m2+2m−3≤0,解得−1−√72≤m≤−1+√72,∴点P的横坐标的取值范围是:[−1−√72,−1+√72]故答案为:[−1−√72,−1+√72].13.答案:(0,4)解析:【分析】本题考查函数与方程的综合应用,解决问题的关键是画出函数图象,分析得到ab=1,d=8−c,进而得到(c−2)(d−2)ab=−c2+8c−12,结合二次函数性质求解范围.【解答】解:设f(a)=m,则y=m与f(x)的图象的交点的横坐标依次为a,b,c,d(如图),,且f(a)=f(b)=f(c)=f(d),a<b<c<d,,2<c<4,∴ab=1,d=8−c,∴(c−2)(d−2)ab=(c−2)(8−c−2)=−c2+8c−12=−(c−4)2+4,∵2<c<4,∴0<−(c−4)2+4<4,故答案为(0,4).14.答案:3√57解析:【分析】本题考查三角函数的切化弦,及两角和的正弦公式和诱导公式的运用,同时考查正弦定理和余弦定理的运用,属于中档题.先将题设条件转化为tanAtanB +tanAtanC=5,利用切化弦将等式整理得sin2AcosAsinBsinC=5,再根据正弦定理推出a2=5bccosA,根据余弦定理推出b2+c2=7a25,继而利用基本不等式得到cos A的最小值,即可利用同角三角函数关系式推出sin A的最大值.【解答】解:∵在△ABC中,tanAtanC+tanAtanB=5tanBtanC,∴tanAtanB +tanAtanC=5,∴sinAcosB cosAsinB +sinAcosCcosAsinC=5,∴sinA(cosBsinC+cosCsinB)cosAsinBsinC=5,∴sinAsin(B+C)cosAsinBsinC=5,∴sin2AcosAsinBsinC=5,由正弦定理得:a2bccosA=5,,又根据余弦定理得:a2=b2+c2−2bccosA,∴b2+c2=7a25,=b2+c27ab ≥2bc7bc=27,当且仅当“b=c”时取等号,∴cos2A≥449,∴1−sin2A≥449,∴sin2A≤4549,∴sinA≤3√57.故答案为3√57.15.答案:解:(1)记三角形ABC中,角A,B,C所对的边分别为a,b,c;依题意,sin2A−sin2B=sinAsinC−sin2C,由正弦定理得∴a2+c2−b2=ac,∴cosB=a2+c2−b22ac =ac2ac=12,∵B∈(0,π),∴B=π3,∴sinB=√32;(2)因为△ABC的面积为20√3,acsinB=20√3,所以12∴ac=80;∵AB+BC=13√2,即a+c=13√2,∴b2=a2+c2−2accos60°=(a+c)2−3ac=338−240=98,得b=7√2=AC.解析:本题主要考查解三角形的应用,结合正弦定理以及余弦定理建立方程关系是解决本题的关键.(1)由正弦定理和余弦定理进行转化求解即可(2)结合三角形的面积公式以及余弦定理建立方程关系进行求解即可.16.答案:证明:(1)连结A1B,在三棱柱ABC−A1B1C1中,AA1//BB1,且AA1=BB1,∴四边形AA1B1B是平行四边形,又∵D是AB1的中点,∴D是BA1的中点,在△BA1C中,D和E分别是BA1和BC的中点,∴DE//A1C,∵DE⊄平面ACC1A1,A1C⊂平面ACC1A1,∴DE//平面ACC1A1;(2)由(1)知DE//A1C,∵A1C⊥BC1,AB1⊥BC1,A1C∩DE=D,AB1,DE⊂平面ADE,∴BC1⊥平面ADE,∵AE⊂平面ADE,∴AE⊥BC1,在△ABC中,AB=AC,E是BC的中点,∴AE⊥BC,∵AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1⊂平面BCC1B1,BC⊂平面BCC1B1,∴AE⊥平面BCC1B1.解析:本题考查线面平行、线面垂直的证明,考查空间中线线、线面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)连结A 1B ,推导出四边形AA 1B 1B 是平行四边形,DE//A 1C ,由此能证明DE//平面ACC 1A 1. (2)推导出BC 1⊥平面ADE ,从而AE ⊥BC 1,推导AE ⊥BC ,由此能证明AE ⊥平面BCC 1B 1.17.答案:解:(1)由题设得S =(x −8)(900x−2)=−2x −7200x+916,x ∈(8,450).(2)因为8<x <450, 所以2x +7200x≥2√2x ⋅7200x=240,当且仅当x =60时等号成立. 从而S ≤676.答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.解析:【分析】本题考查了函数模型的应用以及利用基本不等式求最值,是一般题. (1)由题设得S =(x −8)(900x−2)=−2x −7200x+916,x ∈(8,450).(2)利用基本不等式求最值.18.答案:解:(Ⅰ)由椭圆定义可得△ABF 1的周长为4a ,即有4a =8,解得a =2,由B(0,b),F 1(−c,0),F 2(c,0),BF 1⃗⃗⃗⃗⃗⃗⃗ =(−c,−b),BF 2⃗⃗⃗⃗⃗⃗⃗ =(c,−b),且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =0,则−c 2+b 2=0,即为b =c ,又b 2+c 2=a 2=4,解得b =c =√2,则椭圆的方程为x24+y22=1;(Ⅱ)由B(0,√2),F2(√2,0),可得直线AB的斜率为−1,由l⊥AB,可得直线l的斜率为1,设直线l的方程为y=x+t,代入椭圆方程,可得3x2+4tx+2t2−4=0,由判别式大于0,即16t2−12(2t2−4)>0,解得−√6<t<√6.设P(x1,y1),Q(x2,y2),则x1+x2=−43t,x1x2=2t2−43,|PQ|=√1+1⋅√(x1+x2)2−4x1x2=√2⋅√16t29−8t2−163=√23√48−8t2,当t=0时,|PQ|取得最大值,且为4√63.则有|PQ|的最大值为4√63.解析:(Ⅰ)由椭圆定义可得△ABF1的周长为4a,解得a=2,再由向量的数量积的坐标表示,可得b=c,结合椭圆的a,b,c的关系,可得椭圆方程;(Ⅱ)由两直线垂直的条件:斜率之积为−1,可得直线l的斜率,进而设出直线l的方程,联立椭圆方程,运用韦达定理和弦长公式,化简整理,可得弦长的最大值.本题考查椭圆的定义、方程和性质,主要考查椭圆方程的运用,联立直线方程,运用韦达定理和弦长公式,考查运算能力,属于中档题.19.答案:(1)解:f′(x)=−ax2+(2a−1)x+2e x,f′(0)=2,因此曲线y=f(x)在点(0,−1)处的切线方程是2x−y−1=0.(2)证明:当a≥1时,f(x)+e≥(x2+x−1+e x+1)e−x.令g(x)=x2+x−1+e x+1,则g′(x)=2x+1+e x+1,当x<−1时,g′(x)<0,g(x)单调递减;当x>−1时,g′(x)>0,g(x)单调递增;所以g(x)≥g(−1)=0.因此f(x)+e≥0.解析:本题考查利用导数求曲线的切线,考查恒成立问题,考查利用导数求函数的单调性以及最值,解题的关键是正确求导.(1)求出f′(x)得出f′(0),进而得出切线方程;(2)构造新函数g(x),求出g′(x)得出g(x)的单调性,进而得出g(x)≥g(−1)=0,不等式得证.20.答案:证明:(Ⅰ)数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =2S n 22Sn −1(n ≥2,n ∈N +).则:当n ≥2时,S n −S n−1=2S n 22Sn −1,整理得:S n−1−S n =2S n−1S n , 所以:1S n−1Sn−1=2(常数).所以:数列{1S n}是以1S 1=1为首项,2为公差的等差数列.证明:(Ⅱ)由(Ⅰ)得:1S n=1+2(n −1)=2n −1,所以:S n =12n−1, 当n =1时,符合通项. 故:12n+1⋅S n =12(12n−1−12n+1), 所以:13S 1+15S 2+17S 3+⋯+12n+1S n , =12(1−13+13−15+⋯+12n−1−12n+1),=1(1−1)<1解析:(Ⅰ)直接利用递推关系式求出数列的通项公式. (Ⅱ)利用列想想效法求出数列的和.本题考查的知识要点:利用递推关系式求出数列的通项公式及应用,利用裂项相消法求出数列的和,主要考查学生的运算能力和转化能力,属于基础题型. 21.答案:解:设矩阵B =[a b cd],因为AB =[2001], 所以[110−1][abcd]=[2001]得{a +c =2b +d =0−c =0−d =1即{a =2b =1c =0d =−1所以B =[210−1], 则矩阵B 的特征多项式f(λ)=|λE −B|=(λ+1)(λ−2). 令f(λ)=0,得λ=2或λ=−1,所以矩阵B 的特征值为2或−1.解析:【分析】本题主要考查矩阵的乘法和矩阵的特征值,考查考生的化归与转化能力和运算求解能力. 设矩阵B =[abc d],由AB =[2001],得[110−1][a bc d]=[2001],求得a ,b ,c ,d 的值,进而即可求得结果.22.答案:解:(1)曲线C 的极坐标方程为ρ=21−cosθ.转化为普通方程:y 2=4x +4.(2)设直线l 的参数方程{x =m +tcosαy =tsinα为为参数,α为直线l 的倾斜角,),代入C 的方程y 2=4x +4,整理得,sin 2αt 2−4tcosα−(4m +4)=0, 所以t 1+t 2=4cosαsin 2α,t 1⋅t 2=−(4m+4)sin 2α,1|MA|2+1|MB|2=1t 12+1t 22=(t 1+t 2)2−2t 1t 2t 12t 22=14,整理得:16cos 2α+(8m+8)sin 2α(4m+4)2=14,解得:m =1.解析:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.属于中档题.(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化. (2)利用方程组建立关于t 的一元二次方程,利用根和系数的关系求出结果.23.答案:证明:∵a ,b ,c 都是正数,∴a 2b 2+b 2c 2≥2ab 2c ,a 2b 2+c 2a 2≥2a 2bc ,c 2a 2+b 2c 2≥2abc 2 ∴2(a 2b 2+b 2c 2+c 2a 2)≥2ab 2c +2a 2bc +2abc 2 ∴a 2b 2+b 2c 2+c 2a 2≥ab 2c +a 2bc +abc 2∴a 2b 2+b 2c 2+c 2a 2a+b+c≥abc .解析:利用基本不等式,再相加,即可证得结论.本题考查利用基本不等式证明不等式,考查学生的计算能力,属于基础题.24.答案:解:(Ⅰ)分别是以DA 1、DC 1、DD 1所成在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 则M(2,0,1)C(0,2,0)N(2,2,1)D 1(0,0,2) ∴MC ⃗⃗⃗⃗⃗⃗ =(−2,2,−1)D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,−2,1)∴cos <MC ⃗⃗⃗⃗⃗⃗ ,D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ >=4−4−13×3=−19∴异面直线CM 与D 1N 所成角的余弦值为19(Ⅱ)由(Ⅰ)可得DM ⃗⃗⃗⃗⃗⃗⃗ =(2,0,1),DC ⃗⃗⃗⃗⃗ =(0,2,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2) 设面DMC 的法向量为n ⃗ =(x,y,z) 则{2x +z =0y =0⇒n ⃗ =(1,0,−2) ∴点D 1到平面MDC 的距离ℎ=|DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=4√5=4√55解析:(Ⅰ)分别是以DA 1、DC 1、DD 1所成在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,可得MC ⃗⃗⃗⃗⃗⃗ 与D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标,可得cos <MC ⃗⃗⃗⃗⃗⃗ ,D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ >,取其绝对值即可;(Ⅱ)设面DMC 的法向量为n ⃗ =(x,y,z),由垂直关系可得xyz 的关系,而点D 1到平面MDC 的距离ℎ=|DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |,计算可得.本题考查异面直线所成的角,以及点到平面的距离,建立空间直角坐标系是解决问题的关键,属中档题.25.答案:解:(1)由二项式系数的对称性,可得展开式共计2019项,且n2+1=1010,∴n =2018.(2)|a 0|+|a 1|+|a 2|+⋯+|a n |,即(2x +1)n =(2x +1)2018的展开式中各项系数和, 令x =1,可得|a 0|+|a 1|+|a 2|+⋯+|a n |=32018.(3)在(2x −1)n =a 0+a 1x +a 2x 2+⋯+a n x n 中,令x =0,可得a 0=1, 再令x =12,可得1+a 12+a 222+a 323+⋯+an2n =0,∴a 12+a222+a 323+⋯+an2n =−1.解析:本题主要考查二项式定理的应用,属于中档题.(1)由二项式系数的对称性,可得展开式共计2019项,n2+1=1010,由此求得n 的值. (2)|a 0|+|a 1|+|a 2|+⋯+|a n |,即(2x +1)n =(2x +1)2018的展开式中各项系数和,令x =1,可得|a 0|+|a 1|+|a 2|+⋯+|a n |的值. (3)先求得a 0=1,再令x =12,可得1+a 12+a 222+a 323+⋯+a n 2n =0,由此可得a 12+a 222+a 323+⋯+an 2n 的值.。
2020年江苏省高考押题卷
数 学I 2020.6
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......
上.
. 1. 已知集合M = {-1,0,1,2 },集合2{|20}N x x x =+-=,
则集合M ∩N = ▲ .
2.
已知复数22i 1i
z =++(i 为虚数单位),则z 的共轭复数z =
▲ .
3. 为了解学生课外阅读的情况,随机统计了n 名学生的课外
阅读时间,所得数据都在[50,150]中,其频率分布直方
图如图所示.已知在[50 100),中的频数为24,则n 的值为 ▲ . 4. 如图,执行算法流程图,则输出的b 的值为 ▲ .
5. 已知A 、B 、C 三人在三天节日中值班,每人值班一天,那么A 排在C 后一天值班的概率为 ▲ .
6. 底面边长和高都为2的正四棱锥的表面积为 ▲ .
7. 在平面直角坐标系xOy 中,已知双曲线经过点(6),且它的两条渐近线方程是3y x =±,则该双曲线标准方程为 ▲ . 8.已知sin cos αα+=
sin 2cos4αα+的值为 ▲ . 注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页包含填空题(第1~14题)、解答题(第15~20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.
5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠(第4题)
9. 设S n 为等差数列{a n }的前n 项和,若3521a a -=,10100S =,则20S 的值为 ▲ . 10. 埃及数学中有一个独特现象:除23
用一个单独的符号表示以外,其它分数都要写成若干
个单位分数和的形式.例如2115315=+可以这样理解:假定有两个面包,要平均分给5
个人,如果每人 12,不够;每人13,余13,再将这13分成5份,每人得115,这样每人分
得11315+.形如2n (n = 5,7,9,11,…)的分数的分解:2115315=+,2117428=+,2119545=+,按此规律,2n
= ▲ (n = 5,7,9,11,…) . 11. 在平面直角坐标系xOy 中,已知圆2
2
:(2)4C x y -+=,点P 是圆C 外的一个动点,直线P A ,PB 分别切圆C 于A ,B 两点.若直线AB 过定点(1,1),则线段PO 长的最小值为 ▲ . 12. 已知正实数x ,y 满足
21()1,x x y y -=则1
x y
+的最小值为 ▲ . 13.如图,在平行四边形ABCD 中,AB =2AD ,E , F 分别
为AD ,DC 的中点,AF 与BE 交于点O .若
125OF OB AD AB ⋅=⋅,则∠DAB 的余弦值为 ▲
. 14. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且
431tan tan A B +=,则3c b
的最大值
为 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......
内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(b ,a - 2c ), n =(cos A - 2cos C ,cos B ),且m ⊥n . (1)求sin sin C A
的值;
(2)若a =2,=m ABC 的面积.
A
B C
D F
E
O
16.(本小题满分14分)
如图,在直三棱柱111ABC A B C -中,12AC AA =,AC BC ⊥,D ,E 分别为A 1C 1,AB 的中点.
求证:(1)AD ⊥平面BCD ;
(2)A 1E ∥平面BCD .
17.(本小题满分14分)
如图,某大型厂区有三个值班室A ,B ,C .值班室A 在值班室B 的正北方向3千米处,值班室C 在值班室B 的正东方向4千米处.
(1)保安甲沿CA 从值班室C 出发行至点P 处,此时PC =2,求PB 的距离;
(2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?
18.(本小题满分16分)
在平面直角坐标系xOy 中,已知椭圆C :22
221(0)y x a b a b
+=>>
过点(1,离心率
.A ,B 是椭圆上两点,且直线OA 与OB 的斜率之积为12. (1)求椭圆C 的方程; (2)求直线AB 的斜率;
(3)设直线AB 交圆O :222x y a +=于C ,D
两点,且AB CD =COD 的面积.
(第17题)
19.(本小题满分16分)
已知数列*
{}()n a n ∈N 的前n 项和为S n ,()2
n n n
S a λ=+(λ为常数)对于任意的*n ∈N 恒成立.
(1)若11a =,求λ的值; (2)证明:数列{}n a 是等差数列;
(3)若22a =,关于m 的不等式|2|1m S m m -<+有且仅有两个不同的整数解,求λ的取值范围.
20.(本小题满分16分)
已知函数ln ()(1
x
f x a ax =
∈+R ,且a 为常数). (1)若函数y =f (x )的图象在x =e 处的切线的斜率为2
1
e(1e)-(e 为自然对数的底数),求a
的值;
(2)若函数y = f (x )在区间(1,2)上单调递增,求a 的取值范围; (3)已知x ,y ∈(1,2), 且x +y =3,求证:
(23)ln (23)ln 11
x x y y
x y --+
--≤0.
2020年江苏省高考押题卷
数 学II(附加题)
21.【选做题】本题包括A ,B ,C 三小题,每小题10分. 请选定其中两.....小.题.,并在相应....的.答题区域....内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A. [选修4—2:矩阵与变换](本小题满分10分)
曲线2
2
1x y +=在矩阵0(0,0)0a A a b b ⎡⎤=>>⎢⎥⎣⎦
对应的变换下得到曲线2
2 1.9x y += (1)求矩阵A ;
(2)求矩阵A 的特征向量.
B. [选修4-4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩
,
(α为参数).以原点O 为
极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为(sin cos )2ρθθ+=,直线l 与曲线C 相交于A ,B 两点,求线段AB 的值.
C . [选修4-5:不等式选讲] (本小题满分10分)
已知a ,b ,c 为正实数,满足a +b +c =3,求149
a b c
++的最小值.
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共2页,均为解答题(第21~23题)。
本卷满分为40分,考试时间为30分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.
5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠
【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)
五个自然数1、2、3、4、5按照一定的顺序排成一列. (1)求2和4不相邻的概率;
(2)定义:若两个数的和为6且相邻..,称这两个数为一组“友好数”.随机变量X 表示上述五个自然数组成的一个排列中“友好数”的组数,求X 的概率分布和数学期望E (X ).
23.(本小题满分10分)
已知*
2,,n n N ≥∈数列T 12:,,
,n a a a 中的每一项均在集合M ={1,2,…,n }中,且任意两项
不相等,又对于任意的整数i ,j (1≤i <j ≤n ),均有.i
j i a j a +≤+记所有满足条件的数列T 的个
数为b n .例如n =2时,满足条件的数列T 为1,2或2,1,所以b 2=2.
(1)求b 3; (2)求b n .。