有限差分法的基本知识(1)
- 格式:ppt
- 大小:4.74 MB
- 文档页数:30
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
班级:通信13-4 姓名:学号:指导教师:**成绩:电子与信息工程学院信息与通信工程系求解金属槽的电位分布1.实验原理利用有限差分法和matlab软件解决电位在金属槽中的分布。
有限差分法基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解.然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题。
2.有限差分法方程的定解问题就是在满足某些定解条件下求微分方程的解。
在空间区域的边界上要满足的定解条件称为边值条件。
如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。
不含时间而只带边值条件的定解问题,称为边值问题。
与时间有关而只带初值条件的定解问题,称为初值问题。
同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。
所以要采用可行的数值解法。
有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。
此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
2.1有限差分法原理图1-1 有限差分法的网格划分导体槽中静电场的边值问题的拉普拉斯方程为:22220x y ϕϕ∂∂+=∂∂ (1-1) 为简单起见,将场域分成足够小的正方形网格,网格线之间的距离为h ,0h →。
有限差分公式
有限差分是微分方程解的近似值的一种表示方法,通常用数学表达式
f(x+b)-f(x+a)来表示。
如果将有限差分除以b-a,则可以得到差商。
在微分方程数值解的有限差分方法中,特别是处理边界值问题时,有限差分导数的逼近起着关键的作用。
有限差分通常考虑三种形式:正向差分、反向差分和中心差分。
正向差分是f(x+h)-f(x),反向差分是f(x)-f(x-h),中心差分是f(x+h)-f(x-h)。
当h取为1时,正向差分除以h近似于导数。
在数值方法中,有限差分法是一种常用的数值解法,它用差商代替微分方程中的偏导数,从而得到相应的差分方程。
通过解这个差分方程,可以得到微分方程解的近似值。
以上内容仅供参考,如需更多信息,建议查阅数学类书籍或咨询数学专业人士。
有限差分法、变分法、离散元法、边界元法及有限元法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!有限差分法、变分法、离散元法、边界元法及有限元法在科学和工程领域中有着重要的应用。
有限差分法的步骤嘿,朋友们!今天咱来聊聊有限差分法的那些事儿。
有限差分法啊,就像是搭积木一样,一步步地构建出我们想要的结果。
首先呢,要确定问题的定义域,这就好比是给搭积木找个合适的场地。
你得清楚知道在哪个范围里玩这个游戏。
然后就是划分网格啦,这就像是把场地划分成一格一格的,让每个部分都有自己的位置。
网格分得越细,就好像积木的格子越小,能呈现的细节就越多,但也别太细啦,不然可就复杂得让人头疼咯。
接下来,要对微分方程进行离散化。
啥叫离散化呢?就好比把连续的东西切成一段一段的,这样就好处理啦。
把那些复杂的微分方程转化成一个个可以计算的小式子,这可不简单呐!再之后呢,就是建立差分格式啦。
这就像是给每个小格子都定好规则,让它们知道该怎么表现。
不同的差分格式就像是不同的玩法,各有各的特点。
建立好差分格式后,就得开始计算啦!把各种数值代进去,就像摆弄那些积木一样,看看能得出啥结果。
这计算的过程可不能马虎,一个小错误可能就会让整个结果都不对啦。
计算出结果后,还得检查检查呢,看看合不合理,就像检查搭好的积木稳不稳一样。
要是有问题,还得重新调整,重新再来一遍。
你说这有限差分法是不是挺有意思的?虽然过程有点复杂,但只要一步一步慢慢来,总能搞明白的呀。
它就像是一个神秘的魔法,能把那些看似无解的问题给解开。
咱想想啊,要是没有有限差分法,那好多科学问题可咋解决呀?那些复杂的物理现象、工程问题,不都得靠它来帮忙嘛。
所以说呀,学会有限差分法,那可真是太有用啦!咱可得好好研究研究,把这个厉害的工具掌握好,让它为我们服务呀!这有限差分法的步骤,咱可不能小瞧咯,每个步骤都得认真对待,这样才能得出准确的结果呀,你们说是不是呢?。