算
物 理
ui,k1 ui1,k (1 2 )ui,k ui1,k
学 ui,0 (ih)
u0,k g1(k ) ul,k g2 (k )
i=0,1, ,N k=0,1, ,M
.精品课件.
4.2 热传导方程的差分解法
计 显示差分递推公式的稳定性:
算
物 理
ui,k ui',k i,k k i,k
计
算 一维各向同性、均匀介质,且无热源的热传导方程:
物 理 学
u 2u
t x2
0t T 0 xl
为了求解u(x,t),还必须利用边界条件和初 始条件。
定解条件:边界条件和初始条件。
定解问题:解存在、唯一并且连续依赖初始条件。
.精品课件.
4.2 热传导方程的差分解法
计 对于一维热传导问题(第一类边界条件)
计 同样,在节点(xi,tk)上
算
物
理 学
( x, t )
u xi ,tk u xi ,tk
t xxi
t tk
ui,k 1 ui,k
一阶向前差商O(h)
.精品课件.
4.2 热传导方程的差分解法
计 一维热传导方程可以近似为
算 物 理 学
ui,k 1 ui,k ui1,k 2ui,k ui1,k
理
学
u t0
f1(x, y, z)
u t
t0
f2 (x, y, z)
边界条件:边界受到外界的影响
常见的物理问题可以归结为三大类边界条件
.精品课件.
4.1 有限差分法原理
1 第一类边界条件(狄利克雷Dirichlet)
计
算
u u0(r,t)