计算力学基础知识简介
- 格式:ppt
- 大小:298.00 KB
- 文档页数:8
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
计算力学计算力学是一门研究物体在各种载荷下结构力学特性(如力、应变、位移等)的学科。
从研究物体的整体或局部的应力、应变、位移等情况,寻求解决方案或者为结构设计提供依据,是计算力学的主要目标。
计算力学可分为两大部分,一是有限元计算力学,二是计算流体力学。
有限元计算力学(FEM)是一种基于离散化的数值计算方法,通过选取适当的数学模型和计算方法,将复杂的工程结构分成一个个小的有限元,之后再基于各个小单元的力学性质,构建大规模的计算模型,用于分析物体的力学特性。
FEM分析模型可以在计算机上运行,根据模型内部物理和几何特性,求解模型中各部分的应力和变形等物理量,并可阐述一些问题、评估方案、优化结构等。
FEM被广泛应用于研究材料、结构、车辆动力学、流体动力学、地震工程等领域。
计算流体力学(CFD)是研究流体运动及其相应效应的数值分析方法。
如流态力学中,可以采取有限体积法和有限元法构建流体运动的方程,并通过数值方法求解,表征流动中的物理量(如流速、压力等)以及新的结构性质。
因此,计算力学的基础包括数学物理知识和计算机知识。
通过计算机技术,对于计算力学和实际工程问题建立模型,进行分析和预测,是计算力学的重要工作。
在这些分析的基础上,为工程实践的决策提供科学咨询和有效的方案和建议。
计算力学为我们提供了一种高效、经济、可靠的方法来探索工程、材料、建筑以及人类健康等方面的问题。
与传统的分析测试相比,计算力学在耗时、简易性和可再现性方面具有很大优势。
通过计算力学,可以研究一些高难题,如:人体动态变形、复杂流体现象、原子分子运动、材料断裂等问题。
在实际困难中,计算力学被广泛应用于各种工程领域。
特别是在航空、航天、汽车、机械、船舶、石油、石化、核工程等行业,计算力学的优势更加突出。
例如,在设计加速器时,可以使用计算机力学分析加速器各个部分之间相对于自然振动的约束,以及变速运行时加速器壳体的形变、管路中的液体流动等。
在炼油工厂,可以使用计算机力学技术优化设备设计、优化流程和解决石化过程中各种力学问题等。
限制其流动的固体壁之间的相互作用问题。
内部绕流外部绕流
7
龙卷风雷暴
全球气候飓风飞机舰艇
空气污染河流、水利
高速列车潜艇
11
水上运动自行车赛艇
赛车冲浪
建筑
农业:灌溉
25 2627 2829
30
Basic Fins Vented Fins
Slotted Chamfered Corner
Corners Corners Cutting
拐角修正即可以达到减振效果
流固耦合效应研究—
39
¾风荷载预测——大连中国石油大厦(2007年,2009年)
三维鞍形薄膜屋盖(2001年-至今)
41
CFD数值模拟的模型示意图
流场速度分布矢量图
45
深圳大运会体育场(2007年)
流场速度分布矢量图
47
¾复杂地形的风环境预测与评估
50
度
为0.4665R(FAST反射面距离球心的半径为R,R=300m)。
馈源运动球面与FAST反射面之间的关系示意图0度风向角下馈源运动球面附近的风场分布该高度处的风场由于受到山势的阻
挡效应,FAST反射面上空的相当高
55Space Structure Research Center, HIT, CHINA 55/60
210度
210度
无挡风墙
挡风墙(a)
56Space Structure Research Center, HIT, CHINA 56/60210度
210度
挡风墙(b)
挡风墙(c)。
考研理论力学知识点梳理理论力学作为计算力学的基础学科,是研究物体运动状态和运动规律的学科。
它包括刚体力学、连续体力学和流体力学等内容。
在考研中,理论力学是一个重要的科目,掌握其中的知识点对于考生来说至关重要。
本文将对考研理论力学的知识点进行梳理和总结。
一、刚体力学刚体是一个可以看作是集合在一起并且彼此不能改变相对位置的质点的系统。
在刚体力学中,主要有以下几个知识点需要掌握:1. 平面运动和空间运动:- 平面运动包括平面内运动和平面外运动,分别可以通过平面极坐标和空间直角坐标进行描述。
- 空间运动则需要通过空间直角坐标进行描述,包括平动、转动和一般运动三种情况。
2. 刚体的运动学关系:- 刚体的位移、速度、加速度之间存在一些重要的关系,如刚体的加速度等于刚体的角加速度与刚体中心的半径之积。
3. 刚体的动力学关系:- 刚体的动力学关系可以通过牛顿第二定律进行描述,即物体所受合外力等于物体的质量乘以加速度。
4. 刚体的静力学关系:- 刚体的静力学关系包括平衡条件和稳定条件,通过受力分析和力矩的平衡条件可以求解刚体的平衡问题。
二、连续体力学连续体力学是研究连续介质(如弹性体、流体等)内部相互作用和响应的学科。
在连续体力学中,需要掌握以下几个知识点:1. 物质描述和空间描述:- 物质描述是以质点的某一点或一组点为参考,通过观测质点在任意时刻的位置来描述运动状态。
- 空间描述则是以空间中某个点为参考,通过观测该点与周围点之间的变形和位移来描述运动状态。
2. 连续介质的性质:- 连续介质的性质包括连续性、物质存在性以及物质划分的单元等。
3. 连续介质的运动规律:- 连续介质的运动规律可以通过质点的导数来表示,如速度场的梯度代表速度场的变化率。
4. 连续介质的动力学方程:- 连续介质的动力学方程包括质量守恒、动量守恒和能量守恒三个方程,通过这些方程可以求解介质的运动问题。
三、流体力学流体力学是研究流体(包括液体和气体)的运动规律和力学性质的学科。
VASP 计算----------力学常数摘要本文主要介绍了用VASP 对弹性模量、剪切模量、体积模量以及泊松比等力学常数计算,首先介绍了计算所需的相关基础知识,然后详细的阐述了理论的推导过程和对结果的处理方法,并介绍了VASP 所需文件和生成的文件,最后提供了计算的一个例子和其程序流程图。
目录一、 基础知识 .................................................................................................................... 1 二、 VASP 计算时解析推导 .............................................................................................. 3 三、 VASP 计算 .................................................................................................................. 9 四、 有待继续研究的地方 .............................................................................................. 10 五、 参考文献 .................................................................................................................. 10 六、 附录(一)程序流程图 .......................................................................................... 11 七、附录(二)------一个例子,TaN (12)一、 基础知识[1][2]这部分主要介绍了进行VASP 计算时所需要的概念的解释,其主要部分来自弹性力学,详细的介绍可阅读参考文献。
力学基础知识力学作为物理学的一个重要分支,研究的是物体在受力作用下的运动规律和相互作用原理。
在学习力学基础知识时,我们需要了解一些基本概念、定律和公式。
本文将从质点运动、牛顿三定律、动量守恒和万有引力四个方面介绍力学的基础知识。
一、质点运动质点是物理中的一个理想模型,假设物体的大小和形状可以忽略不计,只考虑物体的质量和所受力。
质点的运动可以分为直线运动和曲线运动。
1. 直线运动质点在直线上的运动可以用位移、速度和加速度等物理量来描述。
- 位移:一个物体从原始位置到最终位置的变化量,用Δx表示。
- 平均速度:位移与运动时间的比值,用v表示,计算公式为v = Δx/Δt。
- 瞬时速度:物体在某一瞬间的速度。
- 平均加速度:速度变化量与时间的比值,用a表示,计算公式为a = Δv/Δt。
- 瞬时加速度:物体在某一瞬间的加速度。
2. 曲线运动曲线运动包括圆周运动和非匀速直线运动。
- 圆周运动:质点绕固定点做圆周运动,有向心加速度的概念。
向心加速度的大小和方向决定了质点在圆周运动中的加速度。
- 非匀速直线运动:质点在直线上做变速运动,速度随时间的变化率不为零。
二、牛顿三定律牛顿三定律是力学的基本定律,描述了物体的受力和运动之间的关系。
1. 第一定律(惯性定律):一个物体如果不受外力作用,将保持静止或匀速直线运动。
2. 第二定律(运动定律):物体所受的合力等于其质量乘以加速度。
F = ma,其中F为合力,m为物体质量,a为加速度。
3. 第三定律(作用-反作用定律):任何两个物体之间的相互作用力具有相等的大小和相反的方向。
三、动量守恒动量是物体运动状态的量度,定义为物体质量与速度的乘积。
在一个系统内,如果没有外力作用,系统的总动量将保持不变。
1. 动量:一个物体的动量p定义为p = mv,其中m为物体质量,v为物体速度。
2. 动量定理:物体所受合外力的时间积分等于物体的动量变化。
∑Fdt = Δp,其中∑F为所受合外力,t为时间。
第三节力学基础知识在送电线路的施工或运行过程中,无论是杆塔的组立还是导线的施放与紧线或拉线的制作,力学现象无处不在,所以作为送电工需要比其他工种掌握更多的力学知识。
本节从了解力学研究对象开始,用表格化的方法,介绍静力学、动力学、材料力学和土力学等方面的基本知识。
一、力学的研究对象与分类1、力学的研究对象力学是物理学的一个分支,是研究力和机械运动的学科。
(1)机械运动的概念。
一个物体对另一个物体的空间位置随时间连续变化或物体内部各部分之间相对位置发生变化的过程都称为机械运动。
这种运动包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止则是其中的一种特殊情况。
机械运动有两种最简单的形式,即平动和转动,物体的其他复杂运动一般都可以看做是这两种运动合成的结果。
(2)力的概念。
力是物体间的相互作用,是使物体发生形变或使物体运动状态改变即产生加速度的原因。
力的大小、方向、作用点称为力的三要素,力是一个矢量;经常用图示法表示力的三要素,即用有向线段长度按比例表示力的大小,有向线段的箭头表示力的方向,线段的起点或终点表示力的作用点。
力的单位是牛顿。
(3)力学的研究对象。
力是不能离开物体而独立存在的,而且有受力物体必然有施力物体。
力的作用离不开时间和空间,所以力学的研究对象是受力作用的物体及其在时间跨度和空间范围内运动状态变化(包括平衡和静止)的规律。
2、力学的分类(1)按物体的运动状态分类。
力学可分为静力学、运动学和动力学。
静力学研究力的平衡或物体的静止问题;运动学只研究物体怎样运动,不讨论物体与所受力的关系;动力学则讨论物体运动和受力的关系。
(2)按研究对象的类别分类。
力学可分为固体力学、流体力学和一般力学三个分支。
属于固体力学的有材料力学、结构力学、弹性力学、塑性力学、断裂力学等;属于一般力学的有理论力学、分析力学、刚体动力学、陀螺力学、振动理论、运动稳定性等。
(3)按力学在工程技术上的应用分类。
力学在工程力学或应用力学方面有各个分支,如岩石力学、土力学、爆炸力学、复合材料学、工业空气动力学、环境空气动力学等。
力学计算基础
力学计算是物理学中一个重要分支,也是工程学及技术应用中重要的一部分。
它用数学语言来描述物理系统的运动、受力、变形等过程,从而求解系统力学问题。
它对于解决结构分析、动力学分析、结构优化等问题具有重要的价值。
因此,了解力学计算的基础知识是非常重要的。
力学计算的基础要求理解力学中的本质,并掌握力学计算方法和技巧。
其中,力学计算本质包括系统力学、传统力学、现代力学和应力/受力等方面,这些都是力学计算的重要基础。
其次,力学计算的方法包括数值分析方法、不等式限制法、动态稳定性分析方法、模型设计等,用来求解系统力学问题。
此外,技巧方面也必不可少,比如有关力学的几何描述技巧、可靠性技巧、模型设计技巧等。
力学计算的基础要求还包括对计算工具的熟悉,如计算机软件,尤其是CAD设计软件,以及有关数据处理软件和统计软件。
通过这些软件,可以方便地完成数据收集、分析处理等步骤,大大加快力学计算效率。
此外,要熟悉各种力学计算规范,如有关结构安全认证的国家标准。
这些规范对于严格管理系统力学计算的质量非常重要,并为有关部门提供重要的技术参考。
以上就是力学计算的基础知识,如果要深入研究力学计算,还需要理解系统力学、拉格朗日力学、弹性力学、结构动力学、激励力学等,以及相应的数学建模方法。
总而言之,了解力学计算的基础知识有助于更好地掌握力学计算技术,并可以更有效地解决系统力学问题,最终提高工程中的精确度和可靠性。