第七讲 计算流体动力学基础
- 格式:pptx
- 大小:4.73 MB
- 文档页数:58
流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
计算流体动力学概述1 什么是计算流体动力学计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。
CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。
通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。
还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。
此外,与CAD联合,还可进行结构优化设计等。
CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。
但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。
对于非线性情况,只有少数流动才能给出解析结果。
实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。
然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。
此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。
而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。
就好像在计算机上做一次物理实验。
例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。
第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。
本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。
基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。
二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。
du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。
第七章 粘性流体动力学基础实际流体都具有粘性,而在研究粘性较小的流体的某些流动现象时,可将有粘性的实际流体近似地按无粘性的理想流体处理。
例如,粘性小的流体在大雷诺数情况下,其流速和压强分布等均与理想流体理论十分接近。
但在研究粘性小的流体的另一些问题时,与实际情况不符,如按照理想流体理论得到绕流物体的阻力为零。
产生矛盾的主要原因是未考虑实际流体所具有的粘性对流动的影响。
本章,首先建立具有粘性的实际流体运动微分方程,并介绍该方程的在特定条件下的求解。
由于固体边界对流体与固体的相互作用有重要的影响,本章后面主要介绍边界层的一些基本概念、基本原理和基本的分析方法。
§7.1 纳维—斯托克斯方程7.1.1 粘性流体的应力实际流体具有粘性,运动时会产生切应力,它的力学性质不同于理想流体,在作用面上的表面应力既有压应力,也有切应力。
在流场中任取一点M ,过该点作一垂直于z 轴的水平面,如图7-1 所示。
过M 点作用于水平面上的表面应力p n 在x 、y 、z 轴上的分量为一个垂直于水平面的压应力p zz 和两个与水平面相切的切应力τzx 、τzy 。
压应力和切应力的下标中第一个字母表示作用面的法线方向,第二个字母表示应力的作用方向。
显然,通过M 点在三个相互垂直的作用面上的表面应力共有九个分量,其中三个是压应力p xx 、p yy 、p zz ,六个是切应力τxy 、τxz 、τyx 、τyz 、τzx 、τzy ,将应力分量写成矩阵形式:图7-1 作用于水平面的表面应力⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ττττττzz zyzxyz yy yxxz xy xx p p p (7-1) 九个应力分量中,由于τxy =τyx 、τyz =τzy 、τzx =τxz ,粘性流体中任意一点的应力分量只有6个独立分量,即τxy 、τyz 、τzx 、p xx 、p yy 、p zz 。
7.1.2 应力形式的运动方程在粘性流体的流场中,取一以点M 为中心的微元直角六面体,其边长分别为dx 、dy 、 dz 。