(完整版)AD、DA转换原理数模、模数转换
- 格式:ppt
- 大小:1.39 MB
- 文档页数:62
第12章数/模(D/A)和模/数(A/D)转换主要内容:(1):D/A是将数字量转换成模拟量。
(2): A/D是将模拟量转换成数字量。
12.1概述本章主要讨论数/模和模/数转换器的原理及应用。
图12-1 A/D、D/A转换器在生产过程中的应用12.2数/模转换器(D/A转换器)12.2.1D/A转换器的构成1.R-2RT型网络D/A转换器的基本原理它由模拟电子开关、T型电阻网络、基准电源和运算放大器等几部分组成。
12-2 4位梯形电阻网络D/AA点的总电流可表示为32103210 0123 22223210(2222)321032U U U UR R R RD D D DR R R RUR D D D DRI I I I I∑=+++=+++=+++求和运算放大器的作用是将求和后的电流I转换成模拟电压输出,其输出电压为fRfffRDDDDRURIRIUo)2222(201122333+++-=-=-=∑(12-2) 电阻网络D/C可以做到n位,且R f =R/2,此时对应的输出电压为)2222(20112211DDDDUUonnnnnR++++-=---- (12-3)输出的模拟电压正比于输入的数字信号,这样就实现了数字信号到模拟信号的转换。
(12-1)2.倒T型电阻网络D/A转换器分别从虚线A、B、C、D处向右看的二端网络等效电阻都是R,则从参考电压端输入的电流为RVI REFREF=图12-3倒T型电阻网络D/A转换器从图12-3所示电路U REF向左看,其等效电路如图12-4所示,等效电阻为R,因此总电流I=U REF/R。
图12-4 倒T 型电阻网络所有Si 都接0位的简化等效电路各支路电流自左向右依次为:R V I I RV I I R V I I RV I I REFREF REFREF REFREF REFREF 161618814412210123========则电路中电流i 的大小取决于电路中开关(数字信号)的状态,其合成电流为0011223301233103221041111()16842(2222)2REFREF i I d I d I d I d V d d d d RV d d d d R=+++=+++=⋅+⋅+⋅+⋅ 集成运算放大器的输出电压u o 为321032104(2222)2REF F o F F F V R u R i R i d d d d R=-=-=-⋅+⋅+⋅+⋅ 将上述结论推广到n 位倒T型电阻网络D/A 转换器,同学们可以自己推算一下。
AD和DA的工作原理AD和DA的工作原理AD:模数转换,将模拟信号变成数字信号,便于数字设备处理。
DA:数模转换,将数字信号转换为模拟信号与外部世界接口。
具体可以看看下面的资料,了解一下工作原理:1. AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。
这类AD速度比逐次比较型高,电路规模比并行型小。
AD_DA原理及主要技术指标AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模拟转换器。
AD将模拟信号转换为数字信号,而DA则将数字信号转换为模拟信号。
两者在数字系统与模拟系统之间起着重要的桥梁作用。
本文将介绍AD_DA的原理及主要技术指标。
AD原理:AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的数字信号。
在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。
主要技术指标:1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常见的有8位、10位、12位、16位等。
位数越大,分辨率越高,对信号的重建越精准。
2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。
采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混叠效应。
3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频率范围。
带宽越大,能够处理的信号频率范围越宽。
4.功耗:功耗是指AD转换器在工作过程中消耗的电能。
低功耗的AD转换器具有节能环保的特点。
5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保量化器能够准确对信号进行量化,有利于提高AD转换器的性能。
DA原理:DA原理是将数字信号转换为模拟信号的过程。
在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。
主要技术指标:1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。
分辨率越高,输出模拟信号的精度越高。
2.采样率:采样率指的是DA转换器每秒从数字输入读取的次数,常用单位为Hz。
采样率决定了DA转换器能够输出多少个模拟信号样本。
3.输出精度:输出精度指的是DA转换器输出模拟信号与所期望模拟信号之间的偏差。
输出精度越高,输出模拟信号的准确性越高。
4.失真度:失真度是指DA转换器输出的模拟信号与原始模拟信号之间的差异。
AD和DA的工作原理AD和DA是模数转换和数模转换的简称,分别代表模数转换器(Analog-to-Digital Converter)和数模转换器(Digital-to-Analog Converter)。
AD用于将模拟信号转换为数字信号,而DA则是将数字信号转换为模拟信号,两者是相对的过程。
AD的工作原理:AD转换器的作用是将输入的模拟信号,通过一定的采样和量化方法,转换为数字形式的信号,以便于数字设备进行处理和存储。
AD转换器通常分为两个主要阶段:采样和量化。
1.采样:AD转换器首先对输入信号进行采样,即按照一定的时间间隔对连续模拟信号进行抽样。
采样的频率也被称为采样率,通常用赫兹(Hz)表示。
采样率决定了输入信号中能够被留存下来的频率范围。
2.量化:采样后的模拟信号将被输入到量化器中。
量化是将连续的模拟信号转换成离散的数字信号的过程。
在这个过程中,AD转换器将把输入的模拟信号分成一定数量的等级,并为每个等级分配一个数字代码。
采样和量化的过程可以通过二进制表示来完成,其中最常见的是通过ADC(模数转换器)将模拟信号转换为二进制数。
DA的工作原理:DA转换器的作用是将数字信号转换为模拟信号,以便于与模拟设备进行连接和交互。
DA转换器通常包含两个主要部分:数字信号处理和模拟输出。
1.数字信号处理:DA转换器首先接收到一串数字信号,这些信号由计算机或数字设备产生。
这些信号是基于离散的数字表示,通常使用二进制数表示。
DA转换器将会对这些数字信号进行处理,比如滤波、重采样等,以确保生成的模拟信号质量和稳定性。
2.模拟输出:处理后的数字信号被输入到DAC(数模转换器),将数字信号转换为模拟信号。
DAC将根据数字信号的数值,通过一定的电流或电压生成模拟信号。
这些模拟信号将与各种模拟设备进行连接,例如音频设备、电机控制等。
需要注意的是,AD和DA转换的精度和速度是非常重要的参数。
转换器的精度是指转换器所能提供的输出与输入之间的误差。
数模转换与模数转换器的原理与设计数模转换和模数转换器是数字电子技术中常用的重要组件,是将模拟信号转换为数字信号或数字信号转换为模拟信号的关键设备。
在本文中,我们将介绍数模转换器(DA转换器)和模数转换器(AD转换器)的原理和设计。
一、数模转换器的原理与设计数模转换器(DA转换器)是将数字信号转换为模拟信号的设备。
它将数字信号按照一定的规则转换为模拟电压或电流输出,实现数字信号到模拟信号的转换。
数模转换器主要包括数字输入端、模拟输出端、数字控制电路和模拟输出电路。
数模转换器的原理是通过将数字输入信号通过根据控制信号的高低电平来控制开关电路的通断状态,由此来改变输出端的电压或电流。
常用的数模转换器有R-2R阻网络转换器、串行输入并行输出型转换器、并行输入串行输出型转换器等。
设计数模转换器时需要考虑以下几个要素:1. 分辨率:定义了转换器的精度,通常用比特数(Bit)来表示。
较高的分辨率意味着更精确的模拟输出。
2. 参考电压:转换器需要参考电压用于模拟输出的范围。
参考电压的选择需要根据具体应用场景来确定,通常为标准电压。
3. 输出范围:定义了模拟输出信号的最小和最大电压或电流值,用于确定模拟输出信号的幅值。
4. 更新速率:指的是数模转换器完成一次转换所需的时间,通常用赫兹(Hz)表示。
高的更新速率使得转换器能够快速响应输入信号的变化。
二、模数转换器的原理与设计模数转换器(AD转换器)是将模拟信号转换为数字信号的设备。
它将连续变化的模拟输入信号按照一定的规则转换为离散的数字输出信号。
模数转换器主要包括模拟输入端、数字输出端、模拟输入电路和数字控制电路。
模数转换器的原理是将模拟输入信号进行采样和量化,然后将量化结果转换为二进制数字输出。
常用的模数转换器有逐次逼近型转换器、积分型转换器、闪存型转换器等。
设计模数转换器时需要考虑以下几个要素:1. 采样率:采样率是指模数转换器对模拟输入信号进行采样的频率。
较高的采样率能够更准确地还原模拟输入信号。
AD和DA转换器的基本原理在现代电子设备中,AD(模数)和DA(数模)转换器是至关重要的部件。
它们在各种应用中起着核心的作用,例如音频处理、传感器信号转换、通信系统等。
本文将介绍AD和DA转换器的基本原理,以及它们在实际应用中的关键性。
AD转换器(Analog-to-Digital Converter)是实现模拟信号到数字信号转换的器件。
它能将连续的模拟信号转换成离散的数字信号。
AD转换器通常由样本保持电路、量化电路和编码电路组成。
首先,样本保持电路将连续的模拟信号抽样并保持在一定的时间段内。
然后,量化电路将抽样到的模拟信号离散化,并将其表示为数字化的数值。
最后,编码电路将离散化的数值转换为二进制码,以便计算机或其他数字系统能够处理。
AD转换器的原理基于对信号的近似,即通过将信号离散化,以获得与实际信号相近的数字表示。
这一过程主要涉及到两个关键概念:采样率和分辨率。
采样率指的是在一定时间内对模拟信号进行采样的频率,通常以赫兹为单位表示。
采样率越高,对模拟信号的抽样越频繁,数字信号的重构越精确。
分辨率则表示AD转换器可以表示的最小电平差异。
分辨率越高,AD转换器能够更准确地表示模拟信号的细节和变化。
在实际应用中,AD转换器广泛应用于数据采集、音频信号处理和传感器信号转换等领域。
以音频处理为例,AD转换器能够将模拟的声音信号转换为数字形式,以便被数字信号处理器(DSP)进行各种音频效果的实时计算和调整。
此外,AD转换器还被用于传感器信号的转换,如温度传感器、压力传感器等。
通过与微处理器的配合,AD转换器能够将传感器输出的模拟信号转换为数字信号,用于实时监测和控制。
相对于AD转换器,DA转换器(Digital-to-Analog Converter)的功能则相反。
它将数字信号转换成模拟信号,以便于在实际电路中进行处理或输出。
DA转换器通常由数字编码电路和模拟滤波电路组成。
数字编码电路接收计算机或其他数字系统输出的二进制码,并将其转换成相应的电压或电流值。
第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。
ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。
三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。
第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。
第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。
第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。
(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。
DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。
实验九 数/模(D/A )和模/数(A/D )转换应用一、实验目的1、通过实验了解A/D 和D/A 转换特性。
2、了解A/D 和D/A 转换器互相连接的工作情况。
二、实验原理数/模转换器是有一个输出端﹑几个输入端的器件,其输出为模拟电压,它正比于加在 n 个输入端的n 位二进制数。
如8位的D/A 转换器,它有8个输入端,每个输入端是8位二进制数的一位,并有一个模拟输出端,输入可有82=256个不同的二进制组态,输出为256个电压之一。
所以输出并非真正的模拟量,即输出电压不是整个电压范围内的任意值,而只能是256个可能值。
图9-1是由R —2R 梯形电阻网络构成的4位D/A 转换器。
其中B3﹑B2﹑B1﹑B0为四个数据输入端,各端均可通过开关接地或接电源Vcc 。
某输入端若接地,则该位为0,若接Vcc 则该位为1。
若输入二进制码为B 3B 2B 1B 0=1000 ,由戴维南定理可推导出输出模拟电压V o=Vcc/2,同理可推导出输入为0100时,V o=Vcc/4等等。
图9-1 4位R-2R 梯形网络D/A 转换原理实验用的D/A 转换器为DAC0801集成8位D/A 转换器,它的二进制各位开关是由双极型晶体管构成的电子开关。
D/A 转换器产生的输出电流为Io ,它正比于输入的二进制数。
n 位模/数转换器输出n 位二进制数值,它正比于加在输入端的模拟电压。
这里只介绍ADC0804A/D 转换器原理,它是用逐次逼近原理构成的。
其主要组成部分有D/A 转换器﹑逐次逼近寄存器﹑移位寄存器﹑比较器﹑时钟发生器和控制电路。
它的工作过程是:转换开始时由时钟节拍控制动作,第一个时钟来时移位寄存器状态为10000000,并送给逐次逼近寄存器(SAR ),由SAR 将10000000传给D/A 转换器输入端,使D/A 转换器产生输出模拟电压V ST ,V ST 与A/D 转换器输入的模拟量V I 进行比较。
若V ST ﹤V I ,则比较器输出V C 为高电平1,若V ST ﹥V I ,则比较器输出V 为低电平0。
AD_DA转换基本原理AD-DA转换是模拟信号与数字信号之间的转换过程,AD是模拟信号转换为数字信号的过程,DA是数字信号转换为模拟信号的过程。
模拟信号是连续变化的电信号,而数字信号是离散的电信号。
AD-DA转换器在很多领域中被广泛应用,如通信、音频处理、图像处理等。
AD转换的基本原理是使用采样和量化的方法将连续变化的模拟信号转换为离散的数字信号。
采样是指将连续的信号在时间上进行离散化,将信号在一定的时间间隔内进行采集。
量化是指对采样后的信号进行离散化处理,将连续的信号值映射到一组离散值。
采样和量化的间隔称为采样周期和量化间隔,采样周期越小,量化间隔越小,转换精度越高。
在AD转换过程中,首先需要选择一个足够高的采样率,以保证对原始信号的采样能够准确还原。
然后将连续的模拟信号用采样周期将其分为离散的信号样本,每一个样本对应一个离散时间点。
接下来,在每一个采样时间点,通过量化器将信号的幅度映射为一个离散的数字值。
量化的精度决定了数字信号的分辨率和动态范围,一般以位表示,如8位、16位等。
DA转换的基本原理是将离散的数字信号转换为连续变化的模拟信号。
在DA转换过程中,首先需要进行数字信号的解码,将离散的数字值转换为连续的数值。
然后使用保持电路(sample-and-hold)将这些连续的数值保持为恒定的电压信号。
接着,使用模拟滤波器对保持的数值进行平滑处理,去除高频分量和其他干扰。
最后,通过放大器将平滑后的信号放大到合适的幅度,得到模拟输出信号。
在DA转换过程中的重要环节是数字信号的解码和模拟滤波器的设计。
解码过程需要将离散的数字值映射为一组连续的数值,这通常通过查表或者插值的方式实现。
模拟滤波器的设计目的是对离散的数字信号进行平滑处理,去除不需要的高频分量和噪声。
滤波器的选择取决于系统的需求,可以是低通滤波器、带通滤波器等。
AD-DA转换器的性能主要由转换精度、抖动、信噪比和带宽等参数决定。
转换精度越高,代表着数字信号与模拟信号的差距越小。