第9章数字信号处理复习课概论
- 格式:ppt
- 大小:4.68 MB
- 文档页数:105
1如果信号的自变量和函数值都取连续值,则称这种信号为模拟信号或者称为时域连续信号,例如语言信号、温度信号等;2如果自变量取离散值,而函数值取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3如果信号的自变量和函数值均取离散值,则称为数字信号。
4数字信号是幅度量化了的时域离散信号。
5如果系统n 时刻的输出只取决于n 时刻以及n 时刻以前的输入序列,而和n 时刻以后的输入序列无关,则称该系统为因果系统。
6线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:_h(n)=0 , n<0。
7序列x (n )的傅里叶变换X (e j ω)的傅里叶反变换为:x (n )=IFT[X (e j ω)]=————————8序列x (n )的傅里叶变换X (e j ω)是频率的ω的周期函数,周期是2π。
这一特点不同于模拟信号的傅里叶变换。
9序列x (n )分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称性,虚部和j 一起对应的傅里叶变换具有共轭反对称性。
10序列x (n )的共轭对称部分x e (n )对应着X (e j ω)的实部X R (e j ω),而序列x (n )的共轭反对称部分x o (n )对应着X (e j ω)的虚部(包括j)。
11时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为TF s s ππ22==Ω,因此由模拟信号进行采样得到时域离散信号时,同样要满足采样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会差生频域混叠现象,频率混叠在Ωs/2附近最严重,在数字域则是在π附近最严重。
12因果(可实现)系统其单位脉冲响应h(n)一定是因果序列,那么其系统函数H(z)的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆内,收敛域在某个圆外。
13系统函数H(z)的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。
0.3 数字信号处理的特点(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。
1. 傅里叶变换有限长序列 可看成周期序列的一个周期; 把 看成 的以N 为周期的周期延拓。
有限长序列的离散傅里叶变换(DFT ):① 长度为N 的有限长序列 x(n) ,其离散傅里叶变换 X(k) 仍是一个长度为N 的有限长序列;② x(n)与X(k)是一个有限长序列离散傅里叶变换对,已知x(n) 就能唯一地确定 X(k);同样已知X(k)也就唯一地确定x(n)。
实际上x(n)与 X(k) 都是长度为 N 的序列(复序列)都有N 个独立值,因而具有等量的信息; ③ 有限长序列隐含着周期性。
)(n x )(n x )(~n x )(~n x ⎩⎨⎧===)())(()()(~)())(()(~n R n x n R n x n x n x n x N N N N ⎪⎪⎩⎪⎪⎨⎧====∑∑-=--=101)(1)]([)()()]([)(N k nk NN n nk NW k X N k X IDFT n x W n x n x DFT k X2.循环卷积(有可能会让画出卷积过程或结果)循环卷积过程为:最后结果为:3.(见课本)课本3、线性卷积(有可能会让画出卷积过程或结果)以下为PPT上的相关题目:4.计算分段卷积:重叠相加法和重叠保留法(一定会考一种)重叠相加法解题基本步骤:将长序列均匀分段,每段长度为M;基于DFT快速卷积法,通过循环卷积求每一段的线性卷积;依次将相邻两段的卷积的N-1个重叠点相加,得到最终的卷积结果。
4.级联、并联、直接形(画图) 以下为课后作业相关题目:1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(-+--n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
解: 将原式移项得)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y将上式进行Z 变换, 得到121)(31)()(81)(43)(---+=+-zz X z X z z Y z z Y z Y21181431311)(---+-+=z z z z H(1) 按照系统函数H(z), 根据Masson 公式, 画出直接型结构如题1解图(一)所示。
数字信号处理复习要点数字信号处理主要包括如下部分:1、离散时间信号与系统的基本理论、信号的频谱分析(序列傅立叶变换)2、离散傅立叶变换、快速傅立叶变换3、数字滤波器的设计一、离散时间信号与系统的基本理论、信号的频谱分析1、离散时间信号:1)离散时间信号。
时间是离散变量的信号,即独立变量时间被量化了。
信号的幅值可以是连续数值,也可以是离散数值。
2)数字信号。
时间和幅值都离散化的信号。
(本课程主要讲解的实际上是离散时间信号的处理)3)离散时间信号可用序列来描述4)序列的卷积和(线性卷积)5)几种常用序列a)单位抽样序列(也称单位冲激序列),b)单位阶跃序列,c)矩形序列,d)实指数序列,6)序列的周期性:所有n存在一个最小的正整数N,满足:x(n)=x(n+N),则称序列x(n)是周期序列,周期为N。
(注意:按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的)7)时域抽样定理:一个限带模拟信号x a(t),若其频谱的最高频率为f h,对它进行等间隔抽样而得x(n),抽样周期为T,或抽样频率为Fs=1/T;只有在抽样频率Fs2f h时,才可由x(n)准确恢复x a(t)。
①理想抽样②频谱周期延拓③信号重建(通过理想低通滤波器)8)序列的运算规则2、离散时间信号的频域表示(序列傅立叶变换)1)定义正变换;连续、周期(周期为2)逆变换;2)DTFT性质3、序列的Z变换1)正变换:(1)Z变换的收敛域收敛区域要依据序列的性质而定。
同时,也只有Z变换的收敛区域确定之后,才能由Z变换唯一地确定序列。
一般来来说,序列的Z变换的收敛域在Z平面上的一环状区域:*有限长序列:,*右序列:,|Z|>Rx-*左序列:,(|z|<Rx+,N2>0时:0≤|Z|< Rx+;N2≤0时: 0<|Z|< Rx+)*双边序列:,结论: 1 序列ZT为有理分式的收敛域以极点为边界(包括0,∞);2 ②收敛域内不能包括任何极点,可以包含零点;3 ③相同的零极点分别可能对应不同的收敛域,即:不同的序列可能有相同的ZT;④收敛域汇总:右外、左内、双环、有限长Z平面。
大二上学期末数字信号处理详细攻略数字信号处理是电子信息工程专业的一门重要课程,其涉及的知识点繁多,需要学生投入大量时间来学习和掌握。
本文将就大二上学期末数字信号处理的复习攻略进行详细介绍,希望能够帮助同学们更好地备战考试。
一、复习内容梳理学期末考试的复习内容主要包括数字信号的基本概念、离散时间信号和系统、Z变换、频域分析等。
在复习之前,可以先将课程知识内容进行梳理,将各个章节的重点知识点和公式整理出来,以便于系统地复习。
二、重点知识梳理1. 数字信号基本概念数字信号的采样、量化、编码等基本概念是数字信号处理的基础,需要重点复习和掌握。
了解数字信号的时域和频域特性,以及数字信号与模拟信号的区别和联系。
2. 离散时间信号和系统掌握离散时间信号的表示方法、运算规律,以及对离散时间系统的性质和分类等内容。
需要重点理解差分方程、单位脉冲响应、系统的稳定性等知识点。
3. Z变换Z变换是数字信号处理中的重要工具,需要掌握Z变换的性质、定理和运算方法,了解Z变换与离散时间信号的关系,能够灵活运用Z 变换进行信号分析和系统设计。
4. 频域分析理解离散时间信号的傅里叶变换和频谱特性,掌握频率选择性滤波器、数字滤波器设计等相关内容。
需要重点复习频域分析的基本原理和方法,熟练掌握频域性能参数的计算和应用。
三、复习方法总结1. 制定复习计划根据考试时间和复习内容制定合理的复习计划,合理安排每天的复习时间,确保每个知识点都有足够的复习时间。
2. 多做习题通过大量做习题,能够更好地巩固所学知识,提高解题能力。
可以选择课后习题、往年试卷等进行练习,加强对知识点的理解和运用能力。
3. 制作复习笔记在复习过程中,可以适当记录重点知识、难点和公式,制作复习笔记。
通过整理和归纳,有助于加深对知识点的理解和记忆。
4. 小组学习讨论可以和同学们组成学习小组,互相讨论、交流,共同解决问题,不断总结和提高。
四、复习注意事项1. 注意复习效率在复习过程中,要注重复习效率,注意休息和调整状态,保持良好的学习状态。
数字信号处理复习大纲第一章离散信号和系统的时域分析一、考核知识点:1、时域离散信号分析:时域离散信号与模拟信号的关系,与数字信号的关系;常用的典型序列δ(n),u(n),R N(n),以及它们之间的关系;正弦序列,复指数序列,周期序列信号的特点,特别是周期序列中正弦序列周期性的判断;用单位采样序列来表示任意序列;序列的加法、乘法、翻转、移位等运算2、时域离散系统分析:会判断一个系统的线性、移不变性质;线性时不变系统得输入输出之间的关系:线性时不变系统的输出等于输入序列和该系统的单位取样响应的卷积,以及线性卷积的计算方法;系统因果性、稳定性的判断条件(包括收敛域情况)。
3、时域离散系统的输入输出描述法:线性常系数差分方程;差分方程的表达形式4.理解对连续时间信号抽样后引起的频谱变化,掌握奈奎斯特抽样定理总结系统的时域和频域表达方法第1章离散信号和系统的频域分析一、考核知识点:1. 序列傅立叶变换的定义及性质:序列傅立叶变换的定义,逆变换的定义();序列傅立叶变换存在的条件;序列傅里叶变换的性质:周期性(Periodic)、线性(Linearity)、时移与频移(Time shifting and Frequency shifting)、时间反转(Time Reversal)、频域微分(Differentiation in frequency)、帕斯维尔(Parseval)定理(Parseval’s Theorem)、卷积定理(The Convolution Theorem)、对称性(特别是实序列的傅立叶变换的*******)2、周期序列的傅立叶级数及傅立叶变换表示:领会理解傅立叶级数与傅立叶变换3、序列的Z变换:Z变换的定义、存在条件、收敛域(特殊序列的Z变换例如********);性质;三种方法求逆Z变换(留数法、部分分式法、长除法)(, p73 23,24题**************)4、利用Z变换分析信号与系统的频域特性:零、极点对幅频特性的影响5、最小相位系统和全通系统的特点和应用第2章离散傅立叶变换(DFT)*********1、考核知识点:2、离散傅立叶变换的定义:DFT的定义、特别是逆变换;与Z变换、傅立叶变换(********)以及离散傅立叶级数之间的关系;DFT隐含的周期性;3、离散傅立叶变换的基本性质:线性性质、循环移位性质(p106 4,8题*********)、循环卷积定理(循环卷积的计算)、对称性质4、频率域采样:频域采样的条件即不产生失真的条件(N******)5、DFT的应用:线性卷积和循环卷积的关系(即循环卷积代替线性卷积的条件*********)。