广东文科数学高考小题复习回顾.学习资料
- 格式:doc
- 大小:1.46 MB
- 文档页数:13
正视图 侧视图俯视图 第6题图2013年普通高等学校招生全国统一考试(广东卷)数学(文科)逐题详解【详解提供】广东佛山市南海区南海中学 钱耀周参考公式:椎体的体积公式13V Sh =,其中S 表示椎体的底面积,h 表示锥体的高.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,S x x x x =+=∈R ,{}2|20,T x x x x =-=∈R ,则ST =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】A ;易得{}2,0M =-,{}0,2N =,所以{}0S T =,故选A .2.函数()()lg 11x f x x +=-的定义域是( )A . ()1,-+∞B .[)1,-+∞C .()()1,11,-+∞ D .[)()1,11,-+∞【解析】C ;依题意1010x x +>⎧⎨-≠⎩,解得1x >-且1x ≠,故选C . 3.若()34i x yi i +=+,,x y ∈R ,则x yi +的模是( )A . 2B .3C .4D .5【解析】D ;依题意34y xi i -+=+,所以4,3x y ==-, 所以43x yi i +=-的模为5,故选D . 4.已知51sin 25πα⎛⎫+=⎪⎝⎭,那么cos α= ( ) A . 25-B .15-C .15D .25【解析】C ;由诱导公式可得51sin cos 25παα⎛⎫+== ⎪⎝⎭,故选C . 5.执行如图所示的程序框图,若输入n 的值为3,则输出的s 的值是 ( )A . 1B .2C .4D .7【解析】C ;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==; 第三次循环后:4,4s i ==;循环终止,故输出4,选C . 6.某三棱锥的三视图如图所示,则该三棱锥的体积是 ( )A .16 B .13C .23D .1【解析】B ;由三视图可知该三棱锥的底面积为12,高为2,所以1112323V =⨯⨯=,故选B .7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A . 0x y +-=B .10x y ++=C .10x y +-=D .0x y +=【解析】A ;数形结合!画出直线和圆,不难得到切线方程为y x =-+,故选A . 8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】B ;ACD 是典型错误命题,选B .9.已知中心在原点的椭圆C 的右焦点为()1,0F ,离心率等于12,在椭圆C 的方程是 ( ) A . 22134x y += B .2214x += C .22142x y +=D .22143x y +=【解析】D ;依题意1c =,12e =,所以2a =,从而24a =,2223b a c =-=,故选D . 10.设a 是已知的平面向量且0a ≠,关于向量a 的分解,有如下四个命题:① 给定向量b ,总存在向量c ,使a b c =+;② 给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+; ③ 给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a b c λμ=+; ④ 给定正数λ和μ,总存在单位向量b 和单位向量c ,使a b c λμ=+.上述命题中的向量b ,c 和a 在同一平面内且两两不共线,A . 1 B .2C .3D .4【解析】B ;考查平面向量基本定理,成立的有①②,故选B .说明:对于④,比如给定a 和1λμ==,就不一定存在单位向量b 和单位向量c ,使a b =+对于③,给定单位向量b 和正数μ,可知b λ的方向确定,c μ的模确定,c AB μ<时,等式不能成立. 二、填空题:本题共5小题,考生作答4小题,每小题5分,共20分(一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234a a a a +++=________. 【解析】15;依题意2342,4,8a a a =-==-,所以1234124815a a a a +++=+++=. 12.若曲线2ln y ax x =-在点()1,a 处的切线平行于x 轴,则a =______.【解析】12;求导得12y ax x '=-,依题意210a -=,所以12a =. 13. 已知变量,x y 满足约束条件30111x y x y -+≥⎧⎪-≤≤⎨⎪≥⎩,则z x y =+的最大值是____.【解析】5;画出可行域如图所示,其中z x y =+取得最大值时的点为()1,4A ,且最大值为5.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的极坐标方程为2cos ρθ=,以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为_____________.A EDCB第15题图【解析】1cos sin x y θθ=+⎧⎨=⎩(θ为参数);曲线C 的普通方程为222x y x +=,即()2211x y -+=,圆心为()1,0,半径1r =,所以曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数).15. (几何证明选讲选做题)如图,在矩形ABCD 中,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_________.;依题意AC =在Rt ABC ∆中,由射影定理可得,2AB AE AC =⋅,所以2AE =(也可以由30ABC ∠=︒得到),在ADE ∆中,由余弦定理可得 2222cos30ED ADAE AD AE =+-⋅︒3219234224=+-⨯⨯⨯=,所以2ED =. 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求3f π⎛⎫⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)133124f ππππ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭; (Ⅱ) 因为3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,所以4sin 5θ=-, cos sin 66124f ππππθθθθθ⎛⎫⎛⎫⎛⎫-=--=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭341555⎛⎫=+-=- ⎪⎝⎭.17.(本小题满分13分)从一批苹果中,随机抽取50个,其质量(单位:克)的频数分布表如下:(Ⅰ) 根据频率分布表计算苹果的重量在90,95的频率;(Ⅱ) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(Ⅲ) 在(Ⅱ)中抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有1个的概率. 【解析】(Ⅰ)依题意,苹果的重量在[)90,95的频率为202505=; (Ⅱ) 抽样比为415155=+,所以重量在[)80,85的有1515⨯=个. (Ⅲ) 设抽取的4个苹果中,重量在[)80,85的为a ,重量在[)95,100中的为,,b c d .从中任取2个,包FABC FDEG 图1图2含的基本事件有:{}{}{}{}{}{},,,,,,,,,,,a b a c a d b c b d c d ,共6个;满足重量在[)80,85和[)95,100中各有1个的基本事件为{}{}{},,,,,a b a c a d ,共3个.所以所求概率为3162=. 18.(本小题满分13分)如图1,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图2所示的三棱锥A BCF -,其中2BC =.(Ⅰ) 证明://DE 平面BCF ; (Ⅱ) 证明:CF ⊥平面ABF ; (Ⅲ) 当23AD =时,求三棱锥F DEG -的体积V . 【解析】(Ⅰ)方法一:(面面平行)在图1中,因为AD AE =,AB AC =,所以AD AEAB AC=,所以//DE BC ; 由翻折的不变性可知,在图2中,//DG BF ,因为DG ⊄平面BCF ,BF ⊂平面BCF所以//DG 平面BCF ,同理可证//GE 平面BCF ,又DG GE G =,所以平面//DGE 平面BCF 又DE ⊂平面DGE ,所以//DE 平面BCF .方法二:在图2中,由翻折不变性可知AD AE =,AB AC =,所以AD AEAB AC=,所以//DE BC , 因为DE ⊄平面BCF ,BC ⊂平面BCF ,所以//DE 平面BCF .(Ⅱ) 在图2中,因为12BF CF ==,2BC =,222BF CF BC +=,所以CF BF ⊥又CF AF ⊥,BF AF F =,所以CF ⊥平面ABF .(Ⅲ) 因为//GE CF ,由(Ⅱ)知CF ⊥平面ABF ,所以GE ⊥平面ABF ,所以GE ⊥平面DGF ,依题意可得1123DG GE AD ===,236GF AF AG =-=-=,所以1123636DGF S ∆=⨯⨯=,所以三棱锥F DEG -的体积113363324V =⨯⨯=. 20.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n S a n +=--,*n ∈N ,且2a 、5a 、14a 构成等比数列.(Ⅰ)证明:2a =; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【解析】(Ⅰ)在21441n n S a n +=--中令1n =,可得212441Sa =--,而20a >,所以2a =. (Ⅱ)由21441n n S a n +=--可得()214411n n S a n -=---(2n ≥).两式相减,可得22144n n n a a a +=--,即()2212n n a a +=+,因为0n a >,所以12n n a a +=+,于是数列{}n a 把第1项去掉后,是公差为2的等差数列.由2a 、5a 、14a 成等比数列可得25214a a a =,即()()2222624a aa +=+,解得23a =, 由2a =11a =,于是212a a -=,所以数列{}n a 是首项为1,公差为2的等差数列,所以()12121n a n n =+-=-. (Ⅲ)因为()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以()1223111111111111112335212122212n n a a a a a a n n n +⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PAPB ,其中,A B为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+ 又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.21.(本小题满分14分)设函数()32f x x kx x =-+()k ∈R . (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当0k <时,求函数()f x 在[],k k -上的最小值m 和最大值M . 【解析】(Ⅰ) 当1k =时, ()32f x x x x =-+,()2321f x x x '=-+因为()224310∆=--⨯⨯<,所以()0f x '>在R 上恒成立,所以()f x 在R 上单调递增. 所以()f x 的单调递增区间为(),-∞+∞,无递减区间.(Ⅱ) ()2321f x x kx '=-+,判别式()()22243143k k ∆=--⨯⨯=-当0∆≤,即0k <时,()0f x '≥ 在R 上恒成立,所以f 所以()f x 在[],k k -上的最小值()m f k k ==,最大值M = 当0∆>,即k <,令()0f x '=得1x =,2x = 因为()2321f x x kx '=-+的对称轴为3k x =,且恒过()0,1,画出大致图像如图所示,可知120k x x <<<,当x 变化时,()f x ',()f x 的变化如下表:由表可知,()(){}2min ,m f k f x =,()(){}1max ,M f k f x =-.因为()()()()32222222210f x f k x kx x k x k x -=-+-=-+>,所以()m f k k ==. 因为()()()()()()23232111111210f x f k x kx x k k x k x k k ⎡⎤--=-+---=+-++<⎣⎦, 所以()32M f k k k =-=--.综上所述,当0k <时,函数()f x 在[],k k -上的最小值()m f k k ==,最大值()32M f k k k =-=--.有错难免,不吝赐教。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
广东高考文科数学近7年试题分类汇编(1)1.集合与简易逻辑 N =(C )A .{11}x x -<≤B .{1}x x >C .{11}x x -<<D .{1}x x -≥(2008年高考广东卷第1小题)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是(D ) A. A B ⊆B. B C ⊆C. B ∪C = AD. A∩B = C(2009年高考广东卷第1小题).已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是 (B )【解析】由N= { x |x 2+x=0}{1,0}-得N M ⊂,选B.(2010年高考广东卷第1小题)若集合A ={0,1,2,3},B ={1,2,4},则集合A B =( A.)A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}(2010年高考广东卷第8小题) “x >0”是成立的( A.)A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件(2011年高考广东卷第2小题)已知集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为(C)A .4 B.3 C.2 D. 1(2012年高考广东卷第2小题)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =(A) A .{}2,4,6 B .{}1,3,5 C .{}1,2,4 D .U(2013年高考广东卷第1小题)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =(A)A .{0}B .{0,2}C .{2,0}-D .{2,0,2}- 2.复数 则b =( D ) A .2-B .12-C .12D .2(2008年高考广东卷第2小题)已知0<a <2,复数z = a + i (i 是虚数单位),则|z|的取值范围是( B ) A. (1,5)B. (1,3)C. (1D. (1(2009年高考广东卷第2小题)下列n 的取值中,使ni =1(i 是虚数单位)的是(C ) A.n=2 B .n=3 C .n=4 D .n=5(2011年高考广东卷第1小题)设复数z 满足iz = 1,其中i 为虚数单位,则z = (A) A .- i B .i C .- 1 D .1 (2012年高考广东卷第1小题)设i 为虚数单位,则复数34ii+=(D) A .43i -- B .43i -+ C .43i + D .43i -(2013年高考广东卷第3小题)若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是(D) A .2 B .3 C .4 D .5 3.函数 (2007年高考广东卷第3小题)若函数,则函数在其定义域上是( B )A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数(2007年高考广东卷第5小题)客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1上时到达内地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( C ) s s ss(2007年高考广东卷第21小题)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[11]-,上有零点,求a 的取值范围. 21解: 若0a =,则()23f x x =-,令3()0[1,1]2f x x =⇒=∉-,不符合题意, 故0a ≠当()f x 在 [-1,1]上有一个零点时,此时48(3)01112a a a ∆=++=⎧⎪⎨-≤-≤⎪⎩或(1)(1)0f f ∙-≤解得a =或15a ≤≤ 当()f x 在[-1,1]上有两个零点时,则48(3)01112(1)(1)0a a a f f ∙∆=++>⎧⎪⎪-≤-≤⎨⎪->⎪⎩解得7112215a a a a a a ⎧<>⎪⎪⎪≤-≥⎨⎪<>⎪⎪⎩或或即352a a -<> 综上,实数a的取值范围为([1,)-∞+∞ (别解:222230(21)32ax x a x a x +--=⇔-=-,题意转化为[1,1]x ∈-求23221xa x -=-的值域,令32[1,5]t x =-∈得276a t t=+-转化为勾函数问题) (2008年高考广东卷第8小题)命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A. 若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B. 若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C. 若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D. 若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数(2009年高考广东卷第4小题)若函数()y f x =是函数1xy a a a =≠(>0,且)的反函数,且(2)1f =,则()f x =(A ) A .x 2log B .x21 C .x 21log D .22-x 【答案】A 【解析】函数1xy a a a =≠(>0,且)的反函数是()log a f x x =,又(2)1f =,即log 21a =,所以,2a =,故2()log f x x =,选A.(2010年高考广东卷第2小题)函数()lg(1)f x x =-的定义域是( B ) A .(2,+∞) B .(1,+∞) C .[1,+∞) D .[2,+∞)(2010年高考广东卷第3小题)若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则(D )A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数,()g x 为奇函数(2010年高考广东卷第20小题)已知函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-. (1)求(1)f -,(2.5)f 的值;(2)写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性; (3)求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值. 解:(1)∵)2()(+=x kf x f ,且)(x f 在区间[0,2]时)2()(-=x x x f∴k k kf kf f -=-⋅⋅==+-=-)21(1)1()21()1(由)2()(+=x kf x f 得)(1)2(x f kx f =+ ∴kk f k f f 43)25.0(5.01)5.0(1)25.0()5.2(-=-⋅⋅==+=(2)若]2,0[∈x ,则]4,2[2∈+x ]4)2][(2)2[(1)2(1)(1)2(-+-+=-==+x x kx x k x f k x f∴当]4,2[∈x 时,)4)(2(k1)(--=x x x f若)0,2[-∈x ,则)2,0[2∈+x ∴)2(]2)2)[(2()2(+=-++=+x x x x x f ∴)2()2()(+=+=x kx x kf x f若)2,4[--∈x ,则)0,2[2-∈+x∴)4)(2(]2)2)[(2()2(++=+++=+x x k x x k x f∴)4)(2()2()(2++=+=x x k x kf x f ∵)2,4[)2,3[],4,2[]3,2(--⊂--⊂∴当]3,3[-∈x 时,⎪⎪⎩⎪⎪⎨⎧∈--∈--∈+--∈++=]3,2(),4)(2(1]2,0[),2()0,2[),2()2,3[),4)(2()(2x x x k x x x x x kx x x x k x f ∵0<k ,∴当)2,3[--∈x 时,)4)(2()(2++=x x k x f ,由二次函数的图象可知,)(x f 为增函数;当)0,2[-∈x 时,)2()(+=x kx x f ,由二次函数的图象可知,当)1,2[--∈x 时,)(x f 为增函数, 当)0,1[-∈x 时,)(x f 为减函数;当]2,0[∈x 时,)2()(-=x x x f ,由二次函数的图象可知,当)1,0[∈x 时,)(x f 为减函数;当]2,1[∈x 时,)(x f 为增函数;当]3,2(∈x 时,)4)(2(1)(--=x x kx f ,由二次函数的图象可知,)(x f 为增函数。
每年高考题目汇编一.集合与简易逻辑2,(2008年高考广东卷第1小题)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( ) A. A B ⊆B. B C ⊆C. B ∪C = AD. A ∩B = C3,(2009年高考广东卷第1小题).已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是 ( )4,(2010年高考广东卷第1小题)若集合A ={0,1,2,3},B ={1,2,4},则集合AB =( )A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 5,(2010年高考广东卷第8小题) “x >0”是“32x >0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件6,(2011年高考广东卷第2小题)已知集{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为( )A .4 B.3 C.2 D. 1二.复数7,(2007年高考广东卷第2小题)若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2-B .12-C .12D .28,(2008年高考广东卷第2小题)已知0<a <2,复数z = a + i (i 是虚数单位),则|z|的取值范围是( ) A. (1,5)B. (1,3)C. (1,5)D. (1,3)9,(2009年高考广东卷第2小题)下列n 的取值中,使n i =1(i 是虚数单位)的是 A.n=2 B .n=3 C .n=4 D .n=510,(2011年高考广东卷第1小题)设复数z 满足iz = 1,其中i 为虚数单位,则z = ( )A .- iB .iC .- 1D .1 三.向量11,(2007年高考广东卷第4小题)若向量a b ,满足1a b ==,a 与b 的夹角为60°,则aa ab +=··( ) A.12B.32C.312+D.212,(2008年高考广东卷第3小题)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a + 3b =( )A. (-5,-10)B. (-4,-8)C. (-3,-6)D. (-2,-4)13,(2009年高考广东卷第3小题)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a bA 平行于x 轴 B.平行于第一、三象限的角平分线 C.平行于y 轴 D.平行于第二、四象限的角平分线14,(2010年高考广东卷第5小题)若向量a =(1,1),b =(2,5),c=(3,x )满足条件 (8a -b )·c=30,则x =( ) A .6 B .5 C .4 D .315,(2011年高考广东卷第3小题)已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则 ( ) A .14 B.12C.1D. 2 四.框图16,(2007年高考广东卷第7小题)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1210A A A ,,,(如2A 表示身高(单位:cm )在[)150155,内的学生人数). 图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( ) A.9i < B.8i < C.7i < D.6i <开始输入1210A A A ,,,4s i == i s s A =+s 输出结束1i i =+否 是图2图150100 150 200 250 300 350400 450 500 550 600 145 150 155 160 165 170 175 180 185 190 195人数/人身高/cm17,(2008年高考广东卷第13小题)阅读下面的程序框图。
广东省高考文科数学知识点总结一、函数与方程1.一元二次方程及其图象:二次函数、平移、对称、判别式和解的性质、解的个数与情况分类。
2.初等函数:常函数、一次函数、幂函数、指数函数、对数函数、三角函数的定义、性质与图象。
3.函数的运算:函数的加、减、乘、除及复合运算。
4.反函数:反函数的存在条件、求法及性质。
5.函数的图象:函数与图象的关系、简单函数的图象与性质。
6.函数与方程组:二元一次方程组的解法,一元二次方程的解法、特殊解的性质。
7.应用题:实际问题与数学模型。
二、三角函数1.角度与弧度:角度的定义、正、余、割、余弦、正切、余切与弧度的关系。
2.常用角的三角函数值:30°、45°、60°的正弦、余弦和正切值,0°、90°、180°、270°的三角函数值。
3.三角函数的性质:奇偶性、周期性、界值性质。
4.三角函数的图象:正弦函数、余弦函数和正切函数的图象。
5.三角函数的计算:三角函数的和差化积、积化和差、倍角公式、半角公式。
6.解三角形:解直角三角形、一般三角形的问题。
三、数列与数列的应用1.等差数列:通项公式、前n项和公式,等差数列的性质和运算。
2.等比数列:通项公式、前n项和公式,等比数列的性质和运算。
3.数列的运算:数列的加、减、乘、除和复合运算。
4.应用题:数列的应用问题。
四、排列与组合1.排列:全排列、不重复排列、重复排列。
2.基本计数原理:乘法原理、加法原理、容斥原理。
3.组合:组合的定义、性质与证明。
4.二项式展开:二项式定理的证明与应用。
五、概率与统计1.基本概念与定义:概率的定义、概率的性质、事件的关系。
2.条件概率与独立性:条件概率的定义与性质,独立事件的定义与证明。
3.排列与组合中的概率:每种情况的概率,计数的方法。
4.统计与数据分析:频数分布表、条形统计图、带标记的折线统计图。
5.统计指标与描述性统计学:均值、中位数、众数、极差、标准差、方差等。
高考文科数学总复习知识点高三文科数学总复集合:集合的元素具有确定性、互异性和无序性特征。
常用的数集包括自然数集(或非负整数集)记为N,正整数集记为N或N+,整数集记为Z,实数集记为R,有理数集记为Q。
集合还有重要的等价关系,即A∩B=A当且仅当A∪B=B当且仅当A是B的子集。
一个由n个元素组成的集合有2个不同的子集,其中有2n-1个非空子集,也有2n-1个真子集。
函数:函数单调性的证明可以通过取值、作差、变形、定号和得出结论等步骤完成。
常用的结论包括:若f(x)为增(减)函数,则-f(x)为减(增)函数;增+增=增,减+减=减;复合函数的单调性是“同增异减”;奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
函数的奇偶性定义为f(-x)=f(x)时为偶函数,f(-x)=-f(x)时为奇函数。
需要注意的是,函数为奇偶函数的前提是定义域在数轴上关于原点对称;奇函数的图像关于原点对称,偶函数的图像关于y轴对称;若奇函数f(x)在x=0处有意义,则f(0)=0.基本初等函数:指数函数的一般形式为x=a^n,其中n>1且n为自然数。
负数没有偶次方根,任何次方根都是正数,当n是奇数时,a^n=a,当n是偶数时,a^n=|a|。
对数的定义为若a=N,则b=log_a N,其中a为对数的底数,b为以a为底的N的对数,N为真数。
需要注意的是,负数和零没有对数,log_a 1=0且log_a a=1(a>0且a≠1)。
对数的运算法则包括log_a (MN)=log_a M+log_a N,log_a (M/N)=log_a M-log_a N,log_a M^n=nlog_a M,换底公式为log_a b=log_c b/log_c a。
指数函数和对数函数是互逆的,即a^log_a N=N。
b=(a。
a≠1,c。
c≠1,b>),利用换底公式推导以下结论:logc a = 1n(1) loga bn = loga b (2) loga b = logb am改写为:假设b=(a。
广东高考数学的知识点一、函数与方程1. 一次函数- 基本性质- 函数图像- 解一元一次方程2. 二次函数- 基本性质- 函数图像- 解一元二次方程3. 指数函数与对数函数- 指数函数的性质- 对数函数的性质- 指数方程与对数方程的解法二、几何与三角函数1. 平面直角坐标系与直线- 坐标系的建立- 直线的斜率及特殊情况- 直线的方程2. 平面图形- 三角形的性质- 四边形的性质- 圆的性质3. 三角函数- 正弦、余弦、正切函数的定义 - 各函数的性质和图像- 解三角函数方程三、概率与统计1. 概率- 随机事件与概率- 概率的加法与乘法规则- 排列与组合2. 统计- 数据的收集与整理- 参数与统计量的计算- 统计图表的分析与应用四、导数与微分1. 函数的导数- 导数的定义与性质- 常见函数的导数- 导数的应用2. 微分与近似计算- 微分的概念与性质- 微分的计算方法- 近似计算与误差估计五、数列与数学归纳法1. 等差数列与等比数列- 数列的概念与性质- 等差数列与等比数列的通项公式 - 数列的求和公式2. 数学归纳法- 归纳法的思想与应用- 数学归纳法的证明过程- 求和公式的证明与应用六、立体几何与空间向量1. 空间几何基础- 空间中的点、直线、平面- 平行与垂直关系- 空间图形的性质2. 空间向量- 向量的定义与性质- 向量的加减与数量积- 平面向量与立体几何的应用以上是广东高考数学的主要知识点。
在备考和复习过程中,重点理解和掌握各个知识点的概念、性质和应用,通过大量的习题训练提高解题能力和应试能力。
同时,注重思维方法的培养和与数学实际应用的结合,能够更好地应对考试中的各类题型,并取得优异的成绩。
祝你在广东高考数学中取得好成绩!。
广东高考高中数学考点归纳第一部分 集合1. 自然数集:N 有理数集:Q 整数集:Z 实数集:R 2 。
φ是任何集合的子集,是任何非空集合的真子集。
3。
集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空真子集有2n –2个.第二部分 函数与导数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2.函数值域的求法(即求最大(小)值):①利用函数单调性 ;②导数法③利用均值不等式 2222b a b a ab +≤+≤ 3.函数的定义域求法: ① 偶次方根,被开方数0≥ ②分式,分母0≠③对数,真数0>,底数0>且1≠ ④0次方,底数0≠⑤实际问题根据题目求 复合函数的定义域求法:① 若f(x )的定义域为[a ,b],则复合函数f[g(x )]的定义域由不等式a ≤ g (x) ≤ b 解出② 若f[g(x)]的定义域为[a ,b],求 f(x)的定义域,相当于x∈[a,b ]时,求g (x)的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再综合各段情况下结论。
5.函数的奇偶性:⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件.... ⑵)(x f 是奇函数)()(x f x f -=-⇔⇔图象关于原点对称;)(x f 是偶函数)()(x f x f =-⇔⇔图象关于y 轴对称。
⑶奇函数)(x f 在0处有定义,则0)0(=f⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性 6.函数的单调性: ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; (记忆方法:同不等号为增,不同为减,即同增异减)⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号(五步:设元,作差,变形,定号,单调性);②导数法(三步:求导,解不等式()0,()0,f x f x ''><单调性)7.函数的周期性:(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期.所有正周期中最小的称为函数的最小正周期.如没有特别说明,遇到的周期都指最小正周期。
2007-2013年广东省高考文科数学小题考点分析[管理资料] 广东省高考文科数学小题考点分析2013年文数 2013年主要知识(考)点备注选择题结合一元二次方程,考查集合的交集运算 1、集合运算结合对数函数及分式,考查函数的定义域 2、函数的性质考查复数的乘法运算及复数的模(长度)的计算 3、复数考查三角函数中诱导公式的运用,正弦与余弦互变的 4、三角函数结合程序框图,考查算法的基本知识,主算法:累加 5、算法给合三棱锥的三视图,考查体积的计算 6、立体几何结合直线与圆相切的知识,考查两直线垂直 7、解析几何空间线面的关系,文字类题型 8、立体几何结合椭圆的焦点及离心率,考查标准方程的求法 9、解析几何结合平面向量的基本定理及加法的三角形法则,考查 10、新概念题学生的综合能力填空题结合等比数列,求前四项的和 11数列结合导数知识,考查导数的几何意义,求切点的坐标 12导数给定约束条件,求截距型的最大值,考查线性规划的 13线性规划基本知识给出圆的极坐标方程,考查极坐标方程与参数方程的 14极坐标与相互转换参数方程以矩形为背景,考查垂直及余弦定理知识 15几何证明注:第14、15题为选做题,二题选做一题。
2012年文数2012年主要知识(考)点备注选择题复数,复数的除法及相乘运算,考查复数的简单运算 1、复数数集,补集运算 2、集合运算字母特征,平面向量加法的坐标运算 3、平面向量函数的性质,考查偶函数知识 4、函数线性规划,截距型,求最大值 5、不等式解三角形,正弦定理 6、三角函数三视图知识,半球和圆锥的组合体,求体积 7、立体几何直线与圆,相交,求相交弦的弦长 8、解析几何主算法为奇数累乘 9、算法新概念,定义向量的运算,与向量的数量积相关的 10、新概念题填空题函数的定义域,分式和根式简单结合 11函数等比数列,等比中项或等比数列的性质 12数列统计,考查平均数、中位数及标准差相关知识 13概率与统计考查参数方程,知直线与圆的参数两曲线方程,求交 14极坐标与点坐标参数方程以直线及圆为背景,考查三角形的相似比 15几何证明注:第14、15题为选做题,二题选做一题。
高考复习小题回顾(1)一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}3,2,1,0=A ,{}4,2,1=B ,则集合=⋃B A A .{}4,3,2,1,0 B .{}4,3,2,1 C .{}2,1 D .{}0 2.函数)1lg()(-=x x f 的定义域是A .),2(+∞B .),1(+∞C .),1[+∞D .),2[+∞ 3.若函数xxx f -+=33)(与xx x g --=33)(的定义域均为R ,则A .)(x f 与)(x g 与均为偶函数B .)(x f 为奇函数,)(x g 为偶函数C .)(x f 与)(x g 与均为奇函数D .)(x f 为偶函数,)(x g 为奇函数4.已知数列{n a }为等比数列,n S 是它的前n 项和。
若23a a ⋅=2a 1,且4a 与27a 的等差中项为54,则5S = A .35B .33C .31D .295.若向量a =(1,1),b =(2,5),c =(3,x )满足条件8(8)30a b c -⋅=,则x = A .6 B .5 C .4 D .3 6.若圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是A.22(5x y -+= B.22(5x y ++=C .22(5)5x y -+=D .22(5)5x y ++=7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A .45B .35C .25D .158.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 9.如图,△ABC 为正三角形,////AA BB CC ''',CC ABC '⊥平面且3AA '=32BB '=CC '=AB ,则多面体ABC A B C '''-的正视图(也称主视图)是10.在集合{,,,}a b c d 上定义两种运算⊕和⊗如下:那么()d a c ⊗⊕=A .aB .bC .cD .d 二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)a11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨)。
根据下图所示的程序框图,若1x ,2x ,3x 4x ,分别为1,1.5,1.5,2,则输出的结果s 为 .12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b,A +C =2B ,则sin A = .(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如下图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a,点E ,F 分别为线段AB ,CD 的中点,则EF = . 15.(坐标系与参数方程选做题)在极坐标系(,)(02)ρθθπ≤<中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为 .信心是人生的精神支柱高考复习小题回顾(2)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z = ( ) A .i - B .i C .1- D .1 2.已知集合(){,|A x y x y =、为实数,且}221xy +=,(){,|B x y x y =、为实数,且}1x y +=,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2),(1,0),(3,4)a b c ===,若λ为实数,()//a b c λ+,则λ= ( )A .14 B .12C .1D .2 4 .函数1()lg(1)1f x x x=++-的定义域是 ( )A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-+∞D .(,)-∞+∞ 5.不等式2210x x -->的解集是( )A . 1(,1)2-B (1,)+∞C . (,1)(2,)-∞⋃+∞D . 1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(),M x y 为D 上的动点,点A的坐标为),则z OM OA =⋅的最大值为( )A .3B .4 C. D.7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ) A .20 B .15 C .12 D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切.则C 的圆心轨迹为( )A . 抛物线B . 双曲线C . 椭圆D . 圆 9.如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( ) A .B .C .D . 2 10.设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()f g x g ;对任意R x ∈,()()())(x g f x g f = ;()()()()f g x f x g x =g .则下列等式恒成立的是( )A .()()()()()()()f g h x f h g h x =B .()()()()()()()f g h x f h g h x =g o o g oC .()()()()()())(x h g h f x h g f =D . ()()()()()()()f g h x f h g h x =g g g g g二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.(一)必做题(11~13题)11.已知{}n a 是递增等比数列,4,2342=-=a a a ,则此数列的公比=q .212.设函数.1cos )(3+=x x x f 若11)(=a f ,则=-)(a f .9-13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间小李这5天的平均投篮命中率为 ,用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .0.5 0.53(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x (0)θπ≤<和⎪⎩⎪⎨⎧==ty t x 245(t ∈R ),它们的交点坐标为.(1 15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E 、F 分别为AD 、BC 上点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为.75高考复习小题回顾(3)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数34ii+=( ) ()A 43i -- ()B 43i -+ ()C i 4+3 ()D i 4-3 2.设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =( ) ()A {,,}246 ()B {1,3,5} ()C {,,}124 ()D U3.若向量(1,2),(3,4)AB BC ==;则AC =( )()A (4,6) ()B (4,6)-- ()C (,)-2-2 ()D (,)22 4.下列函数为偶函数的是( ) ()A sin y x = ()B 3y x =()C x y e =()D y =5.已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为( )()A 3 ()B 1 ()C 5- ()D 6-6.在ABC ∆中,若60,45,A B BC ︒︒∠=∠==AC =( )()A ()B ()C ()D 27.某几何体的三视图如图1所示,它的体积为( )()A 72π ()B 48π ()C π30 ()D π24 8.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点, 则弦AB 的长等于( ) ()A ()B ()C ()D 19.执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为 ()A 105 ()B 16 ()C 15 ()D 110.对任意两个非零的平面向量α和β,定义αβαβββ=;若两个非零的平面向量,a b 满足, a 与b 的夹角(,)42ππθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )()A 12 ()B 1 ()C 32 ()D 52提示:可证21()()cos (0,)2a b b a θ⨯=∈,注意*1212()()(,)4n n ab b a n n N ⨯=∈。
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11-13题)11.函数y =_________ 12.等比数列{}n a 满足2412a a =,则2135a a a =_____13. 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。
(从小到大排列) (二)选做题(14 - 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为2:(x C y θθθ⎧=⎪⎨=⎪⎩是参数,02πθ≤≤)和212:(x t C t y ⎧=-⎪⎪⎨⎪=⎪⎩是参数),它们的交点坐标为_______.15.(几何证明选讲选做题)如图3所示,直线PB 与圆O 想切于点B , D 是弦AC 上的点,PBA DBA ∠=∠,若,A D m A C n ==, 则AB =_______。
图 2俯视图侧视图正视图高考复习小题回顾(4)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2.函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是A .2B .3C .4D .54.已知51sin()25πα+=,那么cos α=A .25-B .15-C .15D .255.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是A .1B .2C .4D .7 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .17.垂直于直线1y x =+且与圆221x y+=相切于第一象限的直线方程是A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 10.设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ;图④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1 B .2 C .3 D .4 二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= 12.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = .13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .15.(几何证明选讲选做题)如图3,在矩形ABCD中,3,AB BC BE AC ==⊥,垂足为E ,则ED = .图 3高考复习小题回顾(1)【答案】一、选择题: ABDCC DBADA 二、填空题:(11)32(12)12(13)13,3Y x =-(14)2a (15)(1,)2π高考复习小题回顾(2)【答案】一、选择题: ACBCD BDACB 提示:6.z =(,)x y ⋅y +。