2017_2018学年高中数学课下能力提升(十九)新人教A版必修4
- 格式:doc
- 大小:131.50 KB
- 文档页数:5
高中数学必修4 教案1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30°60o 负角:按顺时针方向旋转形成的角 始边 终边顶点AO B例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角此时,2α属于第四象限角 因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360;180;1801()57.305718rad ;180( )nn.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.7.弧长公式 l l rr弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,193是第三象限角.(2) 315316,666是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
能 力 提 升一、选择题1.给出下列四个命题,其中正确的命题有( )①-75°是第四象限角 ②225°是第三象限角③475°是第二象限角 ④-315°是第一象限角A .1个B .2个C .3个D .4个[答案] D[解析] 由终边相同角的概念知:①②③④都正确,故选D.2.如果角α与x +45°具有同一条终边,角β与x -45°具有同一条终边,则α与β的关系是( )A .α+β=0B .α-β=0C .α+β=k ·360°(k ∈Z )D .α-β=k ·360°+90°(k ∈Z )[答案] D[解析] ∵α=(x +45°)+k ·360°(k ∈Z ),β=(x -45°)+k ·360°(k ∈Z ),∴α-β=k ·360°+90°(k ∈Z ).3.(山东潍坊模块达标)已知α与120°角的终边关于x 轴对称,则α2是( ) A .第二或第四象限角 B .第一或第三象限角C .第三或第四象限角D .第一或第四象限角[答案] A[解析] 由α与120°角的终边关于x 轴对称,可得α=k ·360°-120°,k∈Z,∴α2=k·180°-60°,k∈Z,取k=0,1可确定α2终边在第二或第四象限.4.若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析]如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.5.下列说法中,正确的是()A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析]第二象限的角中,除包含钝角以外,还包含与钝角相差k·360°(k∈Z)的角,如460°是第二象限的角但不是钝角,故选项A错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C中-150°应为第三象限角,故选项C错;选项D 中三个角相差360°的整数倍,则它们的终边相同.6.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}[答案] C[解析]当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.二、填空题7.(2011~2012·黑龙江五校联考)与-2013°终边相同的最小正角是________.[答案]147°8.(2011~2012·镇江高一检测)将分针拨快10分钟,则分针所转过的度数为________.[答案]-60°9.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈________.[答案]{α|n·180°+30°<α<n·180°+150°,n∈Z}[解析]在0°~360°范围内,终边落在阴影内的角α的取值范围为30°<α<150°与210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k +1)180°+30°<α<(2k+1)180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.三、解答题10.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).[解析](1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z} ={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z} ={α|α=45°+n·180°,n∈Z}.(3)同理,得终边落在直线ON上的角的集合为{β|β=60°+n·180°,n∈Z},故终边落在阴影区域内(含边界)的角的集合为{α|45°+n·180°≤α≤60°+n·180°,n∈Z}.11.如图,已知直线l1:y=33x及直线l2:y=-3x,请表示出终边落在直线l1或l2上的角.[解析]由题意知,终边落在直线l1上的角的集合为M1={α|α=30°+k1·360°,k1∈Z}∪{α|α=210°+k2·360°,k2∈Z}={α|α=30°+k·180°,k∈Z};终边落在直线l2上的角的集合为M2={α|α=120°+k1·360°,k1∈Z}∪{α|α=300°+k2·360°,k2∈Z}={α|α=120°+k·180°,k∈Z}.所以终边落在直线l1或l2上的角的集合为M=M1∪M2={α|α=30°+k·180°,k∈Z}∪{α|α=120°+k·180°,k∈Z}={α|α=30°+2k·90°,k∈Z}∪{α|α=30°+(2k+1)·90°,k∈Z}={α|α=30°+n·90°,n∈Z}.12.在角的集合{α|α=k·90°+45°,k∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则α共有多少个?[解析](1)在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.(2)令-360°<k·90°+45°<360°,得-92<k<72.又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3. ∴满足条件的角共有8个.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十九)1.已知两点A (2,-1),B (3,1),与AB →平行且方向相反的向量a 可能是( )A .(1,-2)B .(9,3)C .(-1,2)D .(-4,-8)解析 AB →=(3-2,1+1)=(1,2), ∵(-4,-8)=-4(1,2), ∴(-4,-8)满足条件. 答案 D2.已知A (3,-6),B (-5,2),且A ,B ,C 三点在一条直线上,则C 点坐标不可能是( )A .(-9,6)B .(-1,-2)C .(-7,-2)D .(6,-9)解析 设C (x ,y ),则AC →=(x -3,y +6),AB →=(-8,8). ∵A ,B ,C 三点在同一直线上,∴x -3-8=y +68,即x +y +3=0,将四个选项分别代入x +y +3=0验证可知,不可能的是C.答案 C3.若向量a =(1,1),b =(-1,1),c =(4,2)满足(k a +b )∥c ,则k =( )A .3B .-3C.13D .-13解析 k a +b =(k -1,k +1),由(k a +b )∥c ,得2(k -1)-4(k +1)=0,解得k =-3. 答案 B4.若a =⎝ ⎛⎭⎪⎫32,sin α,b =⎝ ⎛⎭⎪⎫sin α,13,且a ∥b ,则锐角α为( )A .30°B .45°C .60°D .75°解析 由a ∥b ,得32×13-sin α·sin α=0,∴sin 2α=12, ∴sin α=±22,又α为锐角,∴α=45°.故选B. 答案 B5.已知向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析 ∵a ∥b ,∴m +4=0,∴m =-4,b =(-2,-4). 则2a +3b =2(1,2)+3(-2,-4)=(2,4)+(-6,-12)=(-4,-8).答案 B6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn 等于( )A.12B .2C .-12D .-2解析 m a +n b =m (2,3)+n (-1,2) =(2m -n,3m +2n ),a -2b =(2,3)-2(-1,2)=(4,-1), 又m a +n b 与a -2b 平行, ∴(2m -n )(-1)-(3m +2n )×4=0, 即14m +7n =0,∴m n =-12. 答案 C7.向量a =(n,1)与b =(4,n )共线且方向相同,则n =________. 解析 ∵a ∥b ,∴n 2-4=0,∴n =2或n =-2,又∵a 与b 方向相同,∴n =2.答案 28.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.解析 a +b =(2-1,-1+m )=(1,m -1),由(a +b )∥c ,得1×2-(m -1)×(-1)=0,解得m =-1.答案 -19.若点A ,B 的坐标分别为(2,-2),(4,3),向量a =(2k -1,7),且a ∥AB →,则k 的值为________.解析 AB →=(2,5),由a ∥AB →可得(2k -1)×5-7×2=0,解得k =1910.答案 191010.已知△ABC 的顶点A (2,3)和重心G (2,-1),则BC 边上的中点的坐标是________.解析 设BC 边上的中点为D (x ,y ),则AG →=2GD →,∴⎩⎪⎨⎪⎧2=2+2x 1+2,-1=3+2y1+2,解得⎩⎨⎧x =2,y =-3.答案 (2,-3)11.已知AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),且BC →∥DA →,试确定x ,y 的关系式.解 因为AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3), 所以AD →=AB →+BC →+CD →, =(6,1)+(x ,y )+(-2,-3) =(4+x ,y -2).又因为BC →∥DA →,所以BC →∥AD →. 所以x (y -2)-y (4+x )=0, xy -2x -4y -xy =0,故x +2y =0. 12.已知a =(3,2),b =(-1,2),c =(4,1).(1)求3a +b -2c ;(2)求满足a =m b +n c 的实数m 、n ; (3)若(a +k c )∥(2b -a ),求实数k . 解 (1)3a +b -2c =(0,6).(2)∵a =m b +n c ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎨⎧-m +4n =3,2m +n =2,∴⎩⎪⎨⎪⎧m =59,n =89.(3)由a +k c =(3+4k,2+k ),2b -a =(-5,2),(a +k c )∥(2b -a ),得2×(3+4k )-(-5)×(2+k )=0,∴k =-1613.13.如图,已知两点P (-1,6)和Q (3,0),延长线段QP 到A ,使|AP →|=13|PQ →|,求A 点坐标.解 解法一:若P 为终点,Q 为起点,则A (x ,y )分QP →所成的比λ=-4.∴x =3-4×(-1)1-4=-73,y =0-4×61-4=8,∴A ⎝ ⎛⎭⎪⎫-73,8.解法二:若Q 为起点,A 为终点,则P 分QA →所成的比λ=3.设A (x ,y ),则-1=3+3x 1+3,∴x =-73,6=3y1+3,∴y =8,∴A ⎝ ⎛⎭⎪⎫-73,8.。
函数y= Asin(ωx+φ)的图象(二)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( )A. B.π C. D.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .10.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.函数y= Asin(ωx+φ)的图象(二)(答案解析)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-【解析】选C.由表可知A=2,又=-=,所以T=,故ω=3,又3×+φ=0,所以φ=-.2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=【解析】选C.由T==,所以ω=3.A=,φ=,所以y=.3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【解析】选C.由T=2=π,所以ω===2,所以f(x)=Asin,将代入得Asin=0,即φ=kπ-,k∈Z,取k=0,得φ=-,则f(x)=Asin,因为f(0)=-,所以f(0)=Asin=-A=-,所以A=.【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.【解析】选B.因为=-=,所以T=π,因此ω===2.又因为f=-1,即2×π+φ=+2kπ(k∈Z),所以φ=+2kπ(k∈Z).又因为0<φ≤,所以φ=,故P.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解析】选C.由图象可知A=1,T=4×=π,所以ω=2.又f()=1,所以2×+φ=+2kπ,故φ=,因此f(x)=sin,g(x)=sin2x y=sin2=sin.故选C.【误区警示】解答本题易出现选D的错误,导致出现这种错误的原因是对平移规律掌握的不准确,即y=sin是y=sin2x图象向左平移个单位而不是个单位.5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象【解析】选C.A中f=sin≠±1,所以x=不是对称轴;B中f=sin=1,所以不是对称点;C中f(x)的周期T==π,x∈时,2x+∈,函数是增函数;D中把f(x)的图象向右平移个单位得y=f=sin=sin2x为奇函数.6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【解析】选C.由x-=+kπ(k∈Z)得,x=+kπ(k∈Z).当k=-1时,x=-是其一条对称轴.【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( ) A. B.π C. D.【解析】选D.函数图象的两相邻对称轴之间的距离等于,即=×=.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=【解析】选D.因为已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),所以函数f(x)的最大值为2,又函数图象与直线y=2的某两个交点横坐标分别为x1,x2,且|x1-x2|的最小值为π,所以函数有周期T==π,所以ω=2,又因为f(-x)=f(x),所以函数f(x)为偶函数,所以φ=,故选D.8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【解析】选B.由图可知T=8,A=2,φ=0,所以ω==,所以f(x)=2sin x,经计算知f(1)+f(2)+…+f(8)=0,所以原式=252×0=0.【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.【解析】由例题解析可知f(x)=2sin x,令x=+kπ(k∈Z),得对称轴为x=2+4k(k∈Z).令-+2kπ≤x≤+2kπ(k∈Z),得-2+8k≤x≤2+8k(k∈Z),所以单调递增区间为[-2+8k,2+8k](k∈Z).二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .【解析】由图象可得A=2,2sinφ=1,即sinφ=,再由0≤φ≤π,结合图象可得φ=,又A,B两点之间的距离为5,可得25=16+,所以,ω=.故函数f(x)=2sin,故f(-1)=2sin=2.答案:210.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.【解析】因为f(x)=2sin,所以①f(x)的最小正周期==π,正确;②因为x∈,所以∈,故函数f(x)在区间上单调递增,正确;③因为f=2sin≠0,所以函数f(x)的图象关于点不成中心对称图形,故不正确;④将函数f(x)的图象向左平移个单位后得到g(x)=f=2sin(2x+π)=-2sin2x,故将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合,正确.综上可知:正确的为①②④.答案:①②④三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.【解析】(1)由题意知A=,T=4×=π,ω==2,所以y=sin(2x+φ).又因为sin=1,所以+φ=2kπ+,k∈Z,所以φ=2k π+,k ∈Z, 又因为φ∈,所以φ=,所以y=sin.(2)列出x,y 的对应值表:-π ππ2x+0π y描点、连线,如图所示:12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【解题指南】(1)根据已知表格中的数据可得方程组解之可得函数f(x)的解析式,进而可补全其表格.(2)由(1)并结合函数图象平移的性质可得函数g(x)的解析式,进而求出其图象的对称中心坐标,取出其距离原点O最近的对称中心即可.【解析】(1)根据表中已知数据可得:A=5,ω+φ=,ω+φ=,解得ω=2,φ=-.函数解析式为f(x)=5sin.数据补全如表:π(2)由(1)知f(x)=5sin,因此g(x)=5sin=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+=kπ,k∈Z,解得x=-,k∈Z.即y=g(x)图象的对称中心为,k∈Z,其中离原点O最近的对称中心为.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.【解析】(1)观察图象,得A=2,T=×=π,所以ω==2,所以f(x)=2sin(2x+φ).因为函数经过点,2sin=2,即sin=1.又因为|φ|<,所以φ=,所以函数的解析式为f(x)=2sin.(2)因为0<x<π,所以f(x)=m的根的情况,相当于求f(x)=2sin与g(x)=m的交点个数情况,且0<x<π,所以在同一坐标系中画出y=2sin和y=m,m∈R的图象.由图可知,当-2<m<1或1<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,所以m的取值范围为-2<m<1或1<m<2;当-2<m<1时,此时两交点关于直线x=对称,两根和为,当1<m<2时,此时两交点关于直线x=对称,两根和为.。
(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4的全部内容。
1.2.2 同角三角函数的基本关系预习课本P18~20,思考并完成以下问题(1)同角三角函数的基本关系式有哪两种?(2)已知sin α,cos α和tan α其中的一个值,如何求其余两个值?[新知初探]同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan_α=错误!错误!。
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切错误!.[点睛] 同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里“同角”有两层含义:一是“角相同",二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin23α+cos23α=1。
[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意角α,sin2α3+cos2错误!=1都成立.( )(2)对任意角α,sin 2αcos 2α=tan 2α都成立.()(3)若cos α=0,则sin α=1.()答案:(1)√(2)×(3)×2.已知α∈错误!,sin α=错误!,则cos α=( )A.错误! B.-错误!C.-错误!D.错误!答案:A3.已知cos α=错误!,且α是第四象限角,则sin α=()A.±错误!B.±错误!C.-错误!D.-错误!答案:C4.已知sin α=错误!,α∈错误!,则tan α=________。
01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是() A.A=B=C B.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A4已知α为第三象限角,则α3是第象限角.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3<k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴非负半轴、第三象限、第四象限,∴α3是第一、三或四象限角.答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。
新人教A 版高中数学必修四全册课时练习任意角(建议用时:45分钟)[基础达标练]一、选择题1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限角,故选C .] 2.在-360°~0°范围内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°C [与1 250°角的终边相同的角为α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.]3.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360°D .315°-5×360°D [∵1 485°÷360°=4.125,∴-1 485°=-4×360°-45°或写成-1 485°=-5×360°+315°.∵0°≤α<360°,故-1 485°=315°-5×360°.] 4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.] 5.已知角α=45°,β=315°,则角α与β的终边( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称A [α是第一象限角,β是第四象限角且45°=0°+45°与360°+45°终边相同,315°=360°-45°.]二、填空题6.若时针走过2小时40分,则分针走过的角是________.-960° [40分=23小时,23×360°=240°,因为时针按顺时针旋转,故形成负角,-360°×2-240°=-960°.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.k·360°+60°(k∈Z)[在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出集合S中适合不等式-360°<β<720°的元素.[解](1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.[解](1)角α终边所在区域如图①所示.(2)角β终边所在区域如图②所示.图① 图②(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[能力提升练]1.角α与角β的终边关于y 轴对称,则α与β的关系为( ) A .α+β=k ·360°,k ∈Z B .α+β=k ·360°+180°,k ∈Z C .α-β=k ·360°+180°,k ∈Z D .α-β=k ·360°,k ∈ZB [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]2.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270° [由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k ·360°.又180°<α<360°,令k =3,得α=270°.]弧度制(建议用时:45分钟)[基础达标练]一、选择题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关D [ 无论是角度制度量角还是弧度制度量角,都与圆的半径没有关系.] 2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.在0到2π范围内,与角-4π3终边相同的角是( )A .π6B .π3C .2π3D .4π3C [与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C.]4.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈ZD .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z , 故合在一起即为{α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .2 C .4D .1或4C [因为扇形的弧长为4 cm ,面积为2 cm 2, 所以扇形的面积为12×4×r =2,解得r =1(cm),则扇形的圆心角的弧度数为41=4.故选C.]二、填空题6.把角-274π用角度制表示为________.-1 215° [-274π=-274×180°=-1 215°.]7.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为______________. π5,π3,7π15 [因为A +B +C =π, 又A ∶B ∶C =3∶5∶7,所以A =3π3+5+7=π5,B =5π3+5+7=π3,C =7π15.]8.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是________.2 3 [设圆的半径为r ,外切正三角形边长为a ,则32a ×13=r ,则r =36a ,又弧长为a ,所以圆心角为:ar=a36a =63=2 3.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.∴在区间[-5π,0)上与α终边相同的角为-296π,-176π,-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[能力提升练]1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )D [∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).]2.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =________________.[-4,-π]∪[0,π] [如图所示,∴A ∩B =[-4,-π]∪[0,π].]任意角的三角函数(建议用时:60分钟)[基础达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A .12 B .-12C .-32D .-33C [sin 30°=12,cos 30°=32,∴P 点坐标为(1,-3),r =12+(-3)2=2,∴sin α=-32.] 3.已知角α的终边在函数y =-|x |的图象上,则cos α的值为( ) A .22B .-22C .22或-22D .12C [由y =-|x |的图象知,α的终边落在第三、四象限的角平分线上,当α终边落在第三象限时,cos α=-22;当α终边落在第四象限时,cos α=22.] 4.θ是第二象限角,则下列选项中一定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θC [∵θ是第二象限角,则θ2一定是第一或第三象限角,这时tan θ2一定为正值,故选C.]5.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 A [点(1,0)在x 轴正半轴,由题意可知,θ一定在α=2π3的终边上,∵OQ =1,∴Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3即⎝ ⎛⎭⎪⎫-12,32.] 二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β= .-1613[由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第 象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x = .-8 [因为|OP |=x 2+(-6)2=x 2+36, 所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[能力提升练]1.函数y =sin x +-cos x 的定义域是( ) A .(2k π,2k π+π),k ∈Z B .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π,k ∈Z C .⎣⎢⎡⎦⎥⎤k π+π2,k π+π,k ∈Z D .[]2k π,2k π+π,k ∈ZB [由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α= .35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =(-3cos θ)2+(4cos θ)2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为 .{-2,0,2} [已知函数的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z ,即角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z .(2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.三角函数及其应用(建议用时:45分钟)[基础达标练]一、选择题1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在D [终边在y 轴上的角的正切线不存在,故A ,C 错,对任意角都能作正弦线、余弦线,故B 错,因此选D .]2.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]3.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]4.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 5.使sin x ≤cos x 成立的x 的一个区间是( )A .⎣⎢⎡⎦⎥⎤-3π4,π4B .⎣⎢⎡⎦⎥⎤-π2,π2C .⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]A [如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝ ⎛⎭⎪⎫-3π4=cos ⎝ ⎛⎭⎪⎫-3π4, sin π4=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π]范围内,-3π4≤x ≤π4.]二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为 .AT>MP>OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .]7.利用三角函数线写出满足tan x <3且x ∈(0,2π)的x 的取值范围为 . ⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3 [由tanx <3得k π-π2<x <k π+π3(k ∈Z ),又∵x ∈(0,2π), ∴x 的取值范围为⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3.]8.函数y =2cos x -1的定义域为 .⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0,所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.已知-12≤sin θ<32,利用单位圆中的三角函数线,确定角θ的范围.[解] 画出三角函数线如图.由图可知角θ的范围是⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6≤θ<2k π+π3或2k π+2π3<α≤2k π+7π6,k ∈Z . 10.求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. [解] (1)∵要使函数f (x )有意义,∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0, 故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z .(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0. 由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.[能力提升练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4B .⎝ ⎛⎭⎪⎫π4,πC .⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知:在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.]同角三角函数的基本关系(建议用时:45分钟)[基础达标练]一、选择题1.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=( )A .- 2B . 2C .- 3D . 3A [因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223, 所以tan α=sin αcos α=122=24,所以3cos α+4tan α=-22+2=- 2.] 2.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A .14 B .12 C .1 D .32C [原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.]3.若α是三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形D [sin α+cos α=23得1+2sin αcos α=49,所以sin αcos α=-518<0,又因α∈(0,π),所以α为钝角,故三角形为钝角三角形.]4.⎝ ⎛⎭⎪⎫tan x +1tan x cos 2x 等于( ) A .tan x B .sin x C .cos x D .1tan xD [原式=⎝⎛⎭⎪⎫sin x cos x +cos x sin x ·cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x.]5.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( )A .23B .-23C .13D .-13B [因为sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,所以两边平方可得:1+2sin θcos θ=169,即sin θ·cos θ=718,所以(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,又因为0<θ<π4,所以sin θ<cos θ,所以sin θ-cos θ<0,所以sin θ-cos θ=-23,故应选B .]二、填空题 6.化简11+tan 220°的结果是 .cos 20° [11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 7.已知sin αcos α=12,则sin α-cos α= .0 [(sin α-cos α)2=1-2sin αcos α=1-2×12=0,∴sin α-cos α=0.]8.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α= . 1 [4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α =4tan 2α-3tan α-5tan 2α+1 =4×4-3×2-54+1=55=1.]三、解答题 9.化简下列各式: (1)sin α1+sin α-sin α1-sin α; (2)⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α).[解] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎪⎫1sin α+cos αsin α(1-cos α) =1+cos αsin α(1-cos α)=sin 2αsin α=sin α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α. [解] (1)2cos 2α+3cos αsin α-3sin 2α =2cos 2α+3cos αsin α-3sin 2αsin 2α+cos 2α=2+3tan α-3tan 2αtan 2α+1=1, 即4tan 2α-3tan α-1=0, 解得tan α=-14或tan α=1.∵α∈⎝ ⎛⎭⎪⎫-3π2,-π,∴α为第二象限角, ∴tan α<0,∴tan α=-14.(2)原式=2tan α-34tan α-9=720.[能力提升练]1.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°B [1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.]2.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ= .±2 [sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sinθcos θ=2,所以sin θ+cos θ=± 2.]三角函数的诱导公式(1)(建议用时:45分钟)[基础达标练]一、选择题1.已知sin(π+θ)=45,则角θ的终边在( )A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限D [sin(π+θ)=-sin θ=45,∴sin θ=-45<0,所以θ为第三或第四象限角.]2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是( ) A .1 B .2 C .0 D .-1 B [原式=sin 2α+(-cos α)·(-cos α)+1 =sin 2α+cos 2α+1=1+1=2.]3.已知600°角的终边上有一点P (a ,-3),则a 的值为( ) A . 3 B .- 3 C.33 D .-33B [由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°) =tan 240°=tan(180°+60°) =tan 60°=3,所以-3a=3,所以a =- 3.]4.已知点(-4,3)是角α终边上的一点,则sin(π-α)=( ) A .35 B .-35 C .-45 D .45A [x =-4,y =3,∴r =(-4)2+32=5,∴sin(π-α)=sin α=y r =35.故选A.]5.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32 D .-32 C [sin ⎝⎛⎭⎪⎫5π4-α=sin ⎝ ⎛⎭⎪⎫π+π4-α=-sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎝ ⎛⎭⎪⎫α-π4=32.]二、填空题6.若P (-4,3)是角α终边上一点,则cos (α-3π)·tan (α-2π)sin 2(π-α)的值为________. -53 [由条件可知sin α=35,cos α=-45,tan α=-34, ∴cos (α-3π)·tan (α-2π)sin 2(π-α)=-cos α·tan αsin 2α=-sin αsin 2α=-1sin α=-53.] 7.已知cos(508°-α)=1213,则cos(212°+α)=________.1213[由于cos(508°-α)=cos(360°+148°-α) =cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°) =cos(α-148°)=cos(148°-α)=1213.]8.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________.-73 [因为sin(α+π)=-sin α=45, 且sin αcos α<0,所以sin α=-45,cos α=35,tan α=-43,所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73.] 三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π;(2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).[解] (1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π=-sin ⎝⎛⎭⎪⎫6π+π3cos ⎝ ⎛⎭⎪⎫π+π6=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°)+ cos(180°+60°)sin(180°+30°) =sin 60°cos 30°+cos 60°sin 30°=1.10.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[解] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.[能力提升练]1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >bB [a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22, ∴b >a >c .]2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.-2 [f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-11π6=sin ⎝⎛⎭⎪⎫-2π+π6=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝⎛⎭⎪⎫116-1-1=f ⎝ ⎛⎭⎪⎫56-1=f ⎝⎛⎭⎪⎫56-1-2 =f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2.]三角函数的诱导公式(2)(建议用时:45分钟)[基础达标练]一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0, ∴θ为第二象限角.]2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12B .12C .32D .-32A [∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α =-sin α=-12.]3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α等于( ) A .-13 B .13 C .223 D .-223A [cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫α-π4+π2=-sin ⎝⎛⎭⎪⎫α-π4=-13.故选A.]4.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( )A .-2a 3B .-3a 2C .2a 3D .3a2B [由sin(180°+α)+cos(90°+α)=-a , 得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α) =-sin α-2sin α=-3sin α=-32a .]5.化简:sin (θ-5π)cos ⎝ ⎛⎭⎪⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎪⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θA [原式=sin (θ-π)cos ⎝ ⎛⎭⎪⎫π2+θcos (-θ)cos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.]二、填空题6.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝ ⎛⎭⎪⎫α-2 019π2=________. 35 [∵角α的终边经过点P (3,4),∴sin α=45,cos α=35,∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ⎝ ⎛⎭⎪⎫π2-α=cos α=35.]7.化简sin(π+α)cos ⎝⎛⎭⎪⎫3π2+α+sin ⎝ ⎛⎭⎪⎫π2+αcos(π+α)=________.-1 [原式=(-sin α)·sin α+cos α·(-cos α) =-sin 2α-cos 2α=-1.]8.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,则f ⎝ ⎛⎭⎪⎫θ-5π12=________.-425 [由f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12得f ⎝⎛⎭⎪⎫θ-5π12=2cos ⎝ ⎛⎭⎪⎫θ-5π12-π12=2cos ⎝⎛⎭⎪⎫θ-π2=2sin θ.又∵cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,∴sin θ=-45,故f ⎝ ⎛⎭⎪⎫θ-5π12=-425.]三、解答题9.已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解] (1)因为点P ⎝ ⎛⎭⎪⎫45,-35,所以|OP |=1,sin α=-35.(2)sin ⎝⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α) =cos αtan α-sin α(-cos α)=1cos α,由三角函数定义知cos α=45,故所求式子的值为54.10.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1. [证明] 左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ =-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ) =sin θ+cos θsin θ-cos θ,右边=tan ·(8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ, 所以左边=右边, 所以等式成立.[能力提升练]1.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C .892D .45C [原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.]2.已知f (α)=cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-26π3的值为________.-12 [f (α)=(-sin α)·(-cos α)(-cos α)·(-tan α)=sin αcos αsin α=cos α,所以f ⎝ ⎛⎭⎪⎫-26π3=cos ⎝ ⎛⎭⎪⎫-263π=cos 263π=cos ⎝ ⎛⎭⎪⎫9π-π3=-cos π3=-12.]正弦函数余弦函数的图像(建议用时:60分钟)[基础达标练]一、选择题1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3B [令2x =0,π2,π,3π2,2π可得x =0,π4,π2,3π4,π,故选B.]2.若点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 C [当x =π2时,y =sin π2=1,故-m =1,m =-1.]3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得g (x )的图象D .向右平移π2个单位,得g (x )的图象D [f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x , f (x )图象向右平移π2个单位得到g (x )图象.]4.如图是下列哪个函数的图象( )A .y =1+sin x ,x ∈[0,2π]B .y =1+2sin x ,x ∈[0,2π]C .y =1-sin x ,x ∈[0,2π]D .y =1-2sin x ,x ∈[0,2π]C [根据图象上特殊点进行验证,可知C 正确.]5.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( )A .π2B .πC .3π2D .3π4C [根据诱导公式得,y =-sin x =cos ⎝⎛⎭⎪⎫3π2-x =cos ⎝ ⎛⎭⎪⎫x -3π2,故欲得到y =-sin x的图象,需将y =cos x 的图象向右至少平移3π2个单位长度.]二、填空题6.用“五点法”作函数y =1-cos x ,x ∈[0,2π]的图象时,应取的五个关键点分别是______________.(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0) [x 依次取0,π2,π,3π2,2π得五个关键点(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0).]7.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数是________.2 [在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.]8.函数y =lg(2-2cos x )的定义域是________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z [由2-2cos x >0得cos x <22,作出y =cos x 的图象和直线y =22,由图象可知cos x <22的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z .] 三、解答题9.用“五点法”画出y =-2cos x +3(0≤x ≤2π)的简图. [解] 列表:10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.[解] 观察图形可知:图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4. 因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π, ∴所求封闭图形的面积为4π.[能力提升练]1.若sin θ=1-log 2x ,则实数x 的取值范围是( )A .[1,4]B .⎣⎢⎡⎦⎥⎤14,1C .[2,4]D .⎣⎢⎡⎦⎥⎤14,4A [由sin θ∈[-1,1]得-1≤1-log 2x ≤1,解得0≤log 2x ≤2,即1≤x ≤4.]2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10A [在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.]3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.⎝⎛⎭⎪⎫π4,5π4 [在同一坐标系中画出y =sin x ,x ∈(0,2π)与y =cos x ,x ∈(0,2π)的图象如图所示,由图象可观察出当x ∈⎝ ⎛⎭⎪⎫π4,5π4时,sin x >cos x .]4.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4 [由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0, 当x ∈[0,2π]时,x =π2或3π2,∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.]5.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.[解] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).正弦余弦函数的周期性与奇偶性(建议用时:60分钟)[基础达标练]一、选择题1.函数f (x )=x +sin x ,x ∈R ( ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数,又是偶函数 D .既不是奇函数,又不是偶函数A [函数y =x 为奇函数且y =sin x 也是奇函数,故f (x )=x +sin x ,x ∈R 是奇函数.] 2.下列函数中最小正周期为π的偶函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2xD [A 中函数是奇函数,B 、C 中函数的周期不是π,只有D 符合题目要求.] 3.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 B [由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.]4.函数y =-x cos x 的部分图象是下图中的( )A B C DD [y =cos x 为偶函数,y =x 为奇函数,∴y =-x cos x 为奇函数,排除A 、C ,又x ∈⎝⎛⎭⎪⎫0,π2时cos x >0,x >0,∴y <0,故排除B ,选D.]5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .2B [由已知得f (x +π)=f (x ),f (-x )=-f (x ), 所以f ⎝⎛⎭⎪⎫3π4=f ⎝ ⎛⎭⎪⎫3π4-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.]二、填空题6.关于x 的函数f (x )=sin(x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是________(填序号).①④ [φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数.]7.若函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________.6 [T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.]8.函数y =sin x 的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正弦曲线的对称中心为________.(k π,0)(k ∈Z ) [∵y =sin x 是奇函数,∴(0,0)是其对称中心,又正弦函数的周期为2k π,结合正弦曲线可知,对称中心为(k π,0)(k ∈Z ).]三、解答题9.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期. [解] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π.[能力提升练]1.函数f (x )=sin x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数A [首先1+cos x ≠0,即x ≠2k π+π(k ∈Z ),定义域关于原点对称,又y =sin x 是奇函数,y =1+cos x 是偶函数,所以f (x )=sin x1+cos x是奇函数.]2.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=( )A .32 B .-32C .0D . 3 D [∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 018)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)=336×0+f (1)+f (2)=sin π3+sin 23π= 3.]3.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是________.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 [∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cosx 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.]4.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x≤π,则f ⎝⎛⎭⎪⎫-15π4的值等于________.22 [因为函数f (x )的周期为3π2,∴f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-154π+3π2×3=f ⎝ ⎛⎭⎪⎫3π4,又∵3π4∈(0,π],∴f ⎝ ⎛⎭⎪⎫-154π=sin 3π4=22.]5.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.[解] 当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时, g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3. 因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6. 又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π2或x =k π-π6,k ∈Z .正弦余弦函数的单调性与最值(建议用时:60分钟)[基础达标练]一、选择题1.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2A [对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函。
高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ....................................................... 1 1.2任意角的三角函数 ..................................................... 3 1.3三角函数的诱导公式 ................................................... 5 1.4三角函数的图像与性质 . (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 10 第一章 三角函数基础过关测试卷 ........................................... 12 第一章三角函数单元能力测试卷 .. (14)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 18 2.2向量减法运算与数乘运算 .............................................. 20 2.3平面向量的基本定理及坐标表示 ........................................ 22 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 25 第二章平面向量基础过关测试卷 ............................................ 27 第二章平面向量单元能力测试卷 .. (29)3.1两角和与差的正弦、余弦和正切公式 .................................... 33 3.2简单的三角恒等变换 .................................................. 36 第三章三角恒等变换单元能力测试卷 . (38)人教A 版必修4练习答案1.1任意角和弧度制 ...................................................... 42 1.2任意角的三角函数 .................................................... 42 1.3三角函数的诱导公式 .................................................. 43 1.4三角函数的图像与性质 (43)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 44 第一章三角函数基础过关测试卷 ............................................ 45 第一章三角函数单元能力测试卷 .. (45)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 46 2.2向量减法运算与数乘运算 .............................................. 46 2.3平面向量的基本定理及坐标表示 ........................................ 46 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 47 第二章平面向量基础过关测试卷 ............................................ 48 第二章平面向量单元能力测试卷 .. (48)3.1两角和与差的正弦、余弦和正切公式 .................................... 49 3.2简单的三角恒等变换 .................................................. 49 第三章三角恒等变换单元能力测试卷 . (50)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398- 38 B.,398- 142 C.,398- 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36-}Z k ∈,β{=B ︱180-180<<β},则B A 等于( )A.,36{- 54} B.,126{- 144} C.,126{-,36-,54144} D.,126{-54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于 90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23 B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21-C.23D.23-4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin(α . 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ .12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( )A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1- B ]1,0 C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0πB.⎥⎦⎤⎢⎣⎡32,6ππC.⎥⎦⎤⎢⎣⎡1211,6ππD.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章 三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1-4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( ) A 第一象限的角 B 第二象限的角 C 第三象限的角 D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个10.方程1sin 4x x π=的解的个数是( ) A B C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4πD 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b ++=( ) A.0 B.3 C.22+ D.225.58==,的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,+= ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分) 1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QP A.①② B.①③ C.①③④ D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OA A.①④ B.①② C.②③ D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+ba b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④ 7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c 8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F BD2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a2321-等于( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( )A.21e e +和21e e -B.2123e e -和1264e e -C.212e e +和122e e +D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( )A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( )A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅ ③2a = ④()()c b a c b a ⋅⋅=⋅⋅ b a ⋅≤ A.0 B.1 C.2 D.33.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+6.若向量b a ,a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( )A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====b __________. 三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;ACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a+⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4πB.43π C.3π D.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-NA BDM C10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.6511.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标; 2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1. 345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( )A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4-9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23-C .21 D .21- 2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( ) A .21 B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31-C .31D .97 6.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值 C .最小值0,最大值2 D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( ) A.π,1 B.π,2 C.π2,1 D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( )A.2B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97B.23C.1832+D.183724+ ( )12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27 二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值.。
(浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4的全部内容。
2.3。
1 平面向量基本定理预习课本P93~94,思考并完成以下问题(1)平面向量基本定理的内容是什么?(2)如何定义平面向量基底?(3)两向量夹角的定义是什么?如何定义向量的垂直?错误!1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[12向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。
课下能力提升(十九)
[学业水平达标练]
题组1 向量数量积的运算 1.下列命题:
(1)若a ≠0,a ·b =a ·c ,则b =c ;
(2)(a ·b )·c =a·(b ·c )对任意向量a ,b ,c 都成立; (3)对任一向量a ,有a 2
=|a |2
.
其中正确的有( ) A .0个 B .1个 C .2个 D .3个
2.已知|b |=3,a 在b 方向上的投影是3
2,则a ·b 为( )
A.92B .3 C .2 D.12
A.49
B.43 C .-43 D .-49
题组2 向量的模
5.若非零向量a 与b 的夹角为2π
3,|b |=4,(a +2b )·(a -b )=-32,则向量a 的模
为( )
A .2
B .4
C .6
D .12
6.已知向量a ,b 的夹角为120°,|a|=1,|b |=3,则|5a -b |=________. 7.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a|
|b|
=________. 题组3 两向量的夹角与垂直问题
8.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120° D .150°
9.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则
k 的值为( )
A .-6
B .6
C .3
D .-3
10.设向量a ,b 满足|a |=1,|b |=1,且|k a +b |=3|a -k b |(k >0).若a 与b 的夹角为
60°,则k =________.
11.已知|a |=1,a ·b =14,(a +b )·(a -b )=1
2.
(1)求|b |的值;
(2)求向量a -b 与a +b 夹角的余弦值.
[能力提升综合练]
1.已知|a |=3,|b |=5,且a 与b 的夹角θ=45°,则向量a 在向量b 上的投影为( ) A.
32
2
B .3
C .4
D .5 2.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A .1 B .2 C .3 D .5
A .2 3 B.
32 C.3
3
D. 3
5.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.
6.已知a ,b 是两个非零向量,同时满足|a |=|b |=|a -b |,求a 与a +b 的夹角. 7.已知a ,b 是非零向量,t 为实数,设u =a +t b . (1)当|u |取最小值时,求实数t 的值; (2)当|u |取最小值时,向量b 与u 是否垂直?
答 案
[学业水平达标练]
1. 解析:选B (1)(2)不正确,(3)正确.
2. 解析:选A ∵|a |cos 〈a ,b 〉=3
2
,|b |=3,
∴a ·b =|a |·|b |cos 〈a ,b 〉=3×32=9
2.
3.
4.
5. 解析:选A 由已知得,a 2+a ·b -2b 2=-32,∴|a |2+|a |×4×cos 2π3-2×42
=
-32.
解得|a |=2或|a |=0(舍).
6. 解析:|5a -b |=|5a -b |2
=(5a -b )2
=25a 2
+b 2
-10a ·b =
25+9-10×1×3×⎝ ⎛⎭
⎪⎫-12=7. 答案:7
7. 解析:(a +2b )·(a -2b )=a 2
-4b 2
,∵a ⊥b , ∴|a +2b |=a 2
+4b 2
,|a -2b |=a 2
+4b 2
.
故cos 120°=(a +2b )·(a -2b )|a +2b ||a -2b |=a 2
-4b
2
(a 2+4b 2)
2
=a 2-4b 2a 2+4b 2=-12,得a 2b 2=43,即|a ||b |=23
3
. 答案:233
8. 解析:选C 因为(2a +b )·b =2a ·b +b ·b =0,所以a ·b =-12|b |2
.设a 与b 的
夹角为θ,则cos θ=a ·b |a ||b |=-12|b |2|b |2=-1
2
,故θ=120°.
9. 解析:选B 由c ⊥d 得c·d =0,即(2a +3b )·(k a -4b )=0,即2k |a |2
+(3k -8)a ·b -12|b |2
=0,所以2k +(3k -8)×1×1×cos 90°-12=0,即k =6.故选B.
10. 解析:∵|k a +b |=3|a -k b |, ∴k 2a 2
+b 2
+2k a ·b =3(a 2
+k 2b 2
-2k a ·b ).
∴k 2
+1+k =3(1+k 2
-k ).即k 2
-2k +1=0,∴k =1. 答案:1
11. 解:(1)(a +b )·(a -b )=a 2-b 2
=12.
∵|a |=1,∴1-|b |2
=12,∴|b |=22
.
(2)∵|a +b |2=a 2+2a ·b +b 2
=1+2×14+12=2,
|a -b |2=a 2-2a ·b +b 2
=1-2×14+12=1,
∴|a +b |=2,|a -b |=1. 令a +b 与a -b 的夹角为θ,
则cos θ=(a +b )·(a -b )|a +b ||a -b |=1
2
2×1=2
4,
即向量a -b 与a +b 夹角的余弦值是
2
4
.
[能力提升综合练]
1. 解析:选A 由已知|a |=3,|b |=5,cos θ=cos 45°=2
2
,而向量a 在向量b 上的投影为|a |cos θ=3×
22=322
. 2. 解析:选A ∵|a +b |=10, ∴(a +b )2
=10, 即a 2
+b 2+2a ·b =10.① ∵|a -b |=6,∴(a -b )2
=6, 即a 2
+b 2
-2a ·b =6.② 由①②可得a ·b =1,故选A. 3.
4. 解析:画出图形知△ABC 为直角三角形,且∠ABC =90°,
=0+4×5×⎝ ⎛⎭⎪⎫-45+5×3×⎝ ⎛⎭
⎪⎫-35=-25. 答案:-25
5. 解析:|α|=1,|β|=2,由α⊥(α-2β),知α·(α-2β)=0,2α·β=1, 所以|2α+β|2
=4α2
+4α·β+β2
=4+2+4=10,故|2α+β|=10. 答案:10
6. 解:根据|a |=|b |,有|a |2
=|b |2
,又由|b |=|a -b |,得|b |2
=|a |2
-2a ·b +|b |2
, ∴a ·b =12
|a |2
.
而|a +b |2
=|a |2
+2a ·b +|b |2
=3|a |2
, ∴|a +b |=3|a |.设a 与a +b 的夹角为θ.
则cos θ=
a ·(a +
b )|a ||a +b |=|a |2+12
|a |
2
|a |·3|a |=3
2
.
∴θ=30°.
7. 解:(1)|u |2
=|a +t b |2
=(a +t b )·(a +t b )=|b |2t 2
+2(a ·b )t +|a |2
=|b |2
⎝ ⎛⎭
⎪⎫t +a ·b |b |22
+|a |2
-(a ·b )2
|b |. ∵b 是非零向量,∴|b |≠0, ∴当t =-
a ·b
|b |
2时,|u |=|a +t b |的值最小. (2)∵b ·(a +t b )=a ·b +t |b |2
=a·b +⎝ ⎛⎭
⎪⎫-a·b
|b |2·|b |2=a ·b -a ·b =0,
∴b ⊥(a +t b ),即b ⊥u .。