紫外光电子能谱的原理
- 格式:ppt
- 大小:1.10 MB
- 文档页数:66
紫外光电子能谱(UPS)的原理及应用光电子能谱技术自二十世纪六十年代迅速发展起来,并成为研究固体材料表面态的最重要和有效的分析技术之一,主要包括X射线光电子能谱(X-ray Photoelectron Spectroscopy,简称XPS)和紫外光电子能谱(Ultraviolet Photoelectron Spectroscopy,简称UPS)两个分支体系。
Tunner 等人所发展的紫外光电子能谱,它的激发源在属于真空紫外能量范围,可以在高能量分辨率(10~20meV)水平上探测价层电子能级的亚结构和分子振动能级的精细结构,是研究材料价电子结构的有效方法。
1.紫外光电子能谱的测量原理UPS测量的基本原理与XPS相同,都是基于爱因斯坦光电定律。
对于自由分子和原子,遵循EK=hn-EB-Φsp,其中,hn为入射光子能量(已知值),EK为光电过程中发射的光电子的动能(测量值),EB为内层或价层束缚电子的结合能(计算值),Φsp 为谱仪的逸出功(已知值,通常在4eV左右)。
但是所用激发源的能量远远小于X光,因此,光激发电子仅来自于非常浅的样品表面(~10Å),反映的是原子费米能级附近的电子即价层电子相互作用的信息。
图1 光电子能谱测量原理图2.紫外光电子能谱的装置一般用于UPS测试的理想的激发源应能产生单色的辐射线且具有一定的强度,常采用惰性气体放电灯(如He共振灯),其在超高真空环境下(约10-8mbar)通过直流放电或微波放电使惰性气体电离,产生带有特征性的橘色的等离子体,主要包含HeI 共振线(波长为584Å,光子能量为21.22eV)和HeII共振线(波长为304Å,光子能量为40.8eV),其中,HeI线的单色性好(自然线宽约5meV),强度高,连续本底低,是目前常用的激发源。
图2 用于UPS的He共振线光子能量及强度3.紫外光电子能谱的分析方法紫外光电子能谱通过测量价层电子的能量分布从中获得有关价电子结构的各种信息,包括材料的价带谱、逸出功、VB/HOMO位置以及态密度分布等。
材料科学XPS 、AES、UPS、EDS四大能谱分析介绍能谱分析能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来(这些自由电子带有样品表面信息),然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法,广泛应用于材料表面分析技术。
主要有:俄歇电子能谱分析(AES)、X射线光电子能谱分析(XPS) 、紫外光电子能谱(UPS),能谱仪-电镜联用等方法。
仪器厂家1俄歇电子能谱法(AES)俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。
利用受激原子俄歇跃迁退激过程发射的俄歇电子对试样微区的表面成分进行的定性定量分析。
AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。
原理:俄歇电子的产生和俄歇电子跃迁过程:一定能量的电子束轰击固体样品表面,将样品内原子的内层电子击出,使原子处于高能的激发态。
外层电子跃迁到内层的电子空位,同时以两种方式释放能量:发射特征X射线;或引起另一外层电子电离,使其以特征能量射出固体样品表面,此即俄歇电子。
俄歇跃迁的方式不同,产生的俄歇电子能量不同。
上图所示俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。
如 KLL跃迁:K层电子被激发后,可产生KL1L1,KL1L2,KL2L3…等K系俄歇电子。
应用方向:1、通过俄歇电子谱研究化学组态:原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况。
2、定性分析:对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。
由此,可根据俄歇电子的动能来定性分析样品表面物质的元素种类。
3、定量分析或半定量分析:俄歇电子强度与样品中对应原子的浓度有线性关系,据此可以进行元素的半定量分析。
紫外光电子能谱(UPS)应用光电子能谱技术自二十世纪六十年代迅速发展起来,并成为研究固体材料表面态的最重要和有效的分析技术之一。
它的两个主要分支经过不断完善自成体系,一个是Siegbahn等人创立的X射线光电子能谱(X-ray Photoelectron Spectroscopy,简称XPS),其激发源(常用Al kα或Mg kα)属于软X射线能量范围,用于测量内层轨道电子的结合能,这些内层电子的能量具有高度特征性,因此可用作定性分析,获取元素的指纹信息。
不过,元素的结合能会因受所处环境的影响而产生“化学位移”,“化学位移”本身可以反映出化学态的信息,这是XPS的一个重要应用。
另一个是Tunner等人所发展的紫外光电子能谱(Ultraviolet Photoelectron Spectroscopy,简称UPS),它的激发源(常用He I)属于真空紫外能量范围,可以在高能量分辨率(10~20meV)水平上探测价层电子能级的亚结构和分子振动能级的精细结构,是研究材料价电子结构的有效方法。
利用两种技术获取的信息既有相似的部分,也有独特之处。
因此在固体材料表面研究领域,两者互为补充。
UPS测量的基本原理与XPS相同,见图1,都是基于Einstein光电定律。
对于自由分子和原子,遵循E K=hν-E B-Φsp,其中,hν为入射光子能量(已知值),E K为光电过程中发射的光电子的动能(测量值),E B为内层或价层束缚电子的结合能(计算值),Φsp为谱仪的逸出功(已知值,通常在4eV左右)。
但是所用激发源的能量远远小于X光,因此,光激发电子仅来自于非常浅的样品表面(~10Å),反映的是原子费米能级附近的电子即价层电子相互作用的信息。
图 1. 光电子能谱测量原理图一般用于UPS 测试的理想的激发源应能产生单色的辐射线且具有一定的强度,常采用惰性气体放电灯(如He 共振灯),其在超高真空环境下(约10-8mbar )通过直流放电或微波放电使惰性气体电离,产生带有特征性的橘色的等离子体,主要包含HeI 共振线(波长为584Å,光子能量为21.22eV )和HeII 共振线(波长为304Å,光子能量为40.8eV ),见图2。