俄歇电子能谱分析原理
- 格式:ppt
- 大小:3.51 MB
- 文档页数:61
俄歇电子能谱仪的工作原理及特点俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种广泛使用的分析方法而显露头角。
这种方法的优点是:在靠近表面5—20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的全部元素。
虽然初俄歇电子能谱单纯作为一种讨论手段,但现在它已成为常规分析手段了。
它可以用于很多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。
俄歇效应虽然是在1925年时发觉的,但真正使俄歇能谱仪获得应用却是在1968年以后。
工作原理:当一个具有充足能量的入射电子使原子内层电离时,该空穴立刻就被另一电子通过L1→K跃迁所填充。
这个跃迁多余的能量EK—EL1如使L2能级上的电子产生跃迁,这个电子就从该原子发射出去称为俄歇电子。
这个俄歇电子的能量约等于EK—EL1—EL2、这种发射过程称为KL1L2跃迁。
另外仿佛的还会有KL1L1、LM1M2、MN1N1等等。
从上述过程可以看出,至少有两个能级和三个电子参加俄歇过程,所以氢原子和氦原子不能产生俄歇电子。
同样孤立的锂原子由于外层只有一个电子,也不能产生俄歇电子。
但是在固体中价电子是共用的,所以在各种含锂化合物中也可以看到从锂发生的俄歇电子。
产品特点:1、俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。
右图是一些重要的俄歇电子能量。
可见对于Z=3—14的元素,突出的俄歇效应是由KLL跃迁形成的,对Z=14—40的元素是LMM跃迁,对Z=40—79的元素是MNN跃迁。
大多数元素和一些化合物的俄歇电子能量可以从手册中查到。
2、俄歇电子只能从20埃以内的表层深度中逃逸出来,因而带有表层物质的信息,即对表面成份特别敏感。
正因如此,俄歇电子特别适用于作表面化学成份分析。
标签:能谱仪。
俄歇电子能谱分析原理及方法XXX【摘要】近年来,俄歇电子能谱(AES)分析方法发展迅速,它具有很多的优点,比如分析速度快、精度高、需要样品少等等,也因此在很多研究领域的表面分析中都得到了广泛的应用。
可以不夸张的说,这个技术为表面物理和化学定量分析奠定了基础。
本文主要是介绍俄歇电子能谱分析的主要原理及其在科学研究中的主要应用,旨在让读者对俄歇电子能谱有一个初步的了解。
关键词:俄歇电子能谱;表面物理;化学分析。
前言近些年来,俄歇电子能谱分析发展如火如荼,在各个领域都有很抢眼的表现。
目前有很多的人在研究,将俄歇电子分析技术应用到电子碰撞以及微纳尺度加工等高技术领域,俄歇电子能谱分析方法表现出强大的生命力,同目前已为很人熟悉和赞赏的强有力的分析仪器电子探针相比俄歇电子能仪可能有几个独到之处:( 1 )能分析固体表面薄到只有几分之一原子层内的化学元素组成,这里说的“表面”指的不只是固体的自然表面,也指固体内颗粒的分界面,(2)俄歇电子谱的精细结构中包含有许多化学信自,借此可以推断原子的价态;( 3 )除氢和氦外所有元素都可以分析,特别是分析轻元素最为有利;(4)利用低能电子衍射装置和俄歇能谱分析器相结合的仪器(“LEED一Au-ger”装置),有可能从得到的数据资料中分晶体表面的结构,推断原子在晶胞中的位置。
因此,俄歇电子能谱仪作为固体材料分析的一个重要工具,近年来发展很快,研究成果不断出现于最新的文献中。
本文主要是想要综合论述俄歇电子能谱的分析方法,以及概述它在各方面的应用。
[1][1]《俄歇电子能谱仪及其应用》许自图正文一、俄歇电子能谱分析的原理1.1俄歇电子能谱发现的历史1925年法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的名字命名了这种物理现象。
到了1953年,兰德才从二次电子能量分布曲线中第一次辨识出这种电子的电子谱线,但是由于俄歇电子谱线强度较低,所以当时检测还比较困难。
俄歇电子能谱俄歇电子能谱(RydbergElectronSpectroscopy,RES)是一种测量极离子系统的光谱分析方法,可以将气态离子激发到高能状态,从而测量离子系统中激发光谱的强度和波长。
俄歇电子能谱可以用来测量和研究由多个电子组成的极离子系统的物理性质,是物理化学研究中经常使用的必要技术。
俄歇电子能谱技术是一种光谱分析技术,它可以用来测量极离子系统中激发状态的性质,如激发态的能量、振荡强度以及激发光谱的波长及波长分布。
此外,它还可以用来调查极离子系统中的局域化电子结构。
俄歇电子能谱可以用光学或电离谱的方法来测量极离子系统的光谱,并通过特征的谱线特征来分析信号,从而获取极离子系统的物理性质。
俄歇电子能谱试验常用到的发射管正是由极离子系统组成,在发射管中,离子被激发到极离子状态,然后释放出不同波长和强度的激发态,最终形成发射管中的总体激发光谱。
俄歇电子能谱技术可以用来测量极离子系统中各种物理量,如极离子能级的能量、激发态的密度和电子轨道的结构,以及极离子的结构、物理化学反应以及电子结构的研究。
同时,它也可以用于研究由极离子组成的分子的特性,包括分子结构、动力学研究以及超高真空和室温条件下分子的特性。
俄歇电子能谱技术具有较高的精确度,可以用来测量极离子系统中的激发态的能量和强度、激发态的密度和电子轨道的结构等,因此在科学研究中得到了广泛应用。
例如,在研究分子结构和性质以及电子激发能量的转移过程、分子的活化和物理化学反应等方面,都可以使用俄歇电子能谱技术。
俄歇电子能谱技术一直以来都是物理化学研究领域中重要的分析工具,它可以用来测量极离子系统中激发状态的性质,为物理化学研究和应用提供重要信息和参考,为解决科学问题和技术问题提供重要帮助。
随着科学技术的进步,俄歇电子能谱技术将会得到进一步的改进,并将在更多的研究领域中得到广泛应用。
俄歇电子能谱仪(AES)分析方法介绍1.俄歇电子能谱仪(AES)俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的表面分析方法而显露头角,通过检测俄歇电子信号进行分析样品表面,是一种极表面(0-3nm)分析设备。
这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高,很高的空间分辨率,最小可达到6nm;能探测周期表上He以后的所有元素及元素分布;通过成分变化测量超薄膜厚。
它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。
2.俄歇电子能谱仪(AES)工作原理(1)原子内某一内层电子被激发电离从而形成空位,(2)一个较高能级的电子跃迁到该空位上,(3)再接着另一个电子被激发发射,形成无辐射跃迁过程,这一过程被称为Auger效应,被发射的电子称为Auger电子。
(4)俄歇电子能谱仪通过分析Auger电子的能量和数量,信号转化为元素种类和元素含量。
3.俄歇电子能谱仪(AES)可获取的参数(1)定性分析:定性除H和He以外的所有元素及化合态。
(2)元素分布:元素表面分布和深度分布,能获极小区域(表面最小6nm,深度最小0.5nm)的元素分布图。
(3)半定量分析:定量除H和He以外的所有元素,浓度极限为10-3。
(4)超薄膜厚:通过成分变化能测量最薄0.5nm薄膜的膜厚。
4.案例分析案例背景:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。
失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点,黑点直径3μm左右,考虑分析区域大小后选择分析区域最小AES进行分析,能准确分析污染物位置。
俄歇电子能谱仪(AES)分析:对被污染的Pad表面进行分析,结果如下图,位置1为污染位置,位置2为未污染位置。
结论:通过未污染位置和污染位置对比分析可知,发现污染位置主要为含K(20.6%)和S(13.6%)类物质,在未污染位置S含量为3.7%未发现K元素,推断污染位置存在K离子污染,并与S共同作用形成黑色污染物。
俄歇能谱定量
俄歇电子能谱是一种基于电子能谱学原理的分析技术,它通过测量电子在固体表面或表面附近的能量分布来确定材料的化学成分和电子结构。
俄歇电子能谱的定量分析是通过对俄歇电子信号强度的测量来确定材料中各元素的相对含量。
通常情况下,俄歇电子信号的强度与材料中该元素的浓度成正比。
因此,通过测量俄歇电子信号的强度,可以计算出材料中各元素的相对含量。
俄歇电子能谱的定量分析需要考虑多种因素的影响,如电子束的能量、样品的厚度、元素的电离能和俄歇电子的能量等等。
在进行定量分析时,需要对这些因素进行校正和补偿,以确保分析结果的准确性。
俄歇电子能谱的定量分析可以用于各种材料的分析,如金属材料、半导体材料、陶瓷材料、高分子材料等等。
它可以提供材料中各元素的相对含量、化学键的信息、表面化学反应的信息等等,对于材料的研究和开发具有重要的意义。