3.2代数式第2课时代数式值的变化课时练习题及答案
- 格式:doc
- 大小:111.00 KB
- 文档页数:4
2 代数式 第1课时 代数式关键问答①代数式中可以有运算符号吗?可以有等号吗?单独的一个数或一个字母是代数式吗?1.①在①2x ,②3x -2≠5,③3x -2y -z ,④x >3,⑤(x +3)2,⑥y =2x +1中,是代数式的有________.(只填序号)2.填空:(1)a ,b 的平方和表示为__________,a ,b 和的平方表示为________; (2)a ,b 的平方差表示为________,a ,b 差的平方表示为________.3.小明在考试前到文具店买了2支2B 铅笔和一副三角尺,2B 铅笔每支x 元,三角尺每副2元,小明共花了__________元.命题点 1 代数式的意义 [热度:88%] 4.②下列各式中符合代数式书写要求的有( )①123x 2y ;②ab ÷c 2;③m n ;④a 2-b 23;⑤2×(a +b );⑥ah ·2. A .1个 B .2个 C .3个 D .4个 方法点拨②代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.下列关于“代数式3x +2y ”的意义叙述不正确的有( )①x 的3倍加上y 的2倍的和;②小明跑步的速度为x 千米/时,步行的速度为y 千米/时,则小明跑步3小时后步行2小时,共走了(3x +2y )千米;③某小商品以每个3元的价格卖出了x 个,又以每个2元的价格卖出了y 个,则共卖了(3x +2y )元.A .3个B .2个C .1个D .0个命题点 2 列代数式 [热度:90%] 6.③“x 的12与y 的和”可表示为( )A.12(x +y ) B .x +12+y C .x +12y D.12x +y 方法点拨③理解关键词语,弄清数量关系.列代数式时,应正确理解问题中的和、差、积、商、大、小、多、少、倍、分、增加、减少、提高、降低等关键词,一般可按文字语言先读先写.7.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年苹果的价格是每千克( )A .(1+20%)a 元B .(1-20%)a 元 C.a 1-20%元 D.a 1+20%元8.如图3-2-1,A 和B 是高度同为h 的圆柱形容器,底面半径分别为r 和R ,且r <R .一水龙头单独向容器A 注水,用T 分钟可以注满容器A.现将两容器在它们高度的一半处用一根细管连通(细管的容积忽略不计),仍用该水龙头向容器A 注水,则2T 分钟时,容器A 中水的高度是________.(注:若圆柱体的底面半径为R ,高为h ,体积为V ,则V =πR 2h )图3-2-1详解详析2 代数式 第1课时 代数式1.①③⑤2.(1)a 2+b 2 (a +b )2 (2)a 2-b 2 (a -b )2 3.(2x +2)4.B [解析]各式中符合代数式书写要求的有③mn ,④a 2-b 23,共2个,故选B.5.D 6.D7.C [解析]去年的价格×(1-20%)=今年的价格,可求得去年苹果的价格. 8.12h 或2r 2h r 2+R 2 [解析]由题意得容器A 的容积=πr 2h ,容器B 的容积=πR 2h , 该水龙头用T 分钟可以注满容器A ,则它的注水速度为πr 2h T ,注水2T 分钟时注入的水的体积=2πr 2h ,容器A ,B 高度的一半处的容积之和为12πh (r 2+R 2).①当2T 分钟时注入水的体积2πr 2h 小于或等于两个容器的容积之和的一半时,容器A 中水的高度为h2.2πr 2h ≤12πh (r 2+R 2),3r 2≤R 2,即当3r 2≤R 2时,容器A 中水的高度为h2.②当2T 分钟时注入水的体积2πr 2h 大于两个容器的容积之和的一半时, 2πr 2h >12πh (r 2+R 2),3r 2>R 2,即当3r 2>R 2时,容器A 中水的高度等于注入的水的体积除以两个圆柱形容器的底面积之和,即水的高度=2πr 2h πr 2+πR 2=2r 2hr 2+R 2.综上所述,当3r 2≤R 2时,容器A 中水的高度是12h ;当3r 2>R 2时,容器A 中水的高度是2r 2h r 2+R 2. 【关键问答】 ①可以;不可以;是.第2课时 代数式求值关键问答①代数式的值由什么决定?1.①已知a =4,b =-1,则代数式2a -b -3的值为( ) A .4 B .6 C .7 D .122.若m =-1,n =2,则m 2-2n +1的值是( ) A .6 B .0 C .-2 D .-43.若2x +3=5,则6x +10等于________.命题点 1 求代数式的值 [热度:94%]4.②下列代数式中,a 不能取0的是( ) A.13a B.3a C.2a -5 D .2a -b 易错警示②字母的取值必须使这个代数式有意义5.当x =0,y =-8时,下列代数式的值最小的是( )A .x +yB .x -yC .xy D.xy6.③当x =6,y =4时,求下列各代数式的值. (1)(x +y )(x -y ); (2)x 2+2xy +y 2. 易错警示③代数式求值时要注意:(1)一个代数式中的同一个字母,只能用同一个数值去代替;(2)如果代数式里省略了乘号,那么用数值代替字母时要添上乘号,代入负数和分数时要加上括号;(3)代入时,不能改变原式中的运算符号及数字7.④已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求|a +b |m-cd +m 的值.解题突破④互为相反数的两个数的和为0,互为倒数的两个数的乘积为1,绝对值为正数的数有两个,它们互为相反数,解题时要注意分类讨论.命题点 2 利用数值转换机求代数式的值 [热度:95%]8.如图3-2-2是一数值转换机的示意图,若输入的x 值为32,则输出的结果为( )图3-2-2A .50B .80C .110D .1309.⑤如图3-2-3所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2018次输出的结果为________.图3-2-3解题突破⑤根据设计的程序进行计算,找到循环的规律,根据规律推导计算.命题点 3 利用整体法求值 [热度:96%]10.⑥已知-x +2y =5,则5(x -2y )2-3(x -2y )-60的值是( )A .80B .10C .210D .40 解题突破⑥先通过改变符号变换已知代数式,再利用整体代入法进行计算.11.⑦当x =1时,代数式12ax 3-3bx +2的值是8,则当x =-1时,这个代数式的值是( )A .-8B .-4C .4D .8 解题突破⑦把x =1代入代数式求出a ,b 的关系式,再把x =-1代入进行计算即可得解. 12.⑧已知m 2-2m -1=0,则代数式2m 2-4m +2018的值为________.方法点拨⑧解此类题的一般思路:不具体求出字母的值,把已知式或所求式进行变形,变为含同一整体的式子,然后代入求值命题点 4 利用代数式求值解决实际问题 [热度:98%]13.⑨某人步行5小时,先沿平坦道路走,然后上山,再沿来时的路线返回.若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,则此人这5小时共走了多少千米?解题突破⑨把5小时所走路程分为平路和山路,把时间分为走平路的时间和走山路的时间,得上山时间为下山时间的2倍,总路程=平路的速度×平路时间+上山的速度×上山时间+下山的速度×下山时间.14.⑩如图3-2-4,在长和宽分别为a ,b 的长方形中,有两个半径相同的扇形, (1)用含a ,b 的式子表示图中阴影部分的面积S ; (2)当a =5 cm ,b =2 cm 时,求阴影部分的面积(π≈3).图3-2-4方法点拨⑩计算不规则图形的面积通常将其转化为规则图形面积的和(差)求解. 15.⑪某地区的手机收费标准有以下两种方式,用户可任选其一: A 方式:月租费20元,通话费用为0.25元/分; B 方式:月租费25元,通话费用为0.20元/分.(1)某用户某月打电话x 分钟,则A 方式应交付费用:__________元;B 方式应交付费用:__________元.(用含x 的代数式表示)(2)某用户估计一个月内打电话的时间为25小时,你认为采用哪种方式更合算? 解题突破⑪应交付费用=月租费+通话费用.16.⑫设f (x )=x 2x 2+1,定义f (1)是当x =1时,代数式x 2x 2+1的值,即f (1)=1212+1=12,同理f (2)=2222+1=45,f (12)=(12)2(12)2+1=15,…,根据此运算求f (1)+f (12)+f (2)+f (13)+f (3)+f (14)+f (4)+…+f (1n)+f (n )的值.(用含n 的代数式表示)解题突破⑫分别求出f (3),f (13),f (4),f (14)的值,结合f (2),f ⎝⎛⎭⎫12寻找规律,利用规律计算f (1)+f ⎝⎛⎭⎫12+f (2)+f ⎝⎛⎭⎫13+f (3)+f ⎝⎛⎭⎫14+f (4)+…+f ⎝⎛⎭⎫1n +f (n )的值. 17.⑬某卖场销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.十一期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台(x >10).(1)若该客户按方案一购买,需付款____________元.若该客户按方案二购买,需付款____________元.(用含x 的代数式表示)(2)若x =30,通过计算说明此时按哪种方案购买较为合算?(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元.解题突破⑬(1)根据题目提供的两种不同的优惠方案列出代数式即可;(2)将x =30代入列出的代数式中计算即可得到费用,然后比较费用的大小即可得到哪种方案更合算;(3)根据题意可以得到先按方案一购买20台微波炉获赠10台电磁炉,再按方案二购买20台电磁炉更省钱.详解详析第2课时 代数式求值1.B 2.C 3.164.B [解析]在3a 中,a 在分母中,当a =0时,3a没有意义.5.A [解析]将x =0,y =-8分别代入这四个代数式中,其值分别为-8,8,0,0.故选A.6.解:(1)将x =6,y =4代入(x +y )(x -y ),得 原式=(6+4)×(6-4)=10×2=20. (2)将x =6,y =4代入x 2+2xy +y 2,得 原式=62+2×6×4+42=36+48+16=100.7.解:因为a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2, 所以a +b =0,cd =1,m =±2.当m =2时,|a +b |m -cd +m =0-1+2=1;当m =-2时,|a +b |m-cd +m =0-1-2=-3.8.D [解析]当x =32,5(x -2)3=53×(32-2)=50<90;当x =50,5(x -2)3=53×(50-2)=80<90;当x =80,5(x -2)3=53×(80-2)=130>90,即输入的x 值为32,则输出的结果为130.故选D.9.4 [解析]由设计的程序,可得依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1,…,发现从8开始循环.则2018-4=2014,2014÷4=503……2,故第2018次输出的结果是4.故答案为4.10.A [解析]根据-x +2y =5,可知x -2y =-5,故原式=5(x -2y )2-3(x -2y )-60=5×(-5)2-3×(-5)-60=125+15-60=80.11.B [解析]当x =1时,12ax 3-3bx +2=12a -3b +2=8,所以3b =12a -6.当x =-1时,12ax 3-3bx +2=-12a +3b +2=-12a +12a -6+2=-4.故选B.12.2020 [解析]因为m 2-2m -1=0,所以m 2-2m =1,所以原式=2(m 2-2m )+2018=2020,故答案为2020.13.解:设此人平路走了x 小时,则上山和下山共走了(5-x )小时.因为上山每小时走3千米,下山每小时走6千米,在路程相等的情况下,可知上山的时间为下山时间的两倍,所以上山用了23(5-x )小时,下山用了13(5-x )小时.此人所走的总路程=平路+上山+下山, 即4x +3×23(5-x )+6×13(5-x )=20.答:此人这5小时共走了20千米. 14.解:(1)根据题意,得S =ab -12πb 2.(2)当a =5 cm ,b =2 cm 时,S ≈5×2-12×3×22=10-6=4(cm 2).15.解:(1)(20+0.25x ) (25+0.20x ) (2)25小时=1500分.当x =1500时, A 方式总费用为20+0.25×1500=395(元); B 方式总费用为25+0.20×1500=325(元). 因为395>325, 所以采用B 方式更合算.16.解:由题意可知f (3)=3232+1=910,f (13)=(13)2(13)2+1=110,f (4)=1617,f (14)=117,所以f (2)+f (12)=1,f (3)+f (13)=1,f (4)+f (14)=1,…,f (n )+f (1n )=1,所以原式=12+(n -1)=n -12.17.解:(1)方案一:800×10+200(x -10)=(200x +6000)元, 方案二:(800×10+200x )×90%=(180x +7200)元.故答案为(200x+6000),(180x+7200).(2)当x=30时,方案一:200×30+6000=12000(元);方案二:180×30+7200=12600(元),所以按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台微波炉,共需付款10×800+200×20×90%=11600(元).【关键问答】①代数式的值由字母的取值决定.。
一、选择题1.下面选项中符合代数式书写要求的是( )A 3⋅ayB a cb 2312C 42b aD c b a ÷⨯ 2.火车速度是v 千米/小时,则t 分钟可行驶( )A vt 千米B t v 千米C vt 60千米D 60vt 千米 3.用代数式表示“a 与b -的差的2倍”正确的是( )A 2)(⨯--b aB 2)(⨯-+b aC 2[])(b a --D b a 22-4.某种品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价应为( )A a 7.0元B a 3.0元C 3.0a 元D 7.0a 元 5.中考题(四川)某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的价格开展促销活动,这时该商品一件的售价为( )A.a 元B.0.8a 元C.1.04a 元D.0.92a 元二、填空题1.如果圆锥体的底面半径为r ,高为h ,则圆锥体的体积是 ;2.一个长方体的长、宽、高分别是a 、b 、c ,则这个长方体的表面积是 ;3.一所小学,女教师人数占教师总人数的90%,男教师人数是y ,这所学校教师的总数是 ;4.代数式6232y x -的项是 和 ,它们的系数分别是 和 . 5.观察下列各式:Λ.4333,3222,2111222⨯=+⨯=+⨯=+ 请你将猜想到的规律用自然数)1(≥n n 表示出来_ __. 6.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,又降低20%,现售价为n 元,那么该电脑的原售价为_________元.7.如图,观察下列各正方形图案,每条边上有)2(≥n n 个圆点,每个图案圆点的总数是S ,按此规律推断S 与n 的关系式是___________.--参考答案一、1.C . 2.D 提示:t 分钟即60t 小时,时间⨯速度=路程,即6060vt v t =⨯. 3.C 4.D 提示:原价=-⨯%)301(现售价. 5.C二、1.h r 231π 2. bc ac ab 222++ 3. y 10(提示:女教师占教师总数的90%,则男教师应占教师总数的10%).4.61,2,6,232--y x 5.)1(2+=+n n n n 提示:纵向观察各列数的特点. 6.m n +45 7.有不同思路,比如可把组成正方形的点看做是如答图所示的4部分,答案为44-=n S 或者).2(22-+=n n S。
【教学目标】〖知识与技能〗1、了解代数式的分类以及整式、分式、单项式、多项式的概念; 2、理解单项式的系数和次数、多项式的次数与项数的概念;〖过程与方法〗通过引导学生思考、分析、对比,使学生加深对相关概念的理解。
〖情感、态度与价值观〗培养学生的观察分析和比较归纳的能力。
【教学重点】代数式的分类及整式、单项式、、多项式的概念 【教学难点】多项式的项数和次数概念的理解 【教学过程】 一、自学质疑:1、什么叫做整式、分式?2、什么叫做单项式?单项式的系数?单项式的次数?3、什么叫做多项式?多项式的项、常数项、多项式的次数? 二、交流展示:观察下列代数式,你能对它们进行适当分类吗?2222156232522125ba b a a a xy m n c ab ab -+--+,,,,,,,,0 三、互动探究:如何对代数式进行分类?根据交流展示内容,由学生分析归纳,老师总结。
四、精讲点拨:【点拨】 1、代数式的分类:代数式可以分为整式和分式。
整式:在代数式中,或者没有除法,或者虽有除法,但除式(或分母)中不含字母。
像这样的代数式叫做整式。
如;上述的5ab ,21xy+52 , -2 , 156a ,0 分式:在代数式中,不但有除法,而且除式(或分母)中含有字母。
像这样的代数式叫做分式。
如;上述的c ab 2 , m n ,a 2-3 ,2222ba b a -+ 整式可以分为单项式和多项式。
2、单项式:(1)单项式:不含有加减运算的整式,叫做单项式。
如:7436.05322322z y x n m a x ,,,-。
单独一个数或一个字母, 例如3,52-,a 等,也叫单项式。
(2)、单项式的系数:单项式里的数字因数,叫做单项式的系数。
它通常写在字母的前面。
3.2 代数式(第2课时)如7436.05322322z y x n m a x ,,,-的系数,分别为2、53-.、036、74。
x a -和2的系数分别为1和—1。
北师大版数学七年级上册 3.2 代数式习题及答案[知识点1]代数式的概念1. 像20m+n, 4 ,4+3(x-1),abc-5,3v,2a+10 m 等式子都是用把数和连接而成的,像这样的式子叫做代数式。
单独或一个也是代数式。
[知识点2]代数式的值2.用具体数值代替代数式中的,就可以求出代数式的值。
3.求代数式的值有代入和计算两个步骤:第一步:用数值代替代数式里的字母,简称“”。
第二步:按照代数式指明的运算,计算出结果,简称“”。
[预习自检]1.下列各式:①2ab;②0;③S=12ab;④x-3<2;⑤a+3;⑥-2n.其中代数式有(填序号)2.列代数式:(1)比x的3倍小1,列式为。
(2)x与y的2倍的差,列式为。
3.当x=1时,代数式x+1的值是。
4.当x=12时,代数式15(x2+1)的值是。
5.当a=4,b=2时,代数式a2-2ab+b2的值是。
[对应练习1]代数式的概念1.下列各式:-x+1,p+3,6>2,x−yx+y ,S=12ab,其中代数式的个数是()A.5个B.4个C.3个D.2个2.以下代数式书写规范的是()A.(m+n)÷2B.65yC.112a D.x+y厘米3.下列各选项后面的代数式表示错误的是()A.a的3倍与m的2倍的差为3a-2mB.a除以b的商与2的差的平方为(ab- 2)2C.a与b的和的14为a+14bD.m,n两数的和乘m,n两数的差为(m+n)(m-n)4.“x与y的差”用代数式可以表示为。
5.实验中学初中二年级12个班中共有团员a人,则a12表示的实际意义是。
[对应练习2]代数式的值6.当x=-12时,代数式2x2+2x的值是()A.12B.-14C.14D.-127.当x=-1时,下列代数式:①1-x②1-x2③-12x④1+x3其中值为零的有()A.1个B.2个C.3个D.4个8.如图所示的是一个数值转换机,若输入的a值为2,则输出的结果应为。
3.2 代数式的值第2课时 用公式计算课后·知能演练一、基础巩固1.如图,若a=10,b=4,则这个图形的面积是( )A.32B.42C.80D.642.若a,b分别表示长方形的长和宽,则(1)长方形的周长l=________,面积S=________;(2)当a=2 cm,b=3 cm时,l=________cm,S=________cm2.3.如图,阴影部分面积为40 cm2,圆环的面积是多少?(结果用含π的式子表示)二、能力提升πr2h,其中r为底面半径,h为圆锥的高.当r=3 cm,h=4 4.已知圆锥的体积V=13cm时,则圆锥的体积为________.三、思维拓展5.某木工师傅制作的一个工件如图中阴影部分所示.(1)用代数式表示工件的面积.(2)当a=8 cm,b=12 cm时,工件的面积是多少?(结果用含π的式子表示)【课后·知能演练】1.D 解析:如图所示,白色部分图形的面积为a2-(a-b)2.当a=10,b=4时,a2-(a-b)2=102-(10-4)2=64.2.(1)2a+2b ab (2)10 63.解:设外圆半径为R cm,内圆半径为r cm,S阴影=1(R2-r2)=40,2则R2-r2=80.圆环的面积为π(R2-r2)=80π cm2.4.12π cm3 解析:当r=3 cm,h=4 cm时,V=1×π×32×4=12π(cm3).35.解:(1)工件的面积S=ab-πa2.4(2)当a=8 cm,b=12 cm时,S=8×12-π×82=(96-16π)cm2.4。
章节测试题1.【答题】式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A. 有5个单项式,2个多项式B. 有4个单项式,2个多项式C. 有3个单项式,3个多项式D. 有5个整式【答案】B【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式有4个:﹣2x,0,,﹣a;多项式有2个:x+y,ax2+bx﹣c.选B.2.【答题】多项式的次数及最高次项的系数分别是().A. 2,-3B. 5,-3C. 3,3D. 3,-3【答案】D【分析】利用多项式的相关定义进而分析得出答案.【解答】多项式是几个单项式的和,每一个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,所以的次数为最高单项式的次数为,最高次项的系数为.选D.3.【答题】一个长方形的周长是40,若长方形的一边用字母x表示,则长方形的面积是()A. x(20﹣x)B. x(40﹣x)C. x(40﹣2x)D. x(20+x)【答案】A【分析】根据题意列出代数式即可.【解答】∵长方形的周长为40,一边长为x,∴与长为的边相邻的另一边长为(20﹣x),∴长方形的面积=x(20﹣x).选A.4.【答题】下列说法中正确的是().A. a是单项式B. 的系数是2C. 的次数是1D. 多项式的次数是4【答案】A【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】选项A. a是单项式,正确.选项 B. 的系数是,错误.选项C. 的次数是,错误.选项 D. 多项式的次数是2,错误.所以选A.5.【答题】在代数式x2+5,﹣1,x2﹣3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的概念知:x2+5,﹣1,x2﹣3x+2,π,是整式,选C.6.【答题】下列说法正确的是()A. 单项式a2b的次数为2B. 单项式的系数是C. 0是单项式D. 多项式1-xy+2x2y是五次三项式【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A. 单项式a2b的次数为3,故A选项错误;B. 单项式的系数是,故B选项错误;C. 0是单项式,正确;D. 多项式1-xy+2x2y是三次三项式,故D选项错误,选C.7.【答题】多项式4x3﹣3x2y4+2x﹣7的项数与次数分别是()A. 4,9B. 4,6C. 3,9D. 3,10【答案】B式的系数.【解答】多项式4x3﹣3x2y4+2x﹣7有4个项,次数为6.选B.8.【答题】在代数式3、4+a、a2﹣b2、、中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个.【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的定义:“表示数与字母乘积的式子叫做单项式,单独的一个数或字母也是单项式”分析可知,上述式子中,3、是单项式,共2个;选A.9.【答题】对于单项式2×105a,下列说法正确的是()A. 系数为2,次数为1B. 系数为2,次数为6C. 系数为2×105,次数为1D. 系数为2×105,次数为0【答案】C个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式2×105a的系数为2×105,次数为1.选C.10.【答题】(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A. 1,4B. 1,2C. 0,5D. 1,1【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】由题意得:,解得.选B.11.【答题】在代数式x2+5,-1,-3x+2,π,,,5x中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的定义:单项式、多项式的统称,故整式有x2+5,−1,−3x+2,π,5x,共5个.选C.12.【答题】代数式x+yz,4a,mn3+ma+b,-x,1,3xy2,,,中()A. 有5个单项式,4个多项式B. 有8个整式C. 有9个整式D. 有4个单项式,3个多项式【答案】D【分析】本题考查了单项式、多项式以及整式的定义,注意是整式而不是分式.【解答】单项式有:4a,x,1,3xy2,共4个;多项式有:x+yz,mn3+ma+b,,共3个;整式有:x+yz,4a,mn3+ma+b,−x,1,3xy2,共7个;分式有:,,共2个。
3.2 代数式的概念同步练习2024-2025学年苏科版七年级上册第1课时 代 数 式1.下列代数式中符合书写要求的是 ( ) A.ab ²×4 B.6xy ²÷3 C. 12a ²b D 142. 下列各式:①π;②ab= ba;③x ³;④2m-1>0; 1x ⑤ₓ;⑥8(x ²+y ²)其中代数式的个数是( ) A. 1 B. 2 C. 3 D. 4 3. 下列表达错误的是 ( ) A. 比a 的2倍大1的数是2a+1 B. a 的相反数与b 的和是-a+b C. 比a 的平方小1的数是 a ²−1 D. a 的2倍与b 的差的3倍是2a-3b4. (1)x 的一半与y 的3倍的和,可用代数式表示为 .(2)一棵树苗,刚栽种时,树高 1.5米,以后每年长0.3米,则n 年后树高为 米. (3)按规定,房屋的居住面积是建筑面积的80%,小明家现有的居住面积是a m ²,其建筑面积是 m ².5.如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…,依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示).6. 写出下列各小题中的两个代数式的意义. (1)mn ²、(mn )²; (2)a ²+b ²、(a +b )²;(3)1x−y 、1x −1y .7.某公司今年2月份的利润为x万元,3月份比2月份减少7%,4月份比3月份增加了8%,则该公司4月份的利润为(单位:万元) ( )A.(x-7%)(x+8%)B.(x-7%+8%)C.(1-7%+8%)xD. (1-7%)(1+8%)x8. 火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b、c的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)应为( )A. 2a+2b+4cB. 2a+4b+6cC. 4a+6b+6cD. 4a+4b+8c9. 若x表示一个两位数,y也表示一个两位数,小明想用x、y来组成一个四位数,且把x放在y 的右边,则这个四位数表示为 .10. 泰兴某企业有m吨煤,计划用n天,为积极响应市政府“节能减排”的号召,现打算多用5天,则现在比原计划每天少用煤吨.11. 某人去水果批发市场采购苹果,他看中了A、B两家苹果.这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发质量不超过1 000千克,价格按零售价的92%;批发质量超过1 000 千克但不超过2000千克,价格按零售价的90%;批发质量超过2 000 千克,价格按零售价的88%.B家的规定如表:2 100千克,则总费用=6×95%×500+6×85%×1 000+6×75%×(2 100-1 500).(1)如果他批发600 千克苹果,那么他在A家批发需要元,在B家批发需要元.(2)如果他批发x 千克苹果(1 500<x<2 000),那么他在A家批发需要元,在B家批发需要元(用含 x的代数式表示).(3)现在他要批发1 800 千克苹果,你能帮助他选择在哪家批发更优惠吗? 请说明理由.12. 如图①是等边三角形,第一次操作,将一个等边三角形每边三等分,再以中间一段为边向外作等边三角形,然后去掉中间一段,得到边数为12的图②.第二次操作,将图②中的每条线段三等分,重复上面的操作,得到边数为48的图③.如此循环下去,得到一个周长无限的“雪花曲线”.操作n次后所得“雪花曲线”的边数是 .13.视频讲题⑥如图,数轴上的点 O 为原点,点A表示的数为-3,动点 P从点 O 出发,按以下规律跳动:第1 次从点 O 跳动到 OA 的中点A₁处,第2次从点A₁跳动到A₁A 的中点A₂处,第3次从点A₂跳动到A₂A 的中点 A₃处,…,第n次从点An₁跳动到 An ₁₁A的中点 An处,那么点 An所表示的数为 .第2课时代数式的值1. 当x=-1时,代数式22x²-5x的值为 ( )A. 5B. 3C. -2D. 72. 如图所示是一个数值转换机,输入x,输出3(x-1),下面给出了四种转换步骤,其中不正确的是 ( )A. 先减去1,再乘3B. 先乘3,再减去1C. 先乘3,再减去3D. 先加上-1,再乘33. 当x=2与x=-2时,代数式x⁴−2x²+3的两个值( )A. 相等B. 互为倒数C. 互为相反数D. 无法比较大小4. (1)已知x-3=2,则代数式(x- 3)²−2(x−3)+1的值为;(2) 若a²−4a−12=0,则2a²−8a−8的值为;(3)已知y=x-1,则(x−y)²+(y−x)+1的值为 .5. 请先设计计算(x−2)²+3的值的计算程序,再计算并填写下表:输入0 1 2 3 4输出6. 当x=3√y=−1时,求下列代数式的值:2.(1)2x²−4xy²+4y;(2)x2+4xy2xy−y27. 如图所示.(1)用代数式表示长方形ABCD 中阴影部分的面积;(2)当a=10,b=4时,求阴影部分的面积.(其中π≈3.14)8. 无论x取何值,下列代数式的值一定是负数的是 ( )A. -xB. -|x|C.−x²D.−x²−19. 已知当x=2 023时,代数式ax³+bx−3的值是2,当x=-2023时,代数式ax³+bx+7的值等于 ( )A. -10B. 4C. 2D. -610. 若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代数式a²⁴²³+2024b+c²⁴²³的值为 .11. (1)按图中的程序计算,若输出的值为-1,则输入的数为 .(2)如图是一个数值转换机.若输出的结果为10,则输入a的值为 .12. 如图是一个运算程序的示意图,若开始输入的x的值为81,我们看到第一次输出的结果为2 7,第二次输出的结果为9……第2 024次输出的结果为 .13. 如图①是1个直角三角形和2个正方形,直角三角形的三条边长分别是a、b、c,其中a、b 是直角边.正方形的边长分别是a、b.(1)将4个完全一样的直角三角形和2个正方形组成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形的面积:方法一:;方法二: .(2)观察图②,试写出(a+b)²、a²、2ab、b²这四个代数式之间的等量关系: .(3)请利用(2)中的等量关系解决问题:已知图①中三角形的面积是6,图②中大正方形的面积是4 9,求a²+b²的值.(4)求 3.14²+6.28×6.86+6.86²的值.R14. 已知(−2x+1)⁴=a⁴x⁴+a⁴x⁴+a⁴x³+a⁴x²+a⁴x+a₀是关于x的恒等式(即x取任意值时等式都成立),则a⁴+a⁴+a⁴+a⁴+a⁴=.15. 在学习代数式的值时,介绍了计算程序:用“□”表示数据输入、输出框;用“□”表示数据处理和运算框;用“<>”表示数据判断框(根据条件决定执行两条路径中的某一条).(1)①如图①,当输入 x=-2 时,输出y= ;②如图②,第一个运算框“□”内,应填;第二个运算框“□”内,应填 .(2)①如图③,当输入 x =-1 时,输出y= ;②如图④,当输出y=37时,输入的值x=(3)为鼓励节约用水,政府决定对用水实行“阶梯价”:当每月用水量不超过15吨(含15吨)时,以2元/吨的价格收费;当每月用水量超过15 吨时,超过部分以3元/吨的价格收费.请设计出一个“计算程序”,使得输入数为每月用水量x,输出数为水费y.。
3.2代数式的值基础巩固训练一、 选择题:1.当12x =时,代数式21(1)5x +的值为 ( ) A. 15 B.14 C. 1 D.35 2.当a =5时,下列代数式中值最大的是 ( )A.2a +3B.12a -C.212105a a -+D.271005a - 3.已知3a b =,a b a-的值是 ( ) A.43 B.1 C.23D.0 4.如果代数式22m n m n-+的值为0,那么m 与n 应该满足 ( ) A.m +n =0 B.mn =0 C.m =n ≠0 D.m n ≠1 5.某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P 千米的路程(P >7)所需费用是 ( )A.5+1.5PB.5+1.5C.5-1.5PD.5+1.5(P -7)6.求下列代数式的值,计算正确的是 ( )A. 当x =0时,3x +7=0B. 当x =1时,3x 2-4x +1=0C. 当x =3,y =2时,x 2-y 2=1D. 当x =0.1,y =0.01时,3x 2+y =0.31二、 填空题1. 当a =4,b =12时,代数式a 2-b a的值是___________。
2. 小张在计算31+a 的值时,误将“+”号看成“-”号,结果得12,那么31+a 的值应为_____________。
3. 当x =_______时,代数式53x -的值为0。
4. 三角形的底边为a ,底边上的高为h ,则它的面积s =_______,若s =6cm 2,h =5cm ,则a =_______cm 。
5. 当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________。
6. 邮购一种图书,每册书定价为a 元,另加书价的10%作为邮费,购书n 册,总计金额为y 元,则y 为___________;当a =1.2,n =36时,y 值为___________。
第2课时 代数式值的变化
01 基础题
知识点1 求代数式的值
1.(怀化中考)已知m =1,n =0,则代数式m +n 的值为( )
A .-1
B .1
C .-2
D .2 2.当a =3,b =2时,a 2+2ab +b 2的值是( )
A .5
B .13
C .21
D .25 3.当a =2时,代数式3a -1的值是________.
4.当x =-2,y =3时,代数式2x 2-3y 的值是________. 5.填表:
知识点2 6.下图是一个数值转换机,输入x ,输出3(x -2),下面给出了四种转换步骤,其中正确的是( )
A .先减去2,再乘以3
B .先减去-2,再乘以3
C .先乘以3,再减去2
D .先乘以3,再加上2
7.按照下图所示的程序计算,当x 分别为-3,0时的输出值.
知识点3 代数式的值的简单应用
8.人们通常用c 表示摄氏温度(℃),f 表示华氏温度(),c 与f 之间的关系式为c =5
9(f -32),当华氏温度为59
时,摄氏温度为( )
A .-15 ℃
B .15 ℃
C .112.6 ℃
D .95.8 ℃
9.在三角形的面积公式S =1
2ah 中,a 表示底边长,h 表示底边上的高,若a =3.2 cm ,h =5 cm ,则S =________cm 2.
10.研究表明,运动时心跳速率通常和人的年龄有关.用a 表示一个人的年龄,用b 表示正常情况下这个人在运动
时所能承受的每分钟心跳的最高次数,则b =0.8(220-a ).
(1)正常情况下,一个14岁的少年运动时所能承受的每分钟心跳的最高次数是多少? (2)一个45岁的人运动时,每分钟心跳次数为132次,请问他有危险吗?为什么?
02 中档题
11.当a =1
3
,b =9时,下列代数式的值为24的是( )
A .(3a +2)(b -1)
B .(2a +1)(b +10)
C .(2a +3)(b -1)
D .(a +2)(b +11) 12.下列说法正确的有( )
①代数式的值只与代数式本身有关;②一个含有字母的代数式,只有一个值;③代数式x 2+x -1的值为-1. A .0个 B .1个 C .2个 D .3个
13.当x =-1时,代数式|5x +2|和代数式1-3x 的值分别为M 、N ,则M 、N 之间的关系为( ) A .M >N B .M =N
C .M <N
D .以上三种情况都有可能
14.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )
A .4
B .6
C .8
D .10 15.当x =7与x =-7时,代数式3x 4-2x 2+1的两个值( ) A .相等 B .互为倒数 C .互为相反数
D .既不相等也不互为相反数
16.已知2x -5y 3=3,则9-4(2x -5y 3)的值是________. 17.新定义一种运算:a *b =
ab
1-ab
,则2*3=________. 18.某商店出售一批水果,最初以每箱a 元的价格出售m 箱,后来每箱降价至b 元,又售出m 箱,剩下30箱又以每箱再降价5元出售.
(1)用代数式表示这批水果共售多少元?
(2)如果a=20,b=18,m=60,进这批水果共花去1 500元,那么该商店赚了多少元?
03综合题
19.七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.
(1)若有m名学生,用代数式表示两种优惠方案各需多少元?
(2)当m=70时,采用哪种方案优惠?
(3)当m=100时,采用哪种方案优惠?
参考答案
基础题
1.B 2.D 3.5 4.-1 5.-2 -32 -1 0 1 4 94 1 0 1 -25 -49 -12 -2
3 -1 6.A 7.程序对应
的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2]=2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0
-2)=-4. 8.B 9.8 10.(1)当a =14时,b =0.8(220-a)=0.8×(220-14)=164.8(次/分).答:一个14岁的少年运动时所能承受的每分钟心跳的最高次数约是164次.(2)当a =45时,b =0.8(220-a)=0.8×(220-45)=140(次/分).因为140次>132次,所以他无危险.答:他没有危险. 中档题
11.A 12.A 13.C 14.B 15.A 16.-3 17.-6
5 18.(1)[am +bm +30(b -5)]元.(2)当a =20,b =18,m =60时,
am +bm +30(6-5)=20×60+18×60+30×(18-5)=2 670(元),故这些水果共售2 670元.又因为进这批水果共花去1 500元,所以该商店赚了2 670-1 500=1 170(元). 综合题
19.(1)甲方案:m ×30×810=24m(元),乙方案:(m +5)×30×7.5
10=22.5(m +5)(元).(2)当m =70时,甲方案付费
24×70=1 680(元),乙方案付费22.5×75=1 687.5(元).所以采用甲方案优惠.(3)当m =100时,甲方案付费24×100
=2 400(元),乙方案付费22.5×105=2 362.5(元).所以采用乙方案优惠.。