浓度配比问题
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
浓度问题一、知识点梳理浓度的配比是百分比问题.巧配浓度首先要了解三个量和它们之间的关系,这三个量是溶质(在溶剂中的物质 )、溶剂(溶解溶质的液体、气体)和溶液(含溶质的混合物)的质量,它们的关系符合下面的基本计算公式:()==+溶质溶质浓度百分比溶液溶质溶剂巧配浓度的广义认识还是百分数应用题,我们可以把部分百分数应用题看作浓度的配比,使得我们的解题方法更灵活,构思更巧妙.二、基础训练1.现有含盐20%的盐水500克,要把它变成含15%的盐水,应加入5%的盐水多少克?2.130克含盐5%的盐水,与含盐9%的盐水混合。
配成含盐6.4%的盐水,这样配成的6.4%的盐水有多少克?3.小明用糖块和开水配置了200克浓度为35%的糖水,那么在配置过程中,用了多少克水?4.配制盐酸含量为20%的盐酸溶液1000克,需要用盐酸含量为18%和23%的盐酸溶液各多少?5.有一杯酒,食用酒精含量为45%,若添加16克水,酒精含量就变为25%,这杯酒中原来有食用酒精多少克?6.用浓度为45%和5%的糖水配制成浓度为30%的糖水4000克,需取45%的糖水多少克?7.现有浓度分别为1%,2%,3%,…,50%的盐水各1克,最多可以配制多少克浓度为32%的盐水;三、能力提升8.两个杯子里分别装有浓度为40%与10%的盐水,倒在一起混合后盐水的浓度变为30%,若再加入300克20%的盐水,混合后浓度变为25%,那么原有40%的盐水多少克?9.一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%;第三次再加入同样多的水,盐水的含盐百分比将变为百分之几?10.甲种酒精中纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为62%.如果每种酒精取的数量比原来都多15升,混合后纯酒精含量为63.25%.问第一次混合时,甲、乙两种酒精各取多少升?四、超越自我11.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%,62.5%,和23,已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中出酒精的量是多少千克?12.A容器有浓度2%的盐水180克,B容器中有浓度9%的盐水若干克.从B容器中倒出240克到A容器,然后再把清水倒入B容器,使A、B两容器中盐水的重量相等.结果发现,两个容器中盐水浓度相同,那么B容器中原来有9%的盐水多少克?13.甲、乙两个杯子,分别装两种浓度不同的酒精和水的混合物16克和24克,现分别从甲、乙两杯中倒出重量相等的部分混合液,并将甲杯中倒出的那部分混合液倒入乙杯,将乙杯中倒出的那部分混合液倒入甲杯,此时,甲、乙两杯中所含酒精的浓度正好相等.问从甲杯中倒出的那部分混合液重多少克?14.在A、B、C三个容器内各装有一定量的盐水,每个容器里的盐水量都是100克的倍数,总共2000克.如果将A 和B内的盐水混合,得到3%的盐水;如果将A和C内的盐水混合,得到8.3%的盐水;如果将B和C内的盐水混合,得到8%的盐水;如果将A、B、C内的盐水都混合,得到7.5%的盐水.(1)请分别求出A、B、C三个容器内的盐水的重量;(2)请分别求出A、B、C三个容器内的盐水的浓度.五、课后思考1.一瓶100克的酒精溶液,加入80克水后,稀释为浓度40%的新溶液,原溶液的浓度为百分之几?2.将浓度为20%的盐水与浓度为5%的盐水混合,配成浓度为15%的盐水450克,需浓度为20%的盐水多少克?浓度为5%的盐水多少克?3.实验室有浓度为24%和35%的两种盐水溶液,现在各取出一部分想配成浓度为28%的盐水,可是不小心将两种溶液的量取反了,结果配出的盐水的浓度为多少?六、自我评价。
(完整版)浓度问题典型题目汇总浓度问题专题专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量.类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量×100%=错误!×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
例题1。
有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。
因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖.练习11、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精.第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?例题2.一种35%的新农药,如稀释到1.75%时,治虫最有效。
溶液配比浓度问题总结1、溶液重量(盐水)=溶质重量(盐)+溶剂重量(水)溶质重量(盐)=溶液重量(盐水)×浓度2、溶液问题:浓度=溶质/溶液溶液= 溶质+溶剂溶液重量= 溶质重量+溶剂重量浓度=(溶质重量)/溶液重量溶液重量=(溶质重量)/浓度溶质重量= 溶液重量×浓度3、“稀释”问题-------特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。
例:要把30克含盐16%的盐水稀释成含盐0.15%的盐水,须加水多少克?分析:设须加水x克,列表分析等量关系:⇒=3170,解:设须加水x克,由题设得:30×16%=(30+x)·0.15%x∴须加水3170克。
浓度应用题只要抓住“不变”量或“变化量”之间的联系即可准确迅速推出解法。
4、“浓缩”问题-----特点是减少“溶剂”的量或者增加“溶质”的量,解题关键是紧紧抓住不变的量,构建等量关系。
例:在含盐0.5%的盐水中蒸去了236千克水,就变成了含盐30%的盐水,问原来的盐水是多少千克?解:设原来的盐水是x千克,列表分析等量关系:⇒=240,解:设原来的盐水是x千克,由题设:x×0.5%=(x-236) ·30%x∴原来的盐水是240千克。
※不变的量是溶质,围绕这一点构建等量关系从而解题。
例:有含盐8%的盐水40千克,要配制成含盐20%的盐水,须加盐多少千克?分析:设须加盐x千克,列表分析等量关系:解:设须加盐x千克,由题设:40(100%-8%)=(40+x)·(100%-20%)6⇒=x∴须加盐6千克。
※ 不变的量是溶剂,围绕这一点构建等量关系从而解题。
5、先“稀释”后“浓缩”-----将整个的过程分为两个阶段,抓住每个阶段的不变量,从而解决问题。
例:在浓度为30%的酒精溶液中加入5千克水,浓度变为20%,再加入多少千克酒精,浓度变为50%?6:配制问题---是指两种或者两种以上的不同浓度的溶液混合配制成新溶液,解题关键是分析所取原溶液的溶质与成品溶质不变及溶液前后质量不变,找到两个等量关系。
浓度配比问题中的基本概念:溶液:一种物质溶解到另一种物质里,形成的均一、稳定的混合物叫做溶液。
如盐水、糖水、酒精溶液、药水等等。
溶质:被溶解的物质叫做溶质。
如糖水中的糖,酒精溶液里的纯酒精等等。
溶剂:能溶解其他物质的物质叫做溶剂。
水是一种非常常用的溶剂。
浓度:指溶液中溶质的数量与溶液总量的比值,通常用百分比表示。
如糖水的浓度就是其中的糖占糖水总量的百分比。
浓度配比问题中基本公式:浓度=溶质÷溶液×100%=溶质÷(溶质+溶剂)×100%;(浓度公式是浓度配比问题中最基本、最核心的公式)溶液=溶质+溶剂=溶质÷浓度;溶质=溶液×浓度;溶剂=溶液-溶质浓度配比问题的两种基本题型及解题方法:1、加浓和稀释问题。
加浓就是在溶液中加入溶质,使溶液的浓度变大,在加浓的过程中溶剂的量是不变的。
或通过蒸发等减少溶剂,使溶液的浓度变大,在蒸发的过程中溶质的量是不变的。
稀释就是溶液中加入溶剂,使溶液的浓度变小,在稀释的过程中溶质的量是不变的。
解题方法:找准加浓或稀释前后溶液中不变的量,把不变的量看作单位1,按分数应用题求解,或以不变量为等量关系列方程求解。
2、溶液混合问题,即将两种或两种以上浓度不同的溶液混合配制出一种指定浓度的新的溶液。
解题方法:抓住混合前后溶液的总重量及溶质的总重量不变这一等量关系,一般用假设法求解,列方程求解更简便。
3、溶液互混问题,将两种或两种以上浓度不同的溶液相互混合,配制出两种或两种以上指定浓度的新的溶液。
解题方法:解题时要抓住每一种溶液互混前后浓度的变化量和溶质的变化量,与互混前后溶液变化情况之间的关系,层层推理,逐步解答,也可用方程求解。
这类问题也是浓度配比问题中最复杂疑难的问题。
【题目】:现有浓度为16%的盐水40克,要想得到20%的盐水,应怎样做?【解析】:这是加浓问题,可以通过加入盐或蒸发水是盐水的浓度增大。
解法一:在溶液中加入盐,加浓前后溶剂水的重量不变。
数学浓度问题的计算公式
嘿!同学们,今天我来和你们讲讲让好多人头疼的数学浓度问题的计算公式!你们说,数学是不是有时候像个调皮的小精灵,总爱给我们出难题?
就拿浓度问题来说吧,它就像是个神秘的小怪兽,要是不掌握它的弱点,可真难对付呢!
那浓度问题的计算公式到底是啥呢?其实呀,就是“浓度= 溶质质量÷溶液质量×100%”。
这就好比做蛋糕,溶质就像是蛋糕里的糖,溶液就是整个蛋糕,浓度就是糖在整个蛋糕里占的比例。
比如说,有一杯糖水,里面有20 克糖,糖水一共100 克,那这杯糖水的浓度是多少呢?咱们就用刚刚说的公式,20÷100×100% = 20%,这就得出浓度啦!
我之前做浓度问题的题目时,可真是费了好大的劲儿!我就想,这咋这么难呀?后来发现,只要把公式记牢,多做几道题,其实也没那么可怕!
我还和我的小伙伴一起讨论过浓度问题呢!我问他:“你说这浓度问题咋这么绕呢?”他说:“别着急,咱们多想想,多算算,肯定能搞明白!”然后我们就一起做题,互相帮忙。
再比如,有个工厂要配制一种药水,需要知道浓度来确定配比。
要是不知道这个计算公式,那不是瞎忙活吗?
所以说,这个浓度问题的计算公式可重要啦!咱们一定要把它拿下,以后再遇到浓度问题,就不会害怕啦,对不对?
我的观点就是,虽然浓度问题的计算公式一开始让人觉得有点难,但只要咱们用心去学,多练习,就一定能掌握,让数学这个小怪兽乖乖听话!。
二、浓度配比问题一种物质分散到另一种物质里,形成均一的、稳定的混合物叫做溶液。
前一种物质叫溶质,后一种物质叫溶剂,溶质重量与溶液重量的比值叫做溶液的浓度,通常用百分比表示。
即:浓度= ×100% 例如:食盐溶于水得到食盐水。
食盐叫溶质,水叫溶剂,食盐水叫溶液,盐与食盐水重量的百分比就是食盐水的浓度。
在我们的日常生活中,治病用的药水,人们喝的酒及饮料,科学实验配制的各种试剂等都与浓度有关。
解决浓度问题时通常要用的几个等量关系:浓度= ×100% 溶质重量=溶液重量×浓度溶剂重量=溶液重量×(1-浓度)溶液重量=溶质重量÷浓度常见的浓度问题类型及解题关键:1、加水或加盐变浓度问题。
解题关键是抓住加水前后溶质重量不变或加盐前后溶剂重量不变这一等量关系。
2、溶液混合问题。
即将两种或两种以上浓度不同的溶液混合配制成一种新的溶液的浓度问题。
解题关键是抓住混合前后溶液的总重量及溶质的总重量不变这一等量关系。
3、溶液互混问题。
这一类问题难度较大,解题时要抓住一定量的溶液互混前后溶质增加或减少的重量与互混溶液的浓度差及互混前后取出(倒进)的溶液重量之间的关系,也可用方程来解答。
例1 把16%的食盐水1000克,制成10%的盐水,应该加水多少克?分析与解答 这是一道加水稀释的题目。
把浓度高的溶液经添加溶剂变为浓度低的溶液的过程称为稀释。
在稀释的过程称为稀释。
在稀释的前后,盐的重量没有变,这是解此题的关键。
根据条件“16%的食盐水1000克”,可求出盐的重量为1000×16%=160(克),而加水后盐水浓度为10%,则加水后盐水的重量为160÷10%=1600(克),加水前后盐水的重量差1600-1000=600(克)则为加水的重量。
1000×16%÷10%-1000=1600-1000=600(克)答:应该加水600克。
想一想:把此题第2个条件和问题改为“制成20%的盐水,应该加盐多少克?”,应该怎样解答?例2 现有浓度为75%和45%的酒各一种,现要配制含酒精65%的酒300克,应当从这两种酒中各取多少克?分析与解答 这是一道溶液混合问题,解题关键是混合前两种酒的总重量与含酒精的总重量与混合后都没有变。
浓度配比问题一、知识点概述在百分数应用题中有一种关于溶液浓度的计算问题,我们把它称为浓度配比问题。
这个问题主要研究溶液、溶质和溶剂之间的关系,由于浓度问题变化多,有的难度较大,计算也较复杂。
因此我们要根据题目提供的信息和问题逐一分析,也可以分步解答。
二、重点知识归纳及讲解(一)什么是浓度配比问题?有时需要研究用多少水和多少糖才能配制成某一预先给定浓度的糖水;或者两种同类不同浓度的溶液各取多少,才能配制成某一预定浓度的溶液,这就是浓度配比问题。
(二)浓度配比问题中常见的数量关系人们习惯上把像盐、糖、纯酒精、纯农药等叫做溶质,把水叫做溶剂。
把溶质与溶剂的混合液叫溶液。
它们有如下关系:溶质质量+溶剂质量=溶液质量溶液质量×浓度=溶质质量溶质质量÷浓度=溶液质量(三)浓度配比问题几种类型1、稀释浓度问题2、增加浓度问题3、两种溶液混合配制问题三、难点知识剖析例1、在浓度为35%的10千克的盐水中加入4千克的水,这时盐水浓度是多少?解析:由于加入4千克水,使得整个溶液(即盐水)重量增加为10+4=14千克,而加水前后盐的质量(即溶质)没有变化。
根据盐在整个盐水的百分比即为盐水浓度,便可求出加水稀释后的盐水浓度。
答:这时盐水浓度是25%例2、要把浓度为25%的盐水300克,加清水冲淡为浓度15%的盐水,需要加清水多少克?解析:根据“把浓度为25%的盐水300克,加清水冲淡为浓度15%的盐水”可知盐水稀释前后的盐的质量不变;由“浓度为25%的盐水300克”可以求出盐的质量,再根据冲淡后盐水的浓度15%,可以求出稀释后盐水的质量,进而求出需要加清水的质量。
解答:300×25%÷15%-300=75÷15%-300=500-300=200(克)答:需要加清水200克。
例3、有含盐8%的盐水400克,要配制含盐20%的盐水,需要加盐多少克?解析:此例是增加浓度问题,因为加盐,溶液浓度由稀变浓,其中水的质量(即溶剂)始终不变,据此可以先求出原来盐水中水的质量,再求出后来盐水的质量,进而求出需要加盐的质量。
实验六年级专项训练————浓度配比例1:100克浓度为35%的盐水和25克浓度为80%的盐水混合后的浓度是多少?例2:将浓度为95%的酒精溶液3000克稀释成浓度为75%的酒精溶液,需加水多少克?例3:有含盐20%的盐水36千克,要制出含盐55%的盐水,需加盐多少千克?例4:一个容器内有浓度为25%的盐水,若再加入20千克的水,则盐水的浓度为15%。
这个容器中原来含有盐多少千克?例5:甲种药水浓度为22%,乙种药水的浓度为27%,若用两种药水配制成浓度为25%的药水,则甲种药水的用量与乙种药水的用量之比是多少?例6:配制浓度为25%的糖水1000克,需用浓度为22%和27%的糖水各多少克?例7:容器中有某种浓度的酒精,加入一杯水后浓度变为25%,再加入一杯纯酒精后浓度又升为40%。
原来的浓度是多少?例8:两个杯中分别装有浓度为40%与10%的食盐水,倒在一起后混合食盐水的浓度为30%,若再加入300克20%的食盐水,则浓度变为25%。
那么原有浓度为40%的食盐水多少克?例9:A、B、C三种酒精溶液分别为40%、36%和35%,其中B种比C种多3升。
它们混合在一起得到了38.5%的酒精溶液11升,那么其中A种酒精溶液多少升?例10:今有浓度为5%、8%、9%的甲、乙、丙三种盐水各60克、60克、47克,现要配制浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();});1、10克盐放入100克水中,制得的盐水浓度是多少?2、浓度是75%的酒精溶液300克中含有酒精多少克,水多少克,酒精和水的比是多少,酒精和溶液的比是?3、在浓度14%的盐水20千克中,加入8千克水,这时盐水的浓度是多少?4、要从含盐16%的40千克盐水中蒸去水分,制出含盐20%的盐水,应当蒸去多少水?5、有含糖3.2%的糖水500克,为使它变成含糖8%的糖水,要蒸发多少克水?6、把浓度为95%的糖水150克,稀释成75%的糖水,需要加水多少克?7、有含盐18%的盐水400克,要使盐水浓度为25%,需加盐多少克?8、有含盐8%的盐水40千克,要配制含盐20%的盐水100千克,需要加盐和水各多少千克?9、浓度为20%的盐水溶液60克,加入多少盐,就变成浓度为40%的盐水?10、要从含药12.5%的溶液40千克里蒸发掉一部分水,使其浓度上升到20%,最后剩多少药液?11、有含糖5%的糖水600克,要配制含糖12%的糖水800克,需加糖和水各多少克?12、有5袋精盐,每袋3千克,为了全部配制成溶液与水的比率是9:8的食盐溶液,需要加入多少克水?13、一个玻璃内原来盐是水的111 ,加进15克盐以后,盐占盐水的19,瓶内原有盐水多少克?14、浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液深度是多少?15、有浓度20%的食盐水600克和浓度为5%的食盐水300克混合,求混合后食盐水的浓度?16、一个长方形周长是88厘米,如果它的宽增加25%,长减少17,周长不变,求这个长方形的面积?17、一个正方形一边减少25%,另一条边增加2米,得到一个长方形,它与原来正方形面积相等,求正方形的面积。
第32讲浓度配比问题【探究必备】1. 通常,我们把糖、盐等能被溶解的物质称为溶质,把溶解这些溶质的液体称为溶剂,如水等。
溶质和溶剂的混合液体成为溶液,如糖水、盐水等。
2. 溶质质量+溶剂质量=溶液质量溶质质量÷溶液质量=浓度(通常用百分数表示)溶质质量=溶液质量×浓度溶剂质量=溶液质量×(1-浓度)溶液质量=溶质质量÷浓度溶液质量=溶剂质量÷(1-浓度)3. 常见的浓度配比问题,有盐水的浓度(盐与盐水的比值)、糖水的浓度(糖与糖水的比值)、酒精溶液的浓度(酒精与整个溶液的比值)等。
【王牌例题】例1、玻璃瓶中装有浓度为15%的盐水200克。
若加50克水后,这时盐水的浓度是多少?分析与解答:解决这道题目的关键是盐水在加水以后盐的质量不变,求盐水的浓根据“浓度为15%的盐水200克”可知盐的质量为200×15%=30(克),那么加50克水后盐的质量仍然是30克,但溶液的质量变了,现在溶液的质量是200+50=250(克),再根据浓度的计算方法,即这时盐水的浓度为30÷250=12%。
例2、现有浓度为20%的盐水120克,加入多少克水就能得到浓度为15%的盐水?分析与解答:将浓度为20%的盐水变成15%的盐水,盐水中水的质量变了,但盐的质量没有发生变花,根据“浓度为20%的盐水120克”可知盐的质量有120×20%=24(克),而现在浓度为15%的盐水中也要有24克盐,那么现在的盐水应为24÷15%=160(克),故应加水160-120=40(克)。
例3、现有浓度为10%的盐水500克,要使盐水的浓度提高到20%,需要加入多少克盐?分析与解答:解决这道题的关键是找到两次溶液的差,这道题的解题思路和例1相同,但这题中溶剂的质量不变,根据“浓度为10%的盐水500克”可知,该溶液中有水500×(1-10%)=450(克),再根据溶剂不变可算出现在溶液的质量为450÷(1-20%)=562.5(克),那么应加盐562.5-500=62.5(克)。
浓度配比问题
知识精讲
一、知识点概述
在百分数应用题中有一种关于溶液浓度的计算问题,我们把它称为浓度配比问题。
这个问题主要研究溶液、溶质和溶剂之间的关系,由于浓度问题
变化多,有的难度较大,计算也较复杂。
因此我们要根据题目提供的信息和
问题逐一分析,也可以分步解答。
二、重点知识归纳及讲解
(一)什么是浓度配比问题?
有时需要研究用多少水和多少糖才能配制成某一预先给定浓度的糖水;
或者两种同类不同浓度的溶液各取多少,才能配制成某一预定浓度的溶液,这就是浓度配比问题。
(二)浓度配比问题中常见的数量关系
人们习惯上把像盐、糖、纯酒精、纯农药等叫做溶质,把水叫做溶剂。
把溶质与溶剂的混合液叫溶液。
它们有如下关系:
溶质质量+溶剂质量=溶液质量
溶液质量×浓度=溶质质量
溶质质量÷浓度=溶液质量
(三)浓度配比问题几种类型
1、稀释浓度问题
2、增加浓度问题
3、两种溶液混合配制问题
三、难点知识剖析
例1、在浓度为35%的10千克的盐水中加入4千克的水,这时盐水浓度是多
少?
解析:
由于加入4千克水,使得整个溶液(即盐水)重量增加为10+4=14千克,而加水前后盐的质量(即溶质)没有变化。
根据盐在整个盐水的百分比即为盐
水浓度,便可求出加水稀释后的盐水浓度。
答:这时盐水浓度是25%
例2、要把浓度为25%的盐水300克,加清水冲淡为浓度15%的盐水,需要
加清水多少克?
解析:
根据“把浓度为25%的盐水300克,加清水冲淡为浓度15%的盐水”可知盐水稀释前后的盐的质量不变;由“浓度为25%的盐水300克”可以求出
盐的质量,再根据冲淡后盐水的浓度15%,可以求出稀释后盐水的质量,进
而求出需要加清水的质量。
解答:300×25%÷15%-300
=75÷15%-300
=500-300
=200(克)
答:需要加清水200克。
例3、有含盐8%的盐水400克,要配制含盐20%的盐水,需要加盐多少克?
解析:
此例是增加浓度问题,因为加盐,溶液浓度由稀变浓,其中水的质量(即溶剂)始终不变,据此可以先求出原来盐水中水的质量,再求出后来盐水的质量,进而求出需要加盐的质量。
解答:400×(1-8%)÷(1-20%)-400
=400×92%÷80%-400
=460-400
=60(克)
答:需要加盐60克。
例4、在一桶含盐量10%的盐水中加入5千克食盐,溶解后,桶中盐水的浓度增加到20%,桶中原有多少千克盐水?
分析:
加盐将会由稀变浓,其中水的重量(即溶剂)始终没变,据此相等关系可列出方程解答。
解:
设浓度10%的盐水有X千克,则其中水有X×(1-10%)千克。
X×(1-10%)=(X+5)×(1-20%)
90%X=(X+5)×80%
90%X=0.8×(X+5)
0.9X-0.8X=4
X=40
答:桶中原有40千克的盐水。