认识三角形(一)[下学期]--北师大版-
- 格式:ppt
- 大小:317.00 KB
- 文档页数:13
三角形的认识和图形全等三角形的有关概念由3条不在同一条直线上的线段,首尾顺次相接所组成的图形叫做三角形.三角形有3条边、3个顶点和3个内角.三角形的边和角称为三角形的基本元素.如图,线段BC、CA、AB是三角形的边,也可以分别用表示;点A、B、C是三角形的顶点.∠A、∠B、∠C是相邻两边所组成的角,叫做三角形的内角,简称为三角形的角.三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”.三角形的分类三角形按角可以分成如下三类:三角形按边可以分成如下两类:三角形的三边之间的关系(1)三角形的任意两边之和大于第三边,若三角形的三边为a,b,c,则a+b>c,b+c>a,c+a>b;(2)三角形的任意两边之差小于第三边.若三角形的三边为a,b,c,则 a-b<c,b-c<a,c-a<b(3)三角形的边的不等关系的应用和作用.①判断三条线段a、b、c能否组成三角形,其判断方法有如下三种:1°当a+b>c,b+c>a,c+a>b都成立,即三条边都小于其它两条边之和时,能组成三角形;2°当|a-b|<c<a+b时,即任意一条边大于其它两条边差的绝对值(即大边减小边),而小于其它两条边之和,可以构成三角形;3°当a最长,且有b+c>a时,即最大边小于其它两条边之和时可以构成三角形.②确定三角形第三边的取值范围:两边之差的绝对值<第三边<两边之和如果三角形已知两边分别为a、b,第三边为c,则|a-b|<c<a+b从而得到三角形的周长的取值范围,设a>b,则2a<a+b+c<2(a+b)③说明线段的不等关系.三角形的特殊线段(1)三角形的角平分线在三角形中,一个内角的平分线与对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.如图,∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线.一个三角形有三条角平分线,并且都在三角形的内部,它们相交于一点,这一点叫做三角形的内心.(2)三角形的中线在三角形中,连接一个顶点和它对边中点的线段,叫做三角形的中线.如图,连接△ABC的顶点A和它所对的边BC的中点E,所得线段AE叫做△ABC的边BC上的中线.一个三角形有三条中线,并且都在三角形的内部,它们相交于一点,这一点叫三角形的重心.(3)三角形的高在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为F.那么线段AF叫△ABC的边BC上的高.三角形有三条高,且它们(或它们的延长线)相交于一点,这个交点叫做三角形的垂心.注意:①锐角三角形的三条高,都在三角形的内部.②直角三角形的三条高,有一条在三角形的内部,另外两条在三角形的边上.③钝角三角形的三条高,有一条在三角形的内部,另外两条在三角形的外部.典型例题讲解例1、如图所示,图中三角形的个数共有()A.1个B.2个C.3 个D.4个解析:由三条线段首尾顺次相连得到图形为三角形,所以图中三角形有△ABD,△ABC和△ADC,共有三个.答案:C例2、有四根长度分别为10cm、6cm、5cm、3cm的钢条,以其中三根为边,焊接成一个三角框架,问此三角形框架的周长可能是多少?分析:在四根钢条中任选3根,也就是在4根中去掉1根,共有四种情况,分类讨论在每种情况下能否构成三角形,即是否满足“三角形的任意两边之和大于第三边”.解:此三角形框架三边长有以下四种情况:⑴当三线段长分别为6cm、5cm、3cm时,周长为14cm;⑵当三线段长分别为10cm、5cm、3cm时,不能构成三角形;⑶当三线段长别为10cm、6cm、3cm时,不能构成三角形;⑷当三线段长别为10cm、6cm、5cm时,周长为21cm.所以此三角形框架的周长可能是14cm或21cm.例3、一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它的周长是()A.17 B.22 C.17或22 D.13分析:计算等腰三角形的边长或周长时,常要分类讨论谁是腰,谁是底,这时往往忽略三边关系是前提条件.若第三边长是4,由于4+4<9,不符合三边关系定理,所以第三边只能为9,从而知周长为4+9+9=22,故选B.答案:B点评:分类讨论时应注意验证三边关系.例4、如图,在等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长.分析:由题意可知,中线BD将的周长分为AB+AD和BC+CD两部分,故有两种可能:⑴⑵再由AB=AC=2AD=2CD,知⑴式成立,⑵式不成立.解:设AB=AC=2x,则AD=CD=x.⑴当AB+AD=15,且BC+CD=6时,有2x+x=15,x=5,所以2x=10,BC=6-5=1.⑵当BC+CD=15,AB+AD=6时,有2x+x=6,x=2,所以2x=4 ,AB=AC=4,BC=13,又因为4+4=8<13,这与“三角形任意两边之和大于第三边”相矛盾,故不能组成三角形.答:这个三角形的腰长为10,底边长为1.点评:分类讨论是研究几何问题常用的数学思想方法,要求不重不漏;把线段长设为未知数,列方程解几何题是将问题化难为易的有效方法;要考虑求解结果是否满足三角形三边关系.全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.典型例题讲解例1.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形选:D.【点评】此题主要考查了全等图形的性质与判定,正确利用全等图形的性质得出是解题关键.例2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等选:C.【点评】此题主要考查了全等图形的定义与性质,正确掌握全等图形的性质是解题关键.例3.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°选:D.例4.下列四个图形中,全等的图形是()A.①和②B.①和③C.②和③D.③和④选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.例5.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a ,b ,c ,e ,α各字母所表示的值.【解答】解:对应顶点:A 和G ,E 和F ,D 和J ,C 和I ,B 和H , 对应边:AB 和GH ,AE 和GF ,ED 和FJ ,CD 和JI ,BC 和HI ;对应角:∠A 和∠G,∠B 和∠H,∠C 和∠I,∠D 和∠J,∠E 和∠F; ∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【点评】此题主要全等图形,关键是找准对应顶点,全等图形,对应边相等,对应角相等.测试11、两根木棒的长分别为7cm 和10cm ,要选择第三根木棒,将它们订成一个三角形框架,那么第三根木棒长xcm 的范围是________.3cm<x<17cm2、如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =4cm 2,则S 阴影=________.1cm 23、已知△ABC 的三边长为5,12,3x -4,周长为偶数,求整数x 及周长.解:先求x 的取值范围,∴12-5<3x -4<12+5,即113<x <7,而x 为整数,∴x=4、5或6.若周长12+5+3x -4=13+3x 是偶数,则x 为奇数, ∴x=5,从而周长为5+12+3x -4=28.4、如图,在△ABC 中,AB=AC ,AC 上的中线把三角形的周长分为24cm 和30cm 的两个部分,求三角形各边的长.解:因为BD 是中线,所以AD=DC ,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论. 解:设AB=AC=2x ,则AD=CD=x ,(1)当AB +AD=30,BC +CD=24时,有2x +x=30,∴x=10,2x=20,BC=24-10=14,三边分别为:20cm ,20cm ,14cm . (2)当AB +AD=24,BC +CD=30,有2x +x=24∴x=8,BC=30-8=22,三边分别为16cm ,16cm ,22cm . 5、如图,P 是△ABC 内一点,试说明AB +AC>PB +PC 成立的理由.要添加辅助线,构造新的三角形.比较明显的辅助线可以作BP或CP的延长线.解答:延长BP交AC于D,解:(1)1;4;10(2)(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取67、设m,n,p均为自然数,满足,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?分析:本题考查三角形三边之间的关系.A.全等三角形的大小相等B.两个等边三角形一定是全等三角形C.全等三角形的形状相同D.全等三角形的对应边相等选B.【点评】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.2.下列说法:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的周长相等;(4)周长相等的两个三角形相等;(5)全等三角形的面积相等;(6)面积相等的两个三角形全等.其中不正确的是()A.(4)(5) B.(4)(6) C.(3)(6) D.(3)(4)(5)(6)选:B.【点评】此题主要考查了全等三角形,以及全等三角形的性质,关键是掌握能够完全重合的两个三角形叫做全等三角形.3.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D选C.4.下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形选D.5.全等三角形用符号≌来表示;其对应边相等,对应角相等.6.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于585°.7.找出全等图形.【解答】解:由图形可得出:(1)和(8);(2)和(6);(3)和(9);(5)和(7);(13)和(14)是全等图形.课后作业1、以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个2、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()A.2a B.-2bC.2a+2b D.2b-2c3、一个三角形三边之比为3︰4︰5,则这个三角形三边上的高线之比为()A.3,4,5 B.4,5,6C.10︰7︰5 D.20︰15︰124、如图,ΔABC,ΔADE及ΔEFG都是等边三角形,D和G分别为AC和AE的中点.若AB = 4时,则图形ABCDEFG 外围的周长是()A.12 B.15C.18 D.215、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有().A.2对B.3对C.4对D.6对6、设三角形三边之长分别为3,8,1-2a,则a的取值范围为()A.-6<a<-3 B.-5<a<-2C.-2<a<5 D.a<-5或a>27、以7和3为两边长,另一边的长是整数,这样的三角形一共有()A.2个B.3个C.4个D.5个8、下列判断正确的是()(1)平分三角形内角的射线叫三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条角平分线和三条中线;(4)三角形的中线是经过顶点和对边中点的直线.A.(1)(2)(3)(4) C.(3)(4)B.(2)(3)(4) D.(2)(3)9、等腰三角形的各边长都是正整数,且周长为12,这样的三角形有()A.0个B.1个C.2个D.3个10、若自然数a、b、c为三角形的三边,且a≤b≤c,b=4,问这样的三角形有()个.A.4 B.6C.8 D.10答案:CDDBB BDDCD11、观察下列图形,则第n个图形中三角形的个数是()A.B.C.D.解析:第1个图形中有4个三角形;第2个图形中有8个三角形; 第3个图形中有12个三角形; ……由此规律,第n 个图形中有4n 个三角形. 答案:D12、下列长度的三条线段能组成三角形的是( )A .1cm ,2cm ,3.5cmB .4cm ,5cm ,9cmC .5cm ,8cm ,15cmD .6cm ,8cm ,9cm 解析:选项A 中1+2<3.5不能组成三角形;选项B 中4+5=9不能组成三角形;选项C 中5+8<15不能组成三角形;而D 中6+8>9,符合三角形三边关系,故选D.答案:D13、不等边△ABC 的两边高分别为4和12,若第三边上的高也是整数,试求它的长.分析:由两边上的高4和12可以求出这两边的关系,从而可以表示出第三边的取值范围,再用面积法可以求出第三边上的高.解答:设第三边c 边上高为h ,三角形面积为S ,高为4,12的两边为a ,b ,则有,∴a=2S 4,b=2S 12,c=2Sh . 据三角形三边关系,得,∴.∵h 为整数,∴h=4或5.又∵三角形为不等边三角形,∴h=5.14、如图,AD 是△ABC 的角平分线,DE∥AC,交AB 于点E ,DF∥AB,交AC 于点F.图中DA 是否平分∠EDF,为什么?解:图中DA 平分∠EDF.理由:由ED∥AC,得∠EDA=∠CAD. 同理,由DF∥AB, 得∠FDA=∠BAD.又由AD 是△ABC 的角平分线,得∠BAD=∠CAD. 所以∠EDA=∠FDA,即DA 平分∠EDF.点评:一个图形中,若具有“角平分线”与“平行线”的条件常常可以找到等角.。
专题4.1 认识三角形(与三角形有关的线段)(知识讲解)【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.特别说明:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.2.三角形的分类(1)按角分类:特别说明:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:特别说明:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.特别说明:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB=∠ADC=∠90°.注意:AD 是ΔABC 的高∠ADB=∠ADC=90°(或AD⊥BC 于D);特别说明:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =BC. 特别说明:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部; (3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心; (4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD=2∠DAC) . 特别说明:(1)三角形的角平分线是线段; ⇔21⇔21(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 特别说明:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、与三角形有关线段??三角形的边段??概念??分类1.如图所示,(1)图中有几个三角形?(2)说出CDE ∆的边和角.(3)AD 是哪些三角形的边?C ∠是哪些三角形的角?【答案】(1)图中有:ABD ∆,ADC ∆,ADE ∆,EDC ∆,ACB ∆,共5个;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【分析】(1)分类找三角形,含AB 的,含AD (不含AB )的,含DE (不含AD )的三类即可;(2)根据组成三角形的三条线段一一找出,利用三角形两边的夹角即可找出;(3)观察图形,找出含AD 的三角形,先找AD 左边的,再找AD 右边的即可,根据三角形内角的定义,角的两边是三角形的边,找到第三边,在∠C 的内部在线段看与角的两边是否相交即可解:(1)图中有:以AB 为边的三角形有∠ABD ,∠ABC ,以AD 为边的三角形有∠ADE ,∠ADC ,再以DE 为边三角形有∠DEC ,一共有5个三角形分别为ABD ∆,ABC ∆,ADC ∆,ADE ∆,EDC ∆;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【点拨】本题考查三角形的识别,三角形的基本要素,三角形个数,观察图形找出图中的三角形,三角形的组成,找以固定线段的三角形,和固定角的三角形,掌握利用分类思想找出所有的图形,三角形的边与角,共线段三角形以及共角三角形是解题关键.举一反三:【变式】如图,以BD 为边的三角形有哪些?分别写出来;以∠1为内角的三角形有哪些?分别写出来.【分析】先根据BD 边找三角形,再根据∠1找三角形.解:以BD 为边的三角形有:∠BDC ,∠BDO ,以∠1为内角的三角形有:∠EOC ,∠ACD .【点拨】本题考查了三角形的内角和边的概念,学会分类的方法找三角形是本题的解题关键.2.已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.【答案】ABC 的形状是等边三角形.【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .解:∠22()()0a b b c -+-=,∠0a b -=,0b c -=∠a =b =c ,∠ ABC ∆是等边三角形.【点拨】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.举一反三:【变式】满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)∠ABC 中,∠A =30°,∠C =∠B ;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【分析】根据角的分类对三角形进行分类即可.解:(1)∠∠A =30°,∠C =∠B ,∠A +∠C +∠B =180°,∠∠C =∠B =75°,∠满足条件的三角形是锐角三角形.(2) ∠三个内角的度数之比为1∠2∠3,∠可求得每个内角的度数分别为30°,60°,90°,∠满足条件的三角形是直角三角形.【点拨】本题主要考查了三角形的分类问题.类型二、与三角形有关线段??构成三角形条件??确定第三边取值范围3.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm 、8cm 、4cm ; (2)5cm 、6cm 、11cm ; (3)5cm 、6cm 、10cm ;【答案】(1)不能,因为3cm +4cm <8cm ;(2)不能,因为5cm +6cm =11cm ;(3)能,因为5cm +6cm >10cm【分析】略举一反三:【变式】如图所示三条线段a ,b ,c 能组成三角形吗?你是用什么方法判别的?【答案】三条线段a ,b ,c 能组成三角形,理由见分析【分析】只需要利用作图方法证明b a c b c -<<+即可.解:三条线段a ,b ,c 能组成三角形,理由如下:如图所示,根据线段的和差可知b a c b c -<<+,∠三条线段a ,b ,c 能组成三角形.【点拨】本题主要考查了构成三角形的条件,线段的尺规作图,证明b a c b c -<<+是解题的关键.4.己知三角形的两边长为5和7,第三边的边长a .(1)求a 的取值范围;(2)若a 为整数,当a 为何值时,组成的三角形的周长最大,最大值是多少?【答案】(1) 212a << (2)当11a =时,三角形的周长最大为23【分析】(1)根据三角形三边关系求解即可得到答案;(2)由(1)取最大值即可得到答案.(1)解:由三角形的三边关系可知7575a -<<+,即212a <<,∠a 的取值范围是212a <<;(2)解:由(1)知,a 的取值范围是212a <<,a 是整数,∠当11a =时,三角形的周长最大,此时周长为:571123++=,∠周长的最大值是23.【点拨】本题考查三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边. 举一反三:【变式】已知:ABC 中,5AB =,21BC a =+,12AC =,求a 的范围.【答案】38a <<【分析】根据三角形的三边关系列不等式求解即可.解:∠AB BC AC 、、是ABC 的三边,∠AC AB BC AC AB -<<+,即:a -<+<+12521125,解得:38a <<,故答案为:38a <<.【点拨】本题考查了三角形的三边关系、解不等式组;熟练掌握三角形的三边关系以及解不等式组的方法是解题的关键.类型三、与三角形有关线段??三角形的高??作图??求值(等面积法)5.在如图所示的方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 均在小正方形的顶点上.(1) 画出ABC 中BC 边上的高AD ;(2) 直接写出ABC 的面积为___.【答案】(1)见分析 (2)8【分析】(1)结合网格图,直接利用三角形高线作法得出答案;(2)结合网格图,直接利用三角形的面积求法得出答案.(1)解:如图所示:AD 即为所求;1【变式】如图:(1) 用三角尺分别作出锐角三角形ABC ,直角三角形DEF 和钝角三角形PQR 的各边上的高线.(2) 观察你所作的图形,比较三个三角形中三条高线的位置,与三角形的类型有什么关系?【分析】(1)根据三角形高的画法画图即可;(2)根据(1)所作图形进行求解即可.(1)解;如图所示,即为所求; (2)解:由(1)可知,锐角三角形的三条高线的交点在三角形内部;直角三角形的三条高线的交点为直角顶点;钝角三角形的三条高线的交点在三角形外部.【点拨】本题主要考查了画三角形的高,三角形高线的交点,正确画出三角形的高是解题的关键.6.如图,,AD AE 分别是ABC 的中线和高,3cm AE =,26cm ABD S =△.求BC 和DC 的长.【答案】8cm BC =,4cm CD =ABD S =是ABC 的中线,得到解:由题意,得:BD AE ⋅4cm ,是ABC 的中线,12BD BC =∠4cm,28cm CD BC BD ===.【点拨】本题考查三角形的高线和中线.熟练掌握三角形的中线是三角形的顶点到对边中点所连线段,是解题的关键.举一反三:【变式】如图,AD BE ,分别是ABC 的高,若465AD BC AC ===,,,求BE 的长.2ABC S =分别是ABC 的高,1122ABC S BC AD AC =⨯=⨯45AD BC AC ===,,,462455BC BE ⨯==24BE =【点拨】本题考查了三角形面积的计算公式,掌握等面积法求解是解题的关键.7.如图,在ABC 中()2AB BC AC BC BC >=,,边上的中线AD 把ABC 的周长分成70和50两部分,求AC 和AB 的长.【答案】5636AC AB ==,【分析】先根据2AC BC =和三角形的中线列出方程求解,分类讨论7050AC CD AC CD +=+=①,②,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解:设BD CD x ==,则24AC BC x ==,BC 边上的中线AD 把ABC 的周长分成70和50两部分,AB BC >,①当7050AC CD AB BD +=+=,时,470x x +=,解得:14x =,441456AC x ∴==⨯=,14BD CD ==,50501436AB BD ∴=-=-=,36AB ∴=,36286456BC AB AC +=+=>=,满足三边关系,5636AC AB ∴==,;②当5070AC CD AB BD +=+=,时,450x x +=,解得:10x =,441040AC x ∴==⨯=,10BD CD ∴==,70701060AB BD =-=-=,60AC BC AB +==,不满足三角形三边关系,所以舍去,5636AC AB ∴==,.【点拨】本题考查了三角形中线的性质和三边的关系,解题的关键是找到等量关系,列出方程. 举一反三:【变式】如图,已知AD 、AE 分别是ABC 的高和中线9cm,12cm AB AC ==,15cm BC =,90BAC ∠=︒.试求:(1) ABE 的面积;(2) AD 的长度;(3) ACE △与ABE 的周长的差.2ACE △的周长-ABE 的周长)解:ABC 是直角三角形,2191254(cm )2ABC =⨯⨯,AE 是BC 上的中线,BE EC ∴=,ABE ACE S S ∆∆∴=,2127cm 2ABE ABC S S ∆∆∴=; )解:BAC ∠=,AD 是BC 1122AD BC ∴⋅=AB AC AD BC ⋅∴=)解:AE 是BC BE CE =,ACE 的周长-ABE 的周长和ABE 的周长差是3cm 【点拨】本题考查了三角形的面积公式,以及三角形的中线将三角形分成面积相等的两部分,熟练掌握相关的性质与公式是解决此题的关键.8.如图,ABC 中,90C ∠=︒,8cm AC ,6cm BC ,10cm AB =.若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒2cm .设运动的时间为t 秒.(1) 当t =___________时,CP 把ABC 的周长分成相等的两部分?(2) 当t =___________时,CP 把ABC 的面积分成相等的两部分?(3) 当t 为何值时,BCP 的面积为12?【答案】(1)6(2)6.5(3) 2或6.5秒先求出ABC的周长为把ABC的周长分成相等的两部分时,12cmBC+=速度即可求解;)根据中线的性质可知,点把ABC的面积分成相等的两部分,进而求解即)分两种情况:∠P在AC1)ABC中,∠8cmAC,6cmBC,10cmAB,∠ABC的周长861024cm=++=,∠当CP把ABC的周长分成相等的两部分时,点P在AB上,此时212t=,解得6t=.故答案为:6;)当点P在AB中点时,把ABC的面积分成相等的两部分,此时213t=,解得 6.5t=.故答案为:6.5;)分两种情况:∠当P在AC∠BCP的面积16 2CP⨯⨯4CP=,24t=,t∠当P在AB∠BCP的面积=12=ABC面积的一半,∠P为AB中点,213t=, 6.5.故t为2或6.5秒时,BCP的面积为12.【点拨】本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分【变式】已知ABC的面积为S,根据下列条件完成填空.图1图2图3(1) 1AM 是ABC 的边BC 上的中线,如图1,则1ACM 的面积为 (用含S 的式子表示,下同);2CM 是1ACM 的边1AM 上的中线,如图2,则2ACM △的面积为 ;3AM 是2ACM △的边2CM 上的中线,如图3,则3ACM △的面积为 ;…… )中的求解可得规律,利用规律即可求解.是ABC 的边上的中线,ABC 的面积为11122ACM ABC S S S ==; 2CM 是1ACM 的边AM 2, 12111244ACM ACM ABC S S S S ===;3AM 是2ACM △的边2CM 上的中线,如图3,231128ACM ACM S S S ==, 故答案为:12S ,14S ,1)解:∠112ACM SS =,211124ACM ACM S S S ==2312ACM ACM S S ==,以此类推,可得12n ACM S ⎛⎫= ⎪⎝⎭2022=2022ACM S故答案为:202212⎛⎫ ⎪【点拨】本题考查了三角形中线的性质,熟记三角形的一条中线把三角形的面积分成相等的两部分是9.如图,CE 是ABC 的角平分线,EF BC ∥,交AC 于点F ,已知64AFE ∠=︒,求FEC ∠的度数.【答案】32︒ ACB AFE ==∠是ABC 的角平分线,12BCE ACB =∠FEC BCE =∠本题主要考查了平行线的性质,【变式】如图,点E 为直线AB 上一点,B ACB ∠=∠,BC 平分ACD ∠,求证:AB CD .【分析】根据平行线的判定定理求解即可.解:BC 平分ACD ∠,ACB BCD ∴∠=∠,B ACB ∠=∠,B BCD ∴∠=∠,∠AB CD ∥.【点拨】本题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键.10.如图,ABC 中,按要求画图:(1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ;(3) 画出ABC 中AB 边上的高CF .【分析】(1)画出BAC ∠的平分线交BC 于D 即可;(2)取BC 的中点E ,连接AE ,中线AE 即为所求;(3)过点C 作CF BA ⊥交BA 的延长线于F ,CF 即为ABC 中AB 边上的高.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作三角形的角平分线、中线和高线,解决本题的关键是掌握基本作图方法.举一反三:【变式】在边长为1的正方形网格中:''';(1)画出ABC沿CB方向平移2个单位后的A B C'''的重叠部分面积为多少?(2)ABC与A B C重叠部分面积为'''即可;)根据题意画出ABC沿CB个单位后的A B C)正方形的边长为,根据图形进行求解即可.'''如图所示:解:(1)ABC沿CB方向平移2个单位后的A B C(2)∠正方形的边长为1,9.下列图形中哪些具有稳定性?【答案】(1)(4)(6)中的图形具有稳定性.【分析】根据三角形的稳定性可直接进行求解.解:具有三角形稳定性的有(1)(4)(6).【点拨】本题主要考查三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.举一反三:【变式1】(1)下列图形中具有稳定性是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.【答案】(1)∠∠∠;(2)图见分析【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:(1)具有稳定性的是∠∠∠三个.(2)如图所示:【点拨】本题主要考查了三角形的稳定性,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式2】如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:∠三角形木架的形状______,说明三角形具有______;∠四边形木架的形状______说明四边形没有______.【答案】图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠是三角形,稳定性;∠四边形,稳定性.【分析】∠根据三角形的稳定性进行解答即可;∠根据四边形的不稳定性进行解答即可.解:图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠由三角形具有稳定性知,三角形木架的形状不会改变,这说明三角形具有稳定性.故答案为:是三角形,稳定性;∠四边形木架的形状是四边形,四边形具有不稳定性.故答案为:四边形,稳定性.【点拨】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.。
北师大版小学四年级下册数学《三角形分类》教案(精选6篇)北师大版小学四年级下册数学《三角形分类》篇1教学目标:知识与技能:通过分类认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每种三角形的特点。
过程与方法:在分类中体会分类标准的严密。
情感态度与价值观:在三角形的分类中感受各类三角形之间的关系。
教学准备:多媒体,各种三角形纸片。
教学过程:一、创设情境1、欢欢和笑笑给同学们发来请贴,邀请大家到数学王国做客.但路上有两道关卡,只有顺利通过才能得到通行证.第一关:准确地认出他们,并说出他们的特征.(课件出示锐角、直角和钝角)第二关:给他们取个形象又合适的名字.(出示锐角三角形、直角三角形和钝角三角形)二、探究新知:同学们顺利过关,来到了数学王国.它们非常好客,派了很多代表来迎接我们。
(课件出示各种三角形)1、哟,它们长得很相似的,找找它们有哪些共同点?2、有这么多共同点,老师眼都看花了,但定睛一看,还是有区别的,你们发现了吗?3、看着这些长得相似,但实际上大大小小、形状各异、零零乱乱的三角形,你想研究些什么?板书:三角形分类。
4、学生自由讨论,给三角形分类.谁愿意上来展示一下你的研究成果?5、学生展示分类结果:从角分:直角三角形、锐角三角形和钝角三角形。
讲解直角三角形的直角边、斜边。
从学具中找出直角三角形,说说你是怎么知道它是直角三角形的?从边分:等腰三角形和没有相等的边的三角形。
讲解:等腰三角形的各部分名称。
从你们的学具中找出等腰三角形,你怎么知道它是等腰三角形的?在等腰三角形中有没有三条边都相等的?(等边三角形)找出等边三角形并证明.三、实践应用1、画三角形。
选择你最喜欢的三角形画下来,并向同学们介绍你的三角形.2、猜三角形:出示一个直角出示一个钝角出示一个锐角(能不能正确猜出是什么三角形?为什么?3、填一填4、找一找:在孔雀图中找出你喜欢的三角形说一说。
四、总结,拓展在这节课的探秘中你了解到了什么?你还想研究些什么?北师大版小学四年级下册数学《三角形分类》教案篇2教学目标:1.让每位学生通过动手操作,经历给三角形分类的过程,认识并识别锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,了解各种类型三角形的特点。
四年级数学下册教案:二认识三角形和四边形-探索与发现:三角形内角和(试一试)北师大版一、教学目标1. 知识与技能:(1)理解三角形的定义,能够识别三角形。
(2)探索并掌握三角形内角和的性质。
(3)能够运用三角形内角和的性质解决相关问题。
2. 过程与方法:(1)通过观察、操作、探索等活动,培养学生的观察能力、动手能力和创新能力。
(2)通过小组合作,培养学生的团队协作能力和沟通能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心,激发学生的求知欲。
(2)培养学生独立思考、解决问题的能力,增强学生的自信心。
二、教学重点与难点1. 教学重点:理解三角形的定义,掌握三角形内角和的性质。
2. 教学难点:运用三角形内角和的性质解决实际问题。
三、教学准备1. 教具准备:三角形模型、剪刀、直尺、量角器等。
2. 学具准备:学生用书、练习本、铅笔等。
四、教学过程1. 导入新课(1)引导学生回顾上节课学习的三角形的基本概念,如三角形是由三条线段围成的图形,有三条边和三个角等。
(2)提出问题:同学们,你们知道三角形的内角和是多少度吗?今天我们就来探索这个问题。
2. 探索三角形内角和(1)引导学生观察三角形模型,尝试用量角器测量三角形的内角。
(2)学生分组讨论,分享测量结果,总结三角形内角和的性质。
(3)教师总结:三角形内角和等于180度。
3. 验证三角形内角和(1)引导学生用剪刀将三角形模型剪开,观察剪开后得到的两个图形。
(2)学生尝试将剪开后的图形拼在一起,验证三角形内角和是否等于180度。
(3)教师总结:通过验证,我们得出三角形内角和确实等于180度。
4. 应用三角形内角和(1)出示例题:一个三角形的两个内角分别是60度和80度,求第三个内角的度数。
(2)引导学生运用三角形内角和的性质解答例题。
(3)教师点评并总结解题方法。
5. 小结(1)引导学生回顾本节课所学内容,总结三角形内角和的性质。
(2)教师强调三角形内角和在实际问题中的应用。
1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。