FPGA设计基础第3章FPGA设计入门
- 格式:ppt
- 大小:632.50 KB
- 文档页数:76
fpga课程设计一、课程介绍:fpga课程设计是一门针对电子工程与计算机科学专业高年级本科生或研究生的专业课程。
其目的是使学生掌握FPGA的基本原理、设计和应用技能,培养学生解决实际工程问题的能力。
课程将理论学习与实践操作相结合,使学生能够深入了解FPGA技术,并在实际项目中应用FPGA进行数字电路设计。
通过本课程的学习,学生将具备以下能力:1.理解FPGA的基本原理和工作机制;2.熟练使用FPGA设计软件进行数字电路的设计和仿真;3.掌握FPGA硬件描述语言(如VHDL或Verilog)的编程方法;4.具备在实际项目中应用FPGA解决工程问题的能力。
随着现代电子技术的快速发展,FPGA(现场可编程门阵列)技术在数字电路设计领域得到了广泛应用。
作为一种高度集成的可编程硬件设备,FPGA具有灵活性高、开发周期短和成本低等优点,使得它在通信、工业控制、医疗设备等领域具有广泛的应用前景。
为了适应这一技术发展趋势,培养具有实际工程能力的优秀人才,我校特开设此门课程,使学生能够紧跟时代步伐,掌握前沿技术。
二、学习者分析:本课程的目标学员为电子工程与计算机科学专业的高年级本科生、研究生,以及其他对FPGA技术感兴趣的学生。
学员具备一定的数字电路基础知识,对硬件描述语言有一定的了解。
学员应具备以下先备知识:1.数字电路基本原理,如逻辑门、触发器、计数器等;2.计算机组成原理,如CPU、内存、接口等;3.硬件描述语言(如VHDL或Verilog)的基本语法和编程方法;4.微电子学基础知识,如半导体器件、集成电路等。
三、学习目标:1.掌握FPGA的基本原理、工作机制和应用领域;2.了解FPGA设计流程,包括需求分析、逻辑设计、仿真验证、硬件实现等;3.熟悉FPGA硬件描述语言的编程方法和技巧。
4.能够使用FPGA设计软件进行数字电路的设计和仿真;5.能够运用FPGA硬件描述语言编写符合要求的数字电路模块;6.具备在实际项目中应用FPGA解决工程问题的能力。
第三章入门基础3.1 例程代码详解请下载例程:/cH6DGJ9jGU66i 访问密码 0711该工程共包括三个文件:led.qpf、led.qsf和led.v,三个文件都可以用GVIM或者记事本打开。
led.qpf:工程项目文件。
说明了生成此工程的Quartus II版本;指定顶层模块名。
led.qsf:工程配置文件。
工程中包括管脚定义、signaltap定义等。
熟练后,在此配置管脚非常方便。
led.v:工程的源代码。
该工程实现如下功能:每隔一秒,两个led灯变化一次,亮1秒,灭1秒。
我们详细讲解一下代码。
module led(clk ,rst_n ,led);上面代码定义了模块名led,该模块的内容从module开始,到endmodule为止。
该模块有三个输入输出信号,分别是clk、rst_n和led,是输入还是输出,分别是多少位宽(即多少根线)还未定义。
对于外界来说,看到的就是这三个信号,只需将这三个信号连接起来,就能使用这个模块的功能,至于内部是如何实现的、内部定义了什么信号,外界不关心。
input clk ;input rst_n ;output[1:0] led ;上面代码定义了信号的输入和输出,以及该信号的位宽。
例如,定义了clk和rst_n是输入的信号,并且每个位宽都是1位的,即只有一根线。
定义了led是输出信号,并且是2位的,即led信号有两根线。
输入信号即这个信号的激励,是由外部输入进来的;输出信号则是本模块根据功能,产生的信号。
reg [ 1:0] led ;reg [25:0] time_1s_cnt ;上面代码定义了led和time_1s_cnt的信号类型,声明他们是reg型的,并且表明led是2位宽,time_1s_cnt是26位宽(即有26根线)。
在设计代码中,一般只用到reg型和wire型。
reg型不一定就表示是寄存器。
到底是用reg型还是wire型,请记住一个原则:本module代码中,如果是在always 里产生的信号,都是用reg型,其他包括assign赋值、例化模块输出的信号都是用wire型。
FPGA学习步骤FPGA(Field-Programmable Gate Array)是可编程逻辑器件的一种,它具有高度可编程性和灵活性,被广泛应用于数字电路设计和嵌入式系统开发。
学习FPGA可以使我们了解数字电路的原理和设计方法,并能够利用FPGA开发和优化各种应用。
下面是一个FPGA学习的步骤,帮助你逐步了解FPGA的原理和应用。
步骤1:掌握数字电路基础知识FPGA是用于设计数字电路的器件,因此首先需要掌握数字电路的基础知识。
学习数字电路的基本逻辑门、布尔代数和组合逻辑电路等概念,理解时序电路、存储器和状态机等高级概念。
步骤2:了解FPGA的原理和架构学习FPGA的原理和架构有助于理解FPGA是如何实现数字电路的。
学习FPGA的片上资源,如查找表、触发器和运算器等,以及FPGA的内部连接结构。
还可以探索FPGA的编程方式,包括寄存器传输级综合(RTL)和硬件描述语言(HDL)等。
步骤3:学习硬件描述语言(HDL)硬件描述语言是FPGA设计的基础,通常使用的HDL是Verilog和VHDL。
学习HDL的语法和基本结构,并掌握如何使用HDL描述数字电路。
可以通过书籍、在线教程和实践项目等方式学习HDL。
步骤4:使用FPGA开发工具步骤5:完成简单的FPGA设计项目开始进行一些简单的FPGA设计项目,如实现基本的逻辑门、组合逻辑电路和时序电路等。
通过这些项目,学会如何使用HDL描述和实现数字电路,如何利用FPGA的资源和工具进行设计和优化。
步骤6:进阶学习FPGA应用进一步学习FPGA的应用,例如数字信号处理(DSP)、图像处理、通信系统和嵌入式系统等。
根据自己的兴趣和需求选择相应的应用领域,并实践相关项目。
学习如何使用FPGA实现更复杂的功能和算法,并了解相应的设计方法和技术。
步骤7:参加竞赛或项目参加FPGA设计竞赛或实际项目有助于提升自己的FPGA设计能力。
通过参赛或项目,可以锻炼自己的团队合作能力和解决问题的能力,并将学到的知识应用到实际应用中。
EDA技术实用教程第二版课程设计EDA(Electronic Design Automation)是一种电子设计自动化技术,旨在提高电路设计的效率和准确性。
EDA 类软件工具覆盖了从原理图到布局的整个电路设计过程,并支持从模拟到数字电路设计和 FPGA 开发。
本文旨在介绍 EDA 技术的相关实用教程,帮助初学者更好地掌握该技术。
在第二版中,我们将会以课程设计的形式展示这些实用教程。
第一章电路设计基础电路设计是一个非常复杂的过程,需要掌握一定的电路设计基础知识。
课程设计的第一章节会介绍一些基础知识。
1.1 电子元器件与电路在学习电路设计之前,我们需要了解一些电子元器件的基本知识。
在 EDA 软件中,我们可以选择需要的元器件并进行设计。
1.2 原理图设计原理图是电路设计的基础。
在 EDA 软件中,我们可以通过画原理图的方式来完成电路设计。
该部分将会详细介绍原理图设计的流程与注意事项。
第二章 PCB 设计PCB(Printed Circuit Board)也是电路设计的重要组成部分。
在 EDA 软件中,我们可以使用 PCB 设计工具完成 PCB 设计。
本章节将会介绍关于 PCB 设计的相关技巧与实用教程。
2.1 PCB 布局设计在 PCB 设计中,布局设计是非常重要的一步。
良好的布局设计可以减小电路杂散耦合、减小交叉干扰、增大分布容量等。
该部分将会详细介绍布局设计的注意事项。
2.2 PCB 元件布局元件布局是 PCB 设计的重要部分,需要根据电路的要求进行选取和布局。
该部分将会介绍 PCB 元件布局的技巧与实用教程。
第三章 FPGA 开发FPGA(Field Programmable Gate Array)是一种可编程逻辑芯片,广泛应用于数字电路设计领域。
在 EDA 软件中,我们可以使用 FPGA 开发工具进行 FPGA 设计。
本章节将会介绍关于 FPGA 开发的相关技巧与实用教程。
3.1 Verilog 语言入门Verilog 语言是 FPGA 开发中常用的一种硬件描述语言,也是我们必须掌握的一部分。
fpga 设计手册
FPGA设计手册是一本关于FPGA(现场可编程门阵列)设计
的指南和参考手册。
它包含了FPGA设计的基本原理、设计
方法、工具使用以及各种电路和应用的实例。
FPGA设计手册通常涵盖以下内容:
1. FPGA基础知识:介绍FPGA的基本原理、架构和工作原理,让读者对FPGA有全面的了解。
2. 设计流程:详细解释FPGA设计的各个阶段,包括需求分析、设计规格、设计验证和实现等。
3. 设计工具:介绍使用FPGA设计所需的工具,如EDA(电
子设计自动化)工具、仿真工具和编程语言。
4. 设计技巧和优化:提供一些常用的FPGA设计技巧和优化
方法,帮助设计者提高设计效率和性能。
5. 电路实例:给出一些常见的FPGA电路实例,如逻辑门、
计数器、寄存器和状态机等,以帮助读者理解和应用FPGA
设计。
6. 应用案例:介绍一些实际应用中的FPGA设计案例,如图
像处理、通信系统和数字信号处理等,以展示FPGA在各个
领域的应用。
FPGA设计手册通常是由FPGA厂商、学术机构或工程师编写,旨在为初学者和有经验的FPGA设计者提供指导和参考。
读
者可以根据自己的需求选择适合的FPGA设计手册,并结合
实际项目进行学习和实践。
FPGA设计基础 2009-10-16 00:07一、设计概念1.设计入口Quartus II支持原理图和HDL语言的输入。
原理图更适合简单的设计,HDL语言适合复杂的设计。
但要注意,如果想使用第三方的综合工具,就必须用HDL语言。
Quartus II软件的文本编辑器,可以插入很多语言相关的模板,这个功能不错。
选择综合工具:Altera支持很多第三方的综合工具,个人比较喜欢用SynplifyPro。
这些工具生成.edf或者.vqm文件,然后QuartusII再进行布局布线。
SOPC生成:Altera的SOPC功能很强大。
IP:Altera和第三方合作伙伴提供了很多的IP,可以让设计变得更快捷。
特别是Altera 提供的,可以直接试用。
对于一些FPGA内部的资源模块,通常既可以直接调用Quartus II 的ip核,也可以用HDL语言来描述,比如RAM资源。
宏功能(Megafunction):ALtera封装了很多资源和模块,用Megafunction的形式给用户调用,只用设置一些参数,就可以正常使用这些模块了。
2.设计建议1)同步设计:setup time和hold time的充分保证,能减少毛刺等的干扰。
使用Cyclone III I/O的输入寄存器(注意,不是普通的LE),这样芯片的输入信号能更好的滤除毛刺。
需要设置”Fast Input Rgedister”,来使用该寄存器。
FPGA内部路径的延迟是不确定的,会在设计中因为每次布局布线不同而改变,会在使用中因为温度,电压等因素改变,还会因为工艺的差异而改变。
为了增加设计的稳定性,尽量提高时序分析时路径的余量。
虽然时序分析已经是按芯片在最差状况下的时序特性来分析,但多留一点余量还是有好处。
2)时钟:时钟在同步设计中是非常重要的。
(a)时钟当然得用专用时钟引脚输入,用普通I/O会导致更严重的时钟偏移。
高时钟偏移会导致hold time违规。
时钟在芯片内部会使用全局时钟网络,全局异步复位信号也可以使用全局时钟网络。
FPGA入门教程FPGA入门教程1.数字电路设计入门2.FPGA简介3.FPGA开发流程4.RTL设计5.QuartusⅡ设计实例6.ModelSim和Testbench1.数字电路设计入门1.1数字电路设计数字电路设计的核心是逻辑设计。
通常,数字电路的逻辑值只有‘1’和‘0’,表征的是模拟电压或电流的离散值,一般‘1’代表高电平,‘0’代表低电平。
高低电平的含义可以理解为,存在一个判决电平,当信号的电压值高于判决电平时,我们就认为该信号表征高电平,即为‘1’。
反之亦然。
当前的数字电路中存在许多种电平标准,比较常见的有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、HSTL、SSTL等。
这些电平的详细指标请见《补充教程1:电平标准》。
数字电路设计大致可分为组合逻辑电路和时序逻辑电路。
一般的数字设计的教材中对组合逻辑电路和时序逻辑电路的定义分别为:组合逻辑电路的输出仅与当前的输入有关,而时序逻辑电路的输出不但与输入有关,还和系统上一个状态有关。
但是在设计中,我们一般以时钟的存在与否来区分该电路的性质。
由时钟沿驱动工作的电路为时序逻辑电路。
大家注意,这两种电路并不是独立存在的,他们相互交错存在于整个电路系统的设计中。
1.1.1组合逻辑电路组合逻辑电路由任意数目的逻辑门电路组成,一般包括与门、或门、非门、异或门、与非门、或非门等。
一般的组合逻辑电路如下图:其中A,B,C,D,E,F为输入,G为输出。
1.1.2时序逻辑电路时序逻辑电路由时钟的上升沿或下降沿驱动工作,其实真正被时钟沿驱动的是电路中的触发器(Register),也称为寄存器。
触发器的工作原理和参数如下图:Register的原理和参数DClkQDQClktc-qtholdTtsutsu:建立时间,在时钟有效沿到来之前触发器数据输入应保持稳定的时间,如果建立时间不够,数据将不能在这个时钟沿被打入触发器。
它间接约束了组合逻辑的最大延时。
0基础小白如何制定fpga学习计划在当今科技日新月异的时代,硬件编程越来越受到重视,FPGA(Field-Programmable Gate Array)作为一种可编程的逻辑芯片,在各种应用领域都有着广泛的应用。
而对于0基础小白而言,想要学习FPGA编程可能会感到困惑和迷茫。
因此,本文将为0基础小白制定一份FPGA学习计划,帮助他们逐步掌握FPGA编程的相关知识和技能。
第一阶段:入门基础1.了解FPGA的基本概念FPGA是一种可编程逻辑芯片,它可以通过编程来实现不同的逻辑功能。
小白需要了解FPGA的基本原理和结构,包括FPGA的硬件资源、布线和时序控制等方面的知识。
2.学习Verilog或VHDL语言Verilog和VHDL是FPGA编程的两种主流语言,小白可以选择其中一种语言进行学习。
通过学习Verilog或VHDL语言,理解逻辑门、组合逻辑、时序电路等基本概念,并能够编写简单的逻辑电路代码。
3.掌握常用的FPGA开发工具在学习FPGA编程过程中,开发工具是必不可少的。
小白可以选择常用的FPGA开发工具,如Quartus、Vivado等,并学习其基本操作和使用方法。
第二阶段:深入学习1.学习FPGA的高级应用除了基本的逻辑设计外,FPGA还可以应用在数字信号处理、通信系统、图像处理等领域。
小白可以学习FPGA的高级应用,了解FPGA在各个领域的具体应用场景和实现方法。
2.了解FPGA的硬件架构FPGA的硬件架构包括逻辑单元、存储单元、时序控制等部分,小白可以深入学习FPGA的硬件架构,理解FPGA内部的工作原理和结构。
3.实践项目通过实践项目,小白可以将理论知识与实际应用相结合,提高自己的编程能力。
可以选择一些简单的FPGA项目,如LED灯控制、数码管显示、信号发生器等,逐步提高自己的编程和调试能力。
第三阶段:提升水平1.参加FPGA竞赛或比赛参加FPGA竞赛或比赛是一个锻炼自己的好机会,通过参加比赛,小白可以将自己的FPGA编程能力与他人进行比拼,在竞赛中学习和提高。
fpga基础课程设计一、课程目标知识目标:1. 理解FPGA的基本概念、结构和原理,掌握FPGA在数字系统设计中的应用;2. 学会使用硬件描述语言(HDL)进行数字电路设计和仿真;3. 了解FPGA开发流程,掌握FPGA开发工具的使用。
技能目标:1. 能够运用所学知识,设计简单的数字系统,并进行FPGA实现;2. 培养学生的动手能力,使其具备独立进行FPGA程序编写、调试和验证的能力;3. 提高学生的团队协作能力,能够在小组合作中发挥各自优势,共同完成设计任务。
情感态度价值观目标:1. 培养学生对FPGA技术的兴趣,激发学生主动探索新技术的热情;2. 培养学生严谨、细致、负责的学习态度,养成良好的学术道德;3. 增强学生的创新意识,鼓励学生勇于尝试,提高解决问题的能力。
课程性质:本课程为实践性较强的课程,结合理论教学和实验操作,培养学生的实际操作能力和创新能力。
学生特点:学生具备一定的电子技术基础知识,对FPGA技术有一定了解,但实际操作能力较弱。
教学要求:结合学生特点,注重理论与实践相结合,通过课程学习,使学生能够掌握FPGA基础知识和技能,具备实际应用能力。
在教学过程中,注重启发式教学,引导学生主动思考,提高分析问题和解决问题的能力。
同时,关注学生的情感态度价值观培养,激发学生的学习兴趣,提高综合素质。
二、教学内容1. FPGA基本概念:介绍FPGA的发展历程、基本结构、工作原理及其在数字系统设计中的应用。
教材章节:第一章 FPGA概述2. 硬件描述语言(HDL):讲解Verilog和VHDL两种硬件描述语言的基本语法、数据类型、运算符和结构。
教材章节:第二章 硬件描述语言基础3. FPGA开发工具:介绍FPGA开发流程,学习使用ModelSim进行仿真,掌握Quartus II或Vivado等开发工具的使用。
教材章节:第三章 FPGA开发工具与环境4. 数字电路设计:学习组合逻辑电路和时序逻辑电路的设计方法,进行FPGA 实现。
contents •FPGA基础概念与原理•FPGA开发工具与流程•FPGA设计方法与技巧•FPGA应用领域及案例解析•FPGA实验与项目实践•FPGA发展趋势与挑战目录01FPGA基础概念与原理FPGA定义及发展历程FPGA(Field Programmable Gate Array)即现场可编程逻辑门阵列,是一种可编程使用的信号处理芯片,可通过编程来改变内部逻辑结构,实现复杂的数字逻辑功能。
FPGA的发展历程经历了从简单可编程逻辑器件到复杂可编程逻辑器件的演变,随着半导体工艺技术的进步和计算机辅助设计工具的发展,FPGA的规模和性能不断提升,应用领域也越来越广泛。
FPGA的基本结构包括可编程逻辑块(CLB)、可编程输入输出单元(IOB)和内部连线资源等部分。
其中,CLB是FPGA实现逻辑功能的核心部分,由查找表(LUT)和寄存器组成,可实现组合逻辑和时序逻辑功能;IOB用于实现FPGA与外部电路的接口,可配置为输入、输出或双向接口;内部连线资源用于连接FPGA 内部各个单元,实现信号传输和数据交换。
FPGA的工作原理是通过编程来改变内部逻辑结构,实现特定的数字逻辑功能。
用户可以使用硬件描述语言(如VHDL、Verilog)或高级编程语言(如C、C)来描述所需的逻辑功能,然后通过编译工具将设计转换为FPGA可识别的配置文件,最后通过编程器将配置文件下载到FPGA芯片中,实现逻辑功能的配置和改变。
FPGA基本结构与工作原理VS可编程逻辑器件根据编程方式和结构特点可分为简单可编程逻辑器件(杂可编程逻辑器件(和现场可编程门阵列(三类。
SPLD(只读存贮器(可擦除只读存贮器(是结构简单、编程方便、价格低廉,但逻辑功能有限。
CPLD技术制造,不需要外部存储器芯片,可用重复编程,适合时序、组合等逻辑电路的应用场合,其主要特点是集成度高、速度快、保密性强。
FPGA器件,采用具有极丰富的触发器和脚,是专用集成电路(领域中的一种半定制电路。